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Abstract: Nonlinear piezoelectric materials are raised as a great replacement for devices that require
low power consumption, high sensitivity, and accurate transduction, fitting with the demanding
requirements of new technologies such as the Fifth-Generation of telecommunications (5G), the
Internet of Things (IoT), and modern radio frequency (RF) applications. In this work, the state
equations that correctly predict the nonlinear piezoelectric phenomena observed experimentally are
presented. Furthermore, we developed a fast methodology to implement the state equations in the
main FEM simulation software, allowing an easy design and characterization of this type of device,
as the symmetry structures for high-order tensors are shown and explained. The operation regime
of each high-order tensor is discussed and connected with the main nonlinear phenomena reported
in the literature. Finally, to demonstrate our theoretical deductions, we used the experimental
measurements, which presented the nonlinear effects, which were reproduced through simulations,
obtaining maximum percent errors for the effective elasticity constants, relative effective permittivity,
and resonance frequencies of 0.79%, 2.9%, and 0.3%, respectively, giving a proof of the potential of
the nonlinear state equations presented for the unifying of all nonlinear phenomena observed in the
piezoelectric devices.

Keywords: nonlinear piezoelectric devices; stress–charge formulation; tensor symmetry structure;
high-order tensors; nonlinear piezoelectric applications; tunable piezoelectric devices

1. Introduction

Piezoelectric materials have been used in several application fields because their perfor-
mance and set of physical properties meet the requirements in a wide scope of applications.
Since the discovery of the piezoelectric effect by the Curie brothers in the 1880s, these
types of materials were mainly used in transduction applications, until the 1970s, when
their implementation in radio frequency (RF) applications was developed [1], and cur-
rently, the semiconductor manufacturing process allows their use in applications where the
transduction between mechanical and electric fields is mandatory at the micro-scale.

Amorphous piezoelectric materials are used in applications where miniaturization
is not required, and for this reason, currently, crystalline piezoelectric materials dominate
the market and industry, mainly with microelectromechanical system (MEMS) devices due
to the reproducibility of their physical and system properties. Consequently, the research
on these materials is focused on crystalline composites that have high chemical resistance,
high breakdown voltages, and high rigidity for RF applications.
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Since its discovery, several fabrication techniques have been developed to obtain
piezoelectric materials, where the chemical-based techniques have been of interest due to
the requirements of thin-film technologies [2]. Deposition techniques such as metal–oxide
chemical vapor deposition (MOCVD) [3] and chemical solution deposition (CSD) [4] are cur-
rent research topics. Furthermore, there are CMOS-compatible deposition techniques, since
these processes have low fabrication temperatures, such as sputtering-based techniques,
which can obtain high levels of crystallinity [5,6], being an ideal fabrication process to apply
the nonlinear phenomena of piezoelectric materials in a new scope of applications [7–10].

Currently, the main applications of piezoelectric materials are embedded in the MEMS
scope, because they use the accurate transduction capability to implement them in several
types of applications such as micro and nano-resonators [11,12], energy harvesters [13],
accelerometers [14], wearable devices [15], micro- and nano-actuators [16], and sensors for
gasses [17] and electrostatic charge [18]. In general, the applications cited share demanding
requirements such as low power consumption, high sensitivity, accurate transduction,
great chemical resistance, and good enough electrical and mechanical properties, where
all of these conditions are met by piezoelectric materials. The modeling of the mentioned
devices using the linear description of traditional state equations [19] gives acceptable
errors by its predictions; nevertheless, under relatively high electric fields (>106 V/m)
and deformation, the physical behavior of materials is not predicted correctly [7,20], and
the need for a complete first-principles physical description of the nonlinear phenomena
for piezoelectric materials emerges as a mandatory tool for new designs in demanding
applications of the industry, such as the Fifth-Generation of telecommunications (5G) and
the Internet of Things (IoT).

There are applications that use the nonlinear properties with the same targets as
the linear applications exposed above such as actuators [21,22], energy harvesters [23],
sensors [24], memories [25], and tunable devices [7,26,27]. In all of these works, the physical
and electrical behavior of the system is explained through mathematical models [10,28–31]
or first-principles deductions (a specific thermodynamic formulation) [32–35], where the
models are only valid for a specific geometry disposition or layer stack, while the physical
formulations are general, but very difficult to solve analytically. The case of the hysteresis
nonlinear effect is a special topic since its behavior has remnant fields after time; its
formulation in deformation–charge form and micro-mechanical modeling was exposed
in [36,37] respectively. In the models cited, the core concept used is the algebraic or
complex expansion of the material parameters, resulting in adjustments of the macroscopic
magnitudes of the physicalsystem, e.g., resonance frequency, effective material constants,
lumped elements of equivalent circuits, and quality factor, among others. All of these
results produce an imbalance of the state equations, being the core problem of models for
nonlinear piezoelectric applications since the introduction of adjustment parameters in the
material constants reproduces the macroscopic behavior of the phenomena; nevertheless,
the physical behavior of the effect is not described by the equations. In contrast, the
first-principles formulations are based on the balance of the microscopic states of the
physicalsystem, resulting in the prediction of the physical behavior of the macroscopic
states, being a complete physical description of the nonlinear effects where the state
equations remain balanced; consequently, the solver’s calculus is more difficult and time
consuming. Due to this, to include this type of device within the integrated circuit (IC)
industry, mathematical tools are needed that allow fast design and manufacturing processes,
such as the finite-element-method (FEM)-based design accompanied by compatibility
with the main IC fabrication processes, such as CMOS, PD-SOI, FD-SOI, and FinFET.
In summary, a thermodynamic formulation with easy implementation in leading FEM
simulation software (e.g., COMSOL Multiphysics and COVENTOR) is mandatory for the
inclusion of nonlinear piezoelectric devices within the semiconductor industry, and that set
of demanding characteristics for the mathematical and physics tools are contained in the
formulation presented in this work.
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To simulate the nonlinearities and physical behavior of the piezoelectric materials, it is
necessary to know the nonlinear state equations with an easy methodology to include them
in the FEM solver’ calculus; consequently, the symmetry structure of high-order tensors
must be given as well. Despite this, the methodologies found in the literature to implement
nonlinear behaviors in leading FEM simulation software are complicated to carry out,
and at the same time, the symmetry structures cannot be found (only some components
for a few types of materials [32]). For these reasons, the nonlinear applications reviewed
cannot be explained by a unified set of equations with known tensor structures, making the
industrial adoption of these types of applications more difficult despite their advantages.

