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Abstract: The present study aims at the integration of the “oxalic conversion” route into “green
chemistry” for the synthesis of copper oxide nanoparticles (CuO-NPs) with controllable structural,
morphological, and magnetic properties. Two oxalate-containing precursors (H2C2O4.2H2O and
(NH4)2C2O4.H2O) and different volume ratios of a mixed water/glycerol solvent were tested. First,
the copper oxalates were synthesized and then subjected to thermal decomposition in air at 400 ◦C to
produce the CuO powders. The purity of the samples was confirmed by X-ray powder diffraction
(XRPD), and the crystallite sizes were calculated using the Scherrer method. The transmission electron
microscopy (TEM) images revealed oval-shaped CuO-NPs, and the scanning electron microscopy
(SEM) showed that morphological features of copper oxalate precursors and their corresponding
oxides were affected by the glycerol (V/V) ratio as well as the type of C2O4

2− starting material.
The magnetic properties of CuO-NPs were determined by measuring the temperature-dependent
magnetization and the hysteresis curves at 5 and 300 K. The obtained results indicate the simultaneous
coexistence of dominant antiferromagnetic and weak ferromagnetic behavior.

Keywords: CuO nanoparticles; oxalate precursor route; X-ray powder diffraction; TEM and SEM
observations; magnetic properties

1. Introduction

Nanostructured transition metal oxides, in particular MO-type metal oxides (M = +II
transition metal ions: Cu, Zn, Fe, Mn, Ni, Co), are essential for the conception of various
novel functional and smart materials [1]. Considerable efforts have been devoted to their
preparation; however, synthesizing highly pure nanoparticles with a limited number of
steps and eco-friendly low-cost methods to facilitate their industrial-scale implementation
remains challenging. In recent years, the oxalate route, which is classified as a wet chemical
method, has attracted much attention for synthesizing MO-type nanoparticles. This method
is based on the precipitation of metallic oxalates MC2O4.nH2O followed by their thermal
decomposition to the oxide stage in an appropriate atmosphere [2].

It is worth noting that among the above-mentioned metallic oxalates for which n = 2
and the coordination sphere of M2+ ions is octahedral, defined by two chelating oxalate

Materials 2023, 16, 3426. https://doi.org/10.3390/ma16093426 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16093426
https://doi.org/10.3390/ma16093426
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-9082-9132
https://orcid.org/0000-0003-2011-0445
https://orcid.org/0000-0002-5576-090X
https://orcid.org/0000-0002-9456-8320
https://doi.org/10.3390/ma16093426
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16093426?type=check_update&version=3


Materials 2023, 16, 3426 2 of 16

ions and two water molecules, copper oxalate is particularly different. It has various
hydrated forms presenting “zeolitic water” that does not affect the structure integrity [3].
The Cu2+ environment, although octahedral, is ensured by two chelating oxalate ions from
the CuC2O4Cu ribbons and two oxygen atoms from oxalate groups belonging