Taking into account the above discussion, in this work, we present a complete physi-
cal description of the nonlinear behavior of piezoelectric materials, obtained through the
deduction from first-principles of the nonlinear state Equations (until third-order phe-
nomena), the transformation laws required, and the symmetry structures of the tensors,
for each of the thirty-two point groups of symmetry (all types of crystalline materials).
Furthermore, a methodology with an easy way to implement the state equations and high-
order tensors components in the main FEM simulation software is presented, allowing
designing and manufacturing devices that can be used in the 5G, IoT, and RF application
scopes. Finally, this work gives the MEMS scientific community all the mathematical and
physics tools needed to research new types of applications and optimizations for nonlinear
piezoelectric devices.

2. Stress–Charge Nonlinear Formulation

A suitable thermodynamic representation for including the nonlinear effect within
FEM simulators is the stress–charge formulation due to the characteristics of direct solvers,
since the physical behavior of the electrical permittivity and elasticity constants are well-
known parameters of crystalline materials; in the literature can be also found references to
perform the energy and dissipation calculus [38].

The following deductions are focused on crystalline materials. The theoretical de-
velopment starts from first-principles using the Voigt form for mechanical tensors, the
Einstein sum convention,and the recommended notation for point groups of symmetry
by the International Union of Crystallography (IUCr) [39]. The entropy and the temper-
ature contributions were neglected due to the solid phase of materials, the low power
dissipation (around 10 mW/mm2), and the nonlinear perturbative operation regime of the
devices. In the next sections, we discuss the experimental limits that govern the theoretical
development presented.

From the eight possible formulations [19], we used the thermodynamic potential of
the electric Gibbs function [40], the total differential of which is defined for the piezoelectric
effect as

dG2 = −DkdEk + TλdSλ, (1)

where Dk, Ek, Tλ, and Sλ are the electric displacement vector, electric field, stress field, and
deformation field, respectively. Therefore, considering the properties of the total differential
of a multivariable function, the total differentials for dependent variables are

dTλ = CλµdSµ − ekλdEk,
dDi = εijdEj + eT

iµdSµ, (2)

where eT
kλ are the piezoelectric coefficients, Cλµ the elastic constants, and εij the electrical

permittivity.
To deduce the nonlinear formulation, we expanded the tensor coefficients in Equation (2)

through a Taylor series centered at zero and took into account that the dependent variables
are a function of Sλ and Ek, then the elastic constants are

Cλµ = ∂Tλ
∂Sµ

= ∂Tλ
∂Sµ

∣∣∣
0
+ ∂2Tλ

∂Sµ∂Sν

∣∣∣
0
Sν +

∂2Tλ
∂Sµ∂Ek

∣∣∣
0
Ek, (3)
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where the high-order derivatives were measured at constant deformation and the electric
field equals zero. Through an analogous procedure, we can obtain all coefficient tensors of
Equation (2) as a function of Sλ and Ek.

Since Equation (1) is a total differential, we have

∂G2
∂Sλ

= Tλ, and ∂G2
∂Ek

= −Dk, (4)

then, considering that G2 is a physical magnitude, it is continuous, has an exact differential,
and has derivatives up to third-order, and knowing the mixed derivatives equivalence,
we obtain

− ∂3G2
∂Ek∂Sλ∂Sµ

= ∂3G2
∂Sλ∂Ek∂Sµ

= ∂3G2
∂Sλ∂Sµ∂Ek

(5)

Applying Equations (4) and (5), we can define gλµk as

∂2Tλ
∂Ek∂Sµ

= ∂2Tλ
∂Sµ∂Ek

= − ∂2Dk
∂Sλ∂Sµ

= gλµk (6)

Considering the other tensors’ coefficients in Equation (2) and applying the same
procedure for Equations (3) to (6), we define the remaining high-order tensors as

∂2Tλ
∂Ej∂Ek

= − ∂2Dk
∂Sλ∂Ej

= − ∂2Dk
∂Ej∂Sλ

= qkjλ, (7)

and

∂2Tλ
∂Sµ∂Sν

= tλµν , ∂2Di
∂Ej∂Ek

= rijk. (8)

Subsequently, by replacing Equations (3), (6), (7), and (8) in (2), we obtain

dTλ = CλµdSµ − ekλdEk + gλµkd
(
SµEk

)
+ qλjkEjdEk + tλµνSνdSµ ,

dDi = εijdEj + eT
µidSµ − qijµd

(
EjSµ

)
− gλµiSλdSµ + rijkEkdEj

(9)

After integrating Equation (9), we finally obtain the nonlinear state equations for the
piezoelectric effect considering effects up to third-order

Tλ = CλµSµ − ekλEk +
tλµν

2 SµSν + gλµkSµEk +
qjkλ

2 EjEk,

Di = εijEj + eT
iµSµ +

rijk
2 EjEk − qijλEjSλ −

gλνi
2 SλSν,

(10)

having

qijλ
2 EjEk = ∑3

n=1
qnnλ

2 EnEn (11)

In Equation (10), given the equivalence between the Voigt and traditional mechanical
notation, an algebraic factor is not needed; this means

tλµν ≡ tijklmn , gλµm ≡ gijklm , qjkλ ≡ qjklm ∀ λ, µ, ν ∈ [1, 6] (12)

Equation (10) describes how the exchange of the coupling fields’ magnitudes is per-
formed through the direct and converse piezoelectric effect, while the nonlinear contri-
butions generated by the relatively high electric and deformation fields were considered.
These conditions subject the material to mechanical and electrical stress, producing varia-
tions in all material parameters, as will be shown in the nonlinear effects section.

In this context, tλµν is the contribution to the stress field due to strong deformations
taking importance in the plastic operation regime. Furthermore, tλµν relates the orthogonal
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deformations Sµ and Sν that produce the change of the stress field with respect to the
linear approximation. Analogously, rijk is a correction term for the electric displacement
vector as function of very high electric fields Ej and Ek, so this tensor governs the dielectric
polarization when |Ei| is around 109 V/m. gλµk is responsible for the elasto-electric effect
(in the literature, also known as nonlinear electrostriction and the electro-elastic effect),
since its contribution to the stress field gλµk Sµ Ek provokes an augmentation of the effective
elasticity constants, producing a stiffening of the material. In the same way, qijλEjSλ

contributes to the electric permittivity due to the strains Sλ, and it is responsible for the
change in the effective permittivity of a material subject to relatively high electric fields.
Finally, The last quadratic terms of Equation (10) are a contribution to the stress and electric
displacement field, modifying the value of the coupling piezoelectric coefficients ekλ and
eT

iµ, respectively.
With this approach, the state equations presented remain balanced, while consid-

ering the nonlinear effects, and therefore, the physical behavior of the microscopic and
macroscopic states of the physics system are predicted correctly.

3. Transformation Laws

To obtain the symmetry structure of any tensor, we need to know the transformation
laws and the symmetry generators aij of each crystal type (point group of symmetry).
Taking into account the recommended notation for crystal classes and point groups by
IUCr [39], aij belongs to special orthonormal group SO(3), since it represents a generic
3D rotation. Furthermore, the transformation laws for the high-order tensors must meet
the constraints of the positive energy and generate stable states for the system (e.g., the
vanishing of the total torque about the origin), and their symmetry structure must only
depend on the point group of the material. Then, to deduce the transformation laws for
each high-order tensor, we start with the example of the calculus of the transformation
law for the electrical permittivity of any material. The transformations laws for the electric
displacement vector and electric field are

D
′
i = aijDj , E

′
i = aijEj, (13)

where the superscript ′ means a transformed magnitude. Now, knowing the law for the
polarization of a material:

Di = εijEj, (14)

the target is to obtain an equivalent equation in terms of transformed magnitudes, so using
Equation (13), we obtain

D
′
i = εkjaik(al j)

−1E
′
l , (15)

where the transformation law for electrical permittivity is deduced from the symmetry con-
dition, which means that, after transformation, the tensor form (structure) remains invariant:

εil = εkjaik(al j)
−1 (16)

For the qijλ high-order tensor, we need the transformation law for the deformation field:

S
′
µ = NµνSν, (17)

where Nµν is a function of the symmetry generator aij [38]. Then, using

Dk = −qkjλEjSλ, (18)
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we obtain

D
′
i = −aikqkjλ(al j)

−1(Nµλ)
−1EjSλ, (19)

where the transformation law obtained for the qijλ tensor is

q
′
ilµ = qkjλaik(al j)

−1(Nµλ)
−1 (20)

Through an analogous deduction, the transformation laws for the nonlinear tensors in
the Equation (10) can be obtained, and they are shown below:

t
′
λµν = tαβγ MλαN−1

βµ N−1
γν ,

g
′
λµk = gβνm MλβN−1

νµ a−1
mk ,

q
′
jkλ = qlmβ Mλβa−1

l j a−1
mk ,

r
′
ijk = rlmn aila−1

mj a−1
nk

(21)

At this point, the reader can notice that there are two ways to obtain the transformation
laws, one per state equation in (10). Both ways have equivalent results knowing the
properties of a symmetry generator aij (belongs to the SO(3) group) and the M and N
matrices [38]:

(aij)
−1 = (aij)

T = aji , and (N−1)ij = (MT)ij (22)

4. Symmetry Structure for High-Order Tensors

The structure of the tensors can be calculated from Equation (21), the generator
symmetry aij for the specific crystal type, and a last mathematical constraint

− ∂2Dk
∂Sλ∂Sµ

= gλµk = gµλk,

− ∂2Tλ
∂Ek∂Ej

= qkjλ = qjkλ,

− ∂2Di
∂Ej∂Ek

= rijk = rikj,

− ∂2Tλ
∂Sµ∂Sν

= tλµν = tλνµ,

(23)

based on the mixed derivatives theorem. Then, selecting a transformation law from
Equation (21) for the desired high-order tensor structure, a specific point group of symmetry
(e.g., 6 mm), and applying Equation (23) in the transformation law selected, we obtain an
undetermined algebraic linear system, which, after being solved, we obtain the structure
of the tensor in terms of a few unique components, which represents the contribution of
the specific tensor to the nonlinear behavior of the piezoelectric material. This procedure
to obtain the symmetry structure of the high-order tensors was tested through obtaining
the symmetry structure of known tensors for the thirty-two point groups; specifically, the
elasticity constants, electrical permittivity, piezoelectric coupling coefficients, and rijk tensor
were reproduced; the last one is the only high-order tensor, whose complete symmetry
structure has been published [41].

Table 1 presents a first approximation of the high-order tensors for two common
piezoelectrics, PZT − 5H and aluminum nitride (AlN), which belong to the 4 mm and
6 mm point groups, respectively. These results were obtained after reviewing the literature
and noticing that, when an excitation signal provokes the appearance of the nonlinear
effects [7,10,33], we suppose a variation around 2% for dependent variables with respect to
the linear approximation.

Table 2 presents the symbols and particular numeration for the thirty-two point groups
of symmetry; this numeration is used in the tables where the tensor structures are shown,
and all high-order tensor components are introduced only by subscripts. The symmetry
structures of tensors qjkλ and gλνi are shown in Tables 3 and 4, respectively; the first column
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contains the component of the high-order tensor and the following columns its correspond-
ing value for a specific point group. The symmetry structure of qjkλ depends only on the
Laue symmetry group. All types of crystalline materials have qjkλ and tλµν different from
zero in at least one component, and the gλνi and rijk tensors are null if the material does
not exhibit linear piezoelectric behavior (this means they are centrosymmetric crystals),
with the only exception of point group 432, where gλνi is not zero and rijk remains null. The
symmetry structure of tλµν for some point groups is shown in Appendix A in Table A1; the
point groups not included are HI and RII; they need a separate complete analysis, and due
to this, they are postponed for a future work.

Table 1. Estimated order of magnitude of the high-order tensors for the nonlinear effects of AlN and
PZT− 5H (4 mm and 6 mm point groups respectively), using the stress–charge formulation presented.

Material Parameter Symbol Definition Order Units

Elasticity Constant Cλµ
∂Tλ
∂Sµ

1011 N/m2

Relative Electrical Permittivity εr
ij

∂Di
∂Ej

101 1

Electrical correction term of elasticity constants
Strain correction term of piezoelectric coefficient gλµk

∂2Tλ
∂Ek∂Sµ

= ∂2Tλ
∂Sµ∂Ek

− ∂2Dk
∂Sλ∂Sµ

101 − 103 C/m2

Electrical correction term of piezoelectric coefficient
Strain correction term of electrical permittivity qijλ

− ∂2Dk
∂Sλ∂Ej

= − ∂2Dk
∂Ej∂Sλ

∂2Tλ
∂Ej∂Ek

10−10 − 10−8 N/Vm

Electrical correction term of permittivity rijk
∂2Di

∂Ej∂Ek
10−20 − 10−22 C/V2

Strain correction term of elasticity constants tλµν
∂2Tλ

∂Sµ∂Smu 1010 − 1012 N/m2

Table 2. Numeration of point groups of crystal systems and Laue groups. The identification number
corresponds to that used in Tables 3, 4 and A1 to show the symmetry structure of the high-order
tensors for each type of material.

Crystal System Laue Group Symbol Id. Symbol Id. Symbol Id.

Triclinic N 1 1 1 2
Monoclinic M 2 3 m 4 2/m 5
Orthorhombic O 222 6 mm2 7 mmm 8
Tetragonal TII 4 9 4 10 4/m 11
Tetragonal TI 4 mm 13 42 m 14 4/mmm 15
Rhombohedral RI 32 16 3 m 17 3 m 18
Rhombohedral RII 3 19 3 20 422 1 12
Hexagonal HII 6 21 6 22 6/m 23
Hexagonal HI 622 24 6 mm 25 6 m 26
Cubic CII 23 28 m3 29 6/mmm 2 27
Cubic CI 432 30 43m 31 m3m 32

1 Belongs to the TI Laue group. 2 Belongs to the HI Laue group.
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Table 3. Symmetry structure of high-order tensor qjkλ for the nonlinear piezoelectric coupling effect.

Laue Group
Comp. N M O TII TI RI RII HII HI CI CII

111 111 111 111 111 111 111 111 111 111 111 111
121 121 0 0 121 0 0 121 121 0 0 0
131 131 131 0 0 0 0 131 0 0 0 0
221 221 221 221 221 221 221 221 221 221 221 221
231 231 0 0 0 0 231 231 0 0 0 0
331 331 331 331 331 331 331 331 331 331 331 331
112 112 112 112 221 221 221 221 221 221 331 331
122 122 0 0 −121 0 0 −121 −121 0 0 0
132 132 132 0 0 0 0 −131 0 0 0 0
222 222 222 222 111 111 111 111 111 111 111 111
232 232 0 0 0 0 −231 −231 0 0 0 0
332 332 332 332 331 331 331 331 331 331 221 221
113 113 113 113 113 113 113 113 113 113 221 221
123 123 0 0 0 0 0 0 0 0 0 0
133 133 133 0 0 0 0 0 0 0 0 0
223 223 223 223 113 113 113 113 113 113 331 331
233 233 0 0 0 0 0 0 0 0 0 0
333 333 333 333 333 333 333 333 333 333 111 111
114 114 0 0 0 0 114 114 0 0 0 0
124 124 124 0 0 0 0 124 0 0 0 0
134 134 0 0 134 0 0 134 134 0 0 0
224 224 0 0 0 0 −114 −114 0 0 0 0
234 234 234 234 234 234 234 234 234 234 234 234
334 334 0 0 0 0 0 0 0 0 0 0
115 115 115 0 0 0 0 −124 0 0 0 0
125 125 0 0 0 0 114 114 0 0 0 0
135 135 135 135 234 234 234 234 234 234 234 234
225 225 225 0 0 0 0 124 0 0 0 0
235 235 0 0 −134 0 0 −134 −134 0 0 0
335 335 335 0 0 0 0 0 0 0 0 0
116 116 0 0 116 0 0 −121 −121 0 0 0
126 126 126 126 126 126 A A A A 234 234
136 136 0 0 0 0 231 231 0 0 0 0
226 226 0 0 −116 0 0 121 121 0 0 0
236 236 236 0 0 0 0 −131 0 0 0 0
336 336 0 0 0 0 0 0 0 0 0 0

A = (111−221)/2.
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Table 4. Symmetry structure of the fifth-ranked tensor gλµk for the nonlinear piezoelectric coupling effect. The point groups not shown are zero.

Point Group of Symmetry
Comp. 1 3 4 6 7 9 10 12 13 14 16 17 19 21 22 24 25 26 28,31 30

111 111 0 111 0 0 0 0 0 0 0 111 0 111 0 111 0 0 111 0 0
121 121 0 121 0 0 0 0 0 0 0 121 0 121 0 121 0 0 121 0 0
131 131 0 131 0 0 0 0 0 0 0 131 0 131 0 131 0 0 131 0 0
141 141 141 0 141 0 141 141 141 0 141 141 0 141 141 0 141 0 0 141 0
151 151 0 151 0 151 151 151 0 151 0 0 151 151 151 0 0 151 0 0 0
161 161 161 0 0 0 0 0 0 0 0 0 161 161 0 161 0 0 0 0 0
221 221 0 221 0 0 0 0 0 0 0 A 0 J 0 A 0 0 A 0 0
231 231 0 231 0 0 0 0 0 0 0 −131 0 −131 0 −131 0 0 −131 0 0
241 241 241 0 241 0 241 241 241 0 241 241 0 241 241 0 241 0 0 241 241
251 251 0 251 0 251 251 251 0 251 0 0 251 251 251 0 0 251 0 0 0
261 261 261 0 0 0 0 0 0 0 0 0 261 261 0 261 0 0 0 0 0
331 331 0 331 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
341 341 341 0 341 0 341 341 341 0 341 341 0 341 341 0 341 0 0 341 −241
351 351 0 351 0 351 351 351 0 351 0 0 342 351 351 0 0 351 0 0 0
361 361 361 0 0 0 0 0 0 0 0 0 361 361 0 361 0 0 0 0 0
441 441 0 441 0 0 0 0 0 0 0 441 0 441 0 441 0 0 441 0 0
451 451 451 0 0 0 0 0 0 0 0 0 451 451 0 451 0 0 0 0 0
461 461 0 461 0 461 461 461 0 461 0 0 E E E 0 0 E 0 0 0
551 551 0 551 0 0 0 0 0 0 0 −441 0 −441 0 −441 0 0 −441 0 0
561 561 561 0 561 0 561 561 561 0 561 B 0 B B 0 B 0 0 561 0
661 661 0 661 0 0 0 0 0 0 0 121 0 121 0 121 0 0 121 0 0
112 112 112 0 0 0 0 0 0 0 0 0 F F 0 F 0 0 0 0 0
122 122 122 0 0 0 0 0 0 0 0 0 G G 0 G 0 0 0 0 0
132 132 132 0 0 0 0 0 0 0 0 0 361 361 0 361 0 0 0 0 0
142 142 0 142 0 142 251 −251 0 251 0 0 251 251 251 0 0 251 0 0 0
152 152 152 0 152 0 −241 241 −241 0 241 −241 0 −241 −241 0 −241 0 0 341 −241
162 162 0 162 0 0 0 0 0 0 0 C 0 C 0 C 0 0 C 0 0
222 222 222 0 0 0 0 0 0 0 0 0 H H 0 H 0 0 0 0 0
232 232 232 0 0 0 0 0 0 0 0 0 −361 −361 0 −361 0 0 0 0 0
242 242 0 242 0 242 151 −151 0 151 0 0 151 151 151 0 0 151 0 0 0
252 252 252 0 252 0 −141 141 −141 0 141 −141 0 -141 −141 0 −141 0 0 141 0
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Table 4. Cont.

Point Group of Symmetry
Comp. 1 3 4 6 7 9 10 12 13 14 16 17 19 21 22 24 25 26 28,31 30

262 262 0 262 0 0 0 0 0 0 0 D 0 -D 0 -D 0 0 -D 0 0
332 332 332 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
342 342 0 342 0 342 351 −351 0 351 0 0 342 351 351 0 0 351 0 0 0
352 352 352 0 352 0 −341 341 −341 0 341 −341 0 -341 −341 0 −341 0 0 241 241
362 362 0 362 0 0 0 0 0 0 0 −131 0 −131 0 −131 0 0 −131 0 0
442 442 442 0 0 0 0 0 0 0 0 0 −451 −451 0 −451 0 0 0 0 0
452 452 0 452 0 0 0 0 0 0 0 441 0 441 0 441 0 0 441 0 0
462 462 462 0 462 0 −561 561 −561 0 561 −B 0 −B −B 0 −B 0 0 561 0
552 552 552 0 0 0 0 0 0 0 0 0 451 451 0 451 0 0 0 0 0
562 562 0 562 0 562 461 −461 0 461 0 0 E E E 0 0 E 0 0 0
662 662 662 0 0 0 0 0 0 0 0 0 G G 0 G 0 0 0 0 0
113 113 0 113 0 113 113 113 0 113 0 0 113 113 113 0 0 113 0 0 0
123 123 0 123 0 123 123 0 0 123 0 0 123 123 123 0 0 123 0 0 0
133 133 0 133 0 133 133 133 0 133 0 0 133 133 133 0 0 133 0 0 0
143 143 143 0 0 0 0 0 0 0 0 0 143 143 0 143 0 0 0 0 0
153 153 0 153 0 0 0 0 0 0 0 153 0 153 0 153 0 0 153 0 0
163 163 163 0 163 0 163 163 163 0 163 0 0 0 0 0 0 0 0 241 241
223 223 0 223 0 223 113 −113 0 113 0 0 113 113 113 0 0 113 0 0 0
233 233 0 233 0 233 133 −133 0 133 0 0 133 133 133 0 0 133 0 0 0
243 243 243 0 0 0 0 0 0 0 0 0 −143 −143 0 −143 0 0 0 0 0
253 253 0 253 0 0 0 0 0 0 0 −153 0 −153 0 −153 0 0 −153 0 0
263 263 263 0 263 0 −163 163 −163 0 163 0 0 0 0 0 0 0 0 341 −241
333 333 0 333 0 333 333 0 0 333 0 0 333 333 333 0 0 333 0 0 0
343 343 343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
353 353 0 353 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
363 363 363 0 363 0 0 363 0 0 363 0 0 0 0 0 0 0 0 141 0
443 443 0 443 0 443 443 443 0 443 0 0 443 443 443 0 0 443 0 0 0
453 453 453 0 453 0 0 453 0 0 453 0 0 0 0 0 0 0 0 561 0
463 463 0 463 0 0 0 0 0 0 0 −153 0 −153 0 −153 0 0 −153 0 0
553 553 0 553 0 553 443 −443 0 443 0 0 443 443 443 0 0 443 0 0 0
563 563 563 0 0 0 0 0 0 0 0 0 143 143 0 143 0 0 0 0 0
663 663 0 663 0 663 663 0 0 663 0 0 I I I 0 0 I 0 0 0

A = −111−121/2, B = −(141−241)/2, C = −111/2−121(3/2), D = (121−111)/2, E = (151−251)/2, F = 161/2 + 261(3/2), G = (161−261)/2, H = −261/2 161(3/2), I = (113−123)/2,
J = −111 + 121/2.
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5. Nonlinear Effects of Piezoelectric Materials

The nonlinear phenomena of the piezoelectric effect take importance when the material
is subject to relatively high electric fields and strong deformations, and its consequences
can be classified into two categories. First is the change of the mechanical and electrical
properties such as the change of electrical permittivity, elasticity constants, and piezoelectric
coupling coefficients. Second is the behavior variation of the physicalsystem response due
to the modified material parameters, in particular the arising of the hysteresis behavior,
changes in the electromechanical coupling factor, a shift of the resonance frequency, and
the modification of the capacitance of the devices.

5.1. Variation of Mechanical and Electrical Properties

The change of the electrical permittivity in a piezoelectric material is produced by
strong deformations or high temperatures [42] and can be induced by exciting the ma-
terial with a relatively high electric field, the converse piezoelectric effect producing the
deformations needed. This physical behavior can be observed from the nonlinear state
equations, since the tensor qjkλ in the Di equation modifies the total polarization, and this
can be integrated into a unique term with the electrical permittivity as follows:

ε
e f f
ij = εij − qijλSλ, (24)

where ε
e f f
ij is the effective electrical permittivity.

The change of the elasticity constants is due to exposing the material to relatively
high electric fields, which provokes a change in the interatomic electronic forces due to
deformations, consequently causing a variation of the stiffness of the material. Furthermore,
this phenomenon is included in the state equations through the modification of the total
stress induced by the contribution of the deformations and can be formulated as effective
elasticity constants as

Ce f f
λµ = Cλµ + gλµkEk (25)

Finally, due to the power balance of the nonlinear state equations, the variation of
the piezoelectric coefficients is a consequence of the imbalance produced by the two last
phenomena discussed, where the variation in the transduced power produced by the first
nonlinear effect is compensated by the second, then the effective piezoelectric coupling
coefficients are

ee f f
jλ = ejλ −

qkjλ
2 Ek,

eT−e f f
iµ = eT

iµ −
gλµi

2 Sλ,
(26)

where ee f f
jλ and eT−e f f

iµ must be used in the Tλ and Di state equations, respectively.

5.2. Change Response of the PhysicalSystem

The literature shows how some piezoelectric devices that are subject to relatively
high electric fields have a shift of their resonance frequency; this is produced by the
variation of the electrical permittivity and the elasticity constants phenomenon explained
before [20,43–45]. Generally, the resonance frequency of a piezoelectric resonator depends
on its geometric length and the specific material, often calculated as

fr =
1

2λd

√
CD−e f f

λµ

ρ , (27)

where λd is the wavelength of the device, ρ the density of the material, and
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CD−e f f
λµ = Ce f f

λµ + (ekλ)
2

εij
, (28)

s the effective elasticity constant (in some cases, it can be called the effective Young’s
modulus), requiring all subscripts to match the main oscillation mode of the studied device.
If we analyze the relative change of the resonance frequency (Equation (27)), we can obtain

d fr
fr

=
dCD−e f f

λµ

2CD−e f f
λµ

− dρ
2ρ −

dλd
λd

(29)

From Equation (29), it can be noticed how the shift of the resonance frequency is a con-
sequence of the changes of the effective elasticity constants, density, and wavelength of the
device, where the last two terms are well known, so they can be neglected [31], because the
piezoelectric materials are non-centrosymmetric crystals and the transverse/longitudinal
dilatation does not provoke the measured order of magnitude for nonlinear effects.

The variation in the capacitance of the devices is explained through the change in the
electrical permittivity phenomenon. Normally, the value of the capacitance of devices that
have a dielectric as a piezoelectric material is

Ce f f = ε
e f f
ii

A
t , (30)

where Ce f f is the effective capacitance of the device, A is the electrodes’ contact area, t is
the thickness of the piezoelectric, and ε

e f f
ii is the effective electrical permittivity over the i

axis. Performing an analogous relative variation analysis, then

dCe f f

Ce f f =
dε

e f f
ii

ε
e f f
ii

+ dA
A −

dt
t , (31)

where the last two terms can be neglected, inclusive of the nonlinear effects regime. This
is due to the absolute displacement of particles because the order is 0.1Å (theoretical
prediction) for the piezoelectric materials under these conditions; hence, dA and dt are not
comparable with dε

e f f
ii , since its variation is of the order of thousandths [20].

The calculus for the electromechanical coupling factor k2
e f f is defined for resonant

applications of piezoelectric materials and depends on the oscillation mode of the device,
material properties, and specific device geometry. k2

e f f is a measure of the exchange of
power transduced between the mechanical and electrical fields, and for the most common
devices, it has an expression of the form [38,46]

k2
e f f =

(ee f f
x5 )2

Ce f f
44 ε

e f f
xx

, (32)

for a device with Z-shear oscillation mode and a wave in the X-propagation axis. In
Equation (32), the most significant variation, following the discussion above, comes from
the effective elasticity constants [31]; hence, when a shift of the resonance frequency occurs,
the electromechanical coupling factor increases its value, while the effective elasticity
constants decrease. Therefore, for applications where power transduction is the main goal
(e.g., energy harvester, microphones, etc.), it can be deduced using Equations (28) to (32)
that a negative external electric field increases the performance of the device [13].

The appearance of the hysteresis behavior in the piezoelectric materials as a soft
ferroelectric effect is a well-known phenomenon; this is produced by two main causes, the
alignment of the dipoles in the unit cells of the material with respect to an external electric
field and the change of the domain walls [47–50]. The change in the domain walls produces
a spontaneous strain, inducing additional stress and polarization, and the alignment of
the unit cells corresponds to the spontaneous polarization field having a contribution
to the strain field. The correspondence between a cyclic electric field and the response
of the polarization field and deformation field results in a hysteresis loop and butterfly
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loop, respectively [51]. The thermodynamic formulation presented only considers the
spontaneous strain produced by high electric fields induced due to the inverse piezoelectric
effect (last term of the Tλ state equations), but it is only one of the theoretical treatments
needed for a complete description of the hysteresis behavior.

In the context of all the experimental evidence exposed and discussed, the several non-
linear effects in piezoelectric materials take importance in different regimes. We describe
the limit of the formulation presented as a function of the importance of the high-order
tensors for their respective regime of operation, where the nonlinear electric contributions
take precedence over the mechanical ones [52,53]. Taking as independent physical mag-
nitudes the electrical and deformation field, if the material is subject to excitements of an
order of magnitude under 106 V/m and 10−6, respectively, the linear formulation would
be enough. From there, the gλνi and qjkλ tensors must be taken into account, where the
rijk domain makes electric contributions with electric fields above 109 V/m, and tλµν is
only required starting from the plastic regime. Finally, the hysteresis behavior appears as
a soft ferroelectric effect for some specific piezoelectric crystals with excitements of the
order above 106 V/m and 10−4 for the electric and deformation fields, respectively. It
is necessary to bear in mind that, currently it is not clear what the starting point for the
hysteresis behavior for any piezoelectric material is, since this effect belongs to the point
group of the material or is induced by very high electric or deformation fields. The last
discussion only applies to crystalline piezoelectric materials that are subject to nonlinear
perturbative excitements.

6. Experimental Validation: Simulation

To validate the theoretical development performed in this work, we chose a reference
that showed the nonlinear behavior of the piezoelectric devices under a relatively high
electric field, since this is the simplest method to induce the nonlinear phenomena. The
reference to reproduce is [28], where a solidly mounted resonator (SMR) was fabricated and
characterized using AlN as a piezoelectric material; the fabrication details can be found
in the reference. Measurements were performed with an Advantest R3767 S-Parameter
analyzer, with the DC offset generated by a Keithley K327 and connected through a bias-T,
and finally, the data acquisition was performed with the Picoprobe ECP18 GS-200 PP.
Therefore, to implement the nonlinear state equations deduced, we can start neglecting the
contributions of the tλµν and rijk tensors, since the operation regime and nonlinear behavior
of the device are dominated by the linear description and the tensors gλνi and qjkλ [52,53].

To include the nonlinear state equations within the simulations in an easy way, we
chose the following formulation:

Tλ = Ce f f
λµ Sµ − ee f f

kλ Ek,

Di = ε
e f f
ij Ej + eT−e f f

iµ Sµ,
(33)

where we used Equations (25) and (26), since this implementation included the power
balance between the physics magnitudes of interest (Tλ and Di) within the FEM simulator.
Generally, the FEM simulators allow us to set the electrical relative permittivity as an input
parameter, so we rewrite ε

e f f
ij as

ε
e f f
ij = ε0ε

r−e f f
ij = ε0

(
εr

ij − qr
ijλSλ

)
, (34)

where ε0 is the vacuum electrical permittivity, εr
ij is the relative permittivity in the linear

regime, ε
r−e f f
ij is the effective relative permittivity, and the last term is defined as

qr
ijλ =

qijλ
ε0

(35)
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The SMR devices have the main oscillation mode, which confines the mechanical
waves within the device; based on this, the algebraic tensor development of Equation (33)
results in the only components of gλνi and qjkλ that must be taken into account to be g333,
qr

331, and qr
333. The symmetry structure taken from Tables 3 and 4 was the 6 mm one, since

the piezoelectric material was AlN. The values obtained for the high-order tensors from
the simulations were

g333 = −80N/Vm, and qr
331 = qr

333 = −120 (36)

The SMR device was powered by an S-Parameter analyzer with a DC bias added with
a bias-T through the signal probe of the RF microprobes. To reproduce the experimental
setup, the simulated device was connected to an RF source with a DC voltage overlap, to
calculate the whole interest frequency spectrum as a function of the DC bias. Figure 1a
shows a transversal cut of the device simulated. In Figure 1b, the impedance of the device
simulated for different DC biases is presented, and there, we can observe how the frequency
response depends on the external DC electric field (EDEF), since it augments the stiffness of
the material when positive voltages are applied, increasing the elasticity constants’ values,
and consequently, the resonance frequency increases as well; this behavior’s prediction
was performed by Equation (27). The effective elasticity constant CD−e f f

33 obtained from the
measurements and simulations is shown in Figure 2a, where the maximum percent error
obtained was 0.79%. The stiffening of the material was proportional to the EDEF due to the
negative sign of g333; consequently, the resonance frequency had the same dependency. This
can be observed in Figure 2b, where the resonance frequencies measured and simulated,
for several values of the EDEF, are presented; there, the maximum percent error obtained
was 0.3%. The behavior obtained from the measurements and simulations for the relative
effective permittivity is exposed in Figure 3a, where the linear inverse dependence between
the EDEF and the permittivity can be observed, as predicted by Equation (24); the maximum
percent error obtained was 2.9%. As can be expected, the slopes in Figures 2a and 3a
correspond to the values of g333 and q331, having the correct prediction for the trend
behavior observed experimentally. Finally, the behavior of the electromechanical coupling
factor is shown in Figure 3b, where the predictions of Equations (28) to (32) are corroborated,
since the maximum value for k2

e f f was obtained under negative voltages for the EDEF; this
behavior was not reported by the experimental reference, but it was obtained from the
simulations. In Table 5 is shown the average and maximum percent errors obtained from
the simulations with respect to the measurements; there, the maximum percent error for the
effective elasticity constants, effective relative permittivity, and resonance frequencies were
0.79%, 2.9%, and 0.3% respectively. These errors were caused by the difference between
the physical material parameters and those used in the simulations; furthermore, the
inaccuracy in the extremes of the values of the EDEF was due to the divergence problems
that are present in the direct solver of the FEM software; this can be observed mainly in
Figures 1b and 3a. Nevertheless, in the scope of the simulations performed, the maximum
percent error obtained for any material parameter or physicalsystem parameter was 1.1%;
this shows the accuracy of the state equations presented to predict the main nonlinear
phenomena of piezoelectric materials through a unified set of state equations, which can be
included in FEM simulators easily.
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Figure 1. (a) Transversal cut of the simulated device that was fabricated in [28]; the scales for the axis
are different to expose all the layers. (b) The impedance of the devices simulated for an external DC
electric field in the range of −2 MV/m to 2 MV/m.

Figure 2. (a) Effective elasticity constants CD−e f f
33 and (b) resonance frequencies, obtained from the

simulations and measurements of the device fabricated in [28], for an external DC electric field in the
range of −2 MV/m to 2 MV/m.

Figure 3. (a) Relative effective permittivity ε
r−e f f
33 obtained from the simulations and measurements

of the device fabricated in [28] for an external DC electric field in the range of −2 MV/m to 2 MV/m.
(b) Electromechanical coupling factor for the device simulated; this parameter was not reported by [28].
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Table 5. Percent errors obtained from the simulations with respect to the measurements for the
effective elasticity constant, relative effective permittivity, and resonance frequency.

Percent Error
Quantity Symbol Average Maximum

Effective Elasticity Constant CD−e f f
33 0.28 0.79

Relative Effective Electrical Permittivity ε
r−e f f
33 0.92 2.9

Resonance Frequency fr 0.15 0.3

7. Conclusions

In this work, we presented the nonlinear state equations for piezoelectric materials
obtained from first-principles, conserving the power balance exchange between the depen-
dent physical magnitudes Tλ and Di and having a unified set of equations that predicts
the behavior of the nonlinear phenomena. Furthermore, we showed how we obtained the
transformation laws and the symmetry structures for the rijk, gλµk, and qijλ tensors, while
the calculation procedure was demonstrated with known tensor structures (Cλµ, eλk, and
εij). The physical connection and explanation for the nonlinear phenomena experimen-
tally observed in the piezoelectric material were exposed, remarking on the excitement
conditions that made each phenomenon appear, where, under an external DC electric
field less of than 109V/m, the nonlinear phenomena were dominated by the change in the
relative effective permittivity and effective elasticity constants through the gλµk and qijλ
tensors. The elastoelectric effect does not appear in non-piezoelectric materials (gλµk is
null), but the electrostrictive effect and nonlinear piezoelectric behavior remained within
the material since qijλ was not zero, except for point group 432, where qijλ = 0 and gλµk
was not null. A fast methodology for the implementation of the nonlinear state equations
in the main FEM simulation software was exposed and demonstrated; this was carried out
through the reproduction of an experimental reference, where the main nonlinearities of
the piezoelectric effect were measured. The maximum percent errors obtained from the
simulations were 0.79%, 2.9%, and 0.3% for the effective elasticity constants, relative effec-
tive permittivity, and resonance frequencies. This proved the effectiveness of the nonlinear
stress–charge formulation presented, taking into account that the symmetry structure of
each high-order tensor was shown (Tables 3, 4 and A1). The design and simulation in
the leading FEM simulators of nonlinear piezoelectric devices with a complete physical
description are now possible.
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Appendix A

The symmetry structure of tλµν as function of the Laue group is shown in Table A1,
where the expressions used are exposed in Table A2. The components of the tensor are
listed as three numbers in a row, which correspond to their subscripts. The Laue groups



Materials 2023, 16, 3432 17 of 21

HI and RII need a separate complete analysis; therefore, their structures are delayed for a
future analysis.

Table A1. Symmetry structure of sixth-ranked tensor tλµν for the nonlinear behavior of the stress
field due to the strong deformation field. The expressions used are shown in Table A2.

Laue Group
Comp. N M O TII TI RI HII CI CII

111 111 111 111 111 111 111 111 111 111
121 121 121 121 121 121 121 121 121 121
131 131 131 131 131 131 131 131 121 131
141 141 0 0 0 0 141 0 0 0
151 151 151 0 0 0 0 0 0 0
161 161 0 0 161 0 0 161 0 0
221 221 221 221 221 221 221 221 221 221
231 231 231 231 231 231 231 231 231 231
241 241 0 0 0 0 241 0 0 0
251 251 251 0 0 0 0 0 0 0
261 261 0 0 261 0 0 261 0 0
331 331 331 331 331 331 331 331 221 331
341 341 0 0 0 0 341 0 0 0
351 351 351 0 0 0 0 0 0 0
361 361 0 0 361 0 0 361 0 0
441 441 441 441 441 441 441 441 441 441
451 451 0 0 451 0 0 451 0 0
461 461 461 0 0 0 0 0 0 0
551 551 551 551 551 551 551 551 551 551
561 561 0 0 0 0 561 0 0 0
661 661 661 661 661 661 661 661 551 661
112 112 112 112 221 221 A A 221 331
122 122 122 122 121 121 B B 121 131
132 132 132 132 231 231 231 231 231 231
142 142 0 0 0 0 C 0 0 0
152 152 152 0 0 0 0 0 0 0
162 162 0 0 −261 0 0 −161 0 0
222 222 222 222 111 111 D D 111 111
232 232 232 232 131 131 131 131 121 121
242 242 0 0 0 0 E 0 0 0
252 252 252 0 0 0 0 0 0 0
262 262 0 0 −161 0 0 -261 0 0
332 332 332 332 331 331 331 331 221 221
342 342 0 0 0 0 −341 0 0 0
352 352 352 0 0 0 0 0 0 0
362 362 0 0 −361 0 0 −361 0 0
442 442 442 442 551 551 551 551 551 661
452 452 0 0 −451 0 0 −451 0 0
462 462 462 0 0 0 0 0 0 0
552 552 552 552 441 441 441 441 441 441
562 562 0 0 0 0 F 0 0 0
662 662 662 662 661 661 G G 551 551
113 113 113 113 113 113 113 113 221 221
123 123 123 123 123 123 123 123 231 231
133 133 133 133 133 133 133 133 121 121
143 143 0 0 0 0 143 0 0 0
153 153 153 0 0 0 0 0 0 0
163 163 0 0 163 0 0 0 0 0
223 223 223 223 113 113 113 113 221 331
233 233 233 233 133 133 133 133 121 131
243 243 0 0 0 0 −143 0 0 0
253 253 253 0 0 0 0 0 0 0
263 263 0 0 −163 0 0 0 0 0
333 333 333 333 333 333 333 333 111 111
343 343 0 0 0 0 0 0 0 0
353 353 353 0 0 0 0 0 0 0
363 363 0 0 0 0 0 0 0 0
443 443 443 443 443 443 443 443 551 551
453 453 0 0 0 0 0 0 0 0
463 463 463 0 0 0 0 0 0 0
553 553 553 553 443 443 443 443 551 661
563 563 0 0 0 0 143 0 0 0
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Table A1. Cont.

Laue Group
Comp. N M O TII TI RI HII CI CII

663 663 663 663 663 663 H H 441 441
114 114 0 0 0 0 114 0 0 0
124 124 0 0 0 0 124 0 0 0
134 134 0 0 0 0 134 0 0 0
144 144 144 144 144 144 144 144 144 144
154 154 0 0 0 0 0 154 0 0
164 164 164 0 0 0 0 0 0 0
224 224 0 0 0 0 I 0 0 0
234 234 0 0 0 0 −134 0 0 0
244 244 244 244 244 244 244 244 244 244
254 254 0 0 254 0 0 254 0 0
264 264 264 0 0 0 0 0 0 0
334 334 0 0 0 0 0 0 0 0
344 344 344 344 344 344 344 344 244 344
354 354 0 0 354 0 0 354 0 0
364 364 364 0 0 0 0 0 0 0
444 444 0 0 0 0 444 0 0 0
454 454 454 0 0 0 0 0 0 0
464 464 0 0 464 0 0 U 0 0
554 554 0 0 0 0 −444 0 0 0
564 564 564 564 564 564 J J 564 564
664 664 0 0 0 0 124 0 0 0
115 115 115 0 0 0 0 0 0 0
125 125 125 0 0 0 0 0 0 0
135 135 135 0 0 0 0 0 0 0
145 145 0 0 −254 0 0 −254 0 0
155 155 155 155 244 244 244 244 244 344
165 165 0 0 0 0 K 0 0 0
225 225 225 0 0 0 0 0 0 0
235 235 235 0 0 0 0 0 0 0
245 245 0 0 0 0 0 −154 0 0
255 255 255 255 144 144 144 144 144 144
265 265 0 0 0 0 L 0 0 0
335 335 335 0 0 0 0 0 0 0
345 345 0 0 −354 0 0 −354 0 0
355 355 355 355 344 344 344 344 244 244
365 365 0 0 0 0 134 0 0 0
445 445 445 0 0 0 0 0 0 0
455 455 0 0 0 0 −444 0 0 0
465 465 465 465 564 564 J J 564 564
555 555 555 0 0 0 0 0 0 0
565 565 0 0 −464 0 0 −U 0 0
665 665 665 0 0 0 0 0 0 0
116 116 0 0 116 0 0 Y 0 0
126 126 0 0 0 0 0 X 0 0
136 136 0 0 136 0 0 −361 0 0
146 146 146 0 0 0 0 0 0 0

156 156 0 0 0 0 −E/2 +
241/2 0 0 0

166 166 166 166 166 166 D/2−111/
4−221/4

D/2−111/
4−221/4 244 244

226 226 0 0 −116 0 0 −3Y−4 ×
261 0 0

236 236 0 0 −136 0 0 361 0 0
246 246 246 0 0 0 0 0 0 0

256 256 0 0 0 0 −C/2 +
141/2 0 0 0

266 266 266 266 166 166 N/2 N/2 244 344
336 336 0 0 0 0 0 0 0 0
346 346 346 0 0 0 0 0 0 0
356 356 0 0 0 0 341 0 0 0
366 366 366 366 366 366 O O 144 144
446 446 0 0 446 0 0 451 0 0
456 456 456 456 456 456 P P 564 564
466 466 0 0 0 0 M/2 0 0 0
556 556 0 0 −446 0 0 −451 0 0
566 566 566 0 0 0 0 0 0 0
666 666 0 0 0 0 0 X 0 0
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Table A2. Abbreviated expressions used in Table A1 to show the tλµν components.

Expression Equivalence Expression Equivalence Expression Equivalence

A 121/2−111/4 +
3/4 × 221 + 661 J (244−144)/2 R −151/2−251/2−461

B 111/4 + 121/2 +
221/4−661 K (114 + 3 × 124)/2 S 251/2−151/2

C 561−241/2−141/2 L (114−124)/2 T 141/2−241/2

D 3/4 × 111 +
121/2−221/4 + 661 M 241/2−141/2 + 561 U (154−254)/2

E −141/2−241/2−561 N (3 × 111)/4−121/
2−221/4−661 V −164/2−(3 × 264)/2

F (141−241)/2 O (131−231)/2 W 264/2−164/2

G (111−2 × 121 +
221)/4 P (551−441)/2 X (261−161)/2

H (113−123)/2 Q 461−251/2−151/2 Y −(161 + 3 × 261)/2
I −(114 + 2 × 124)
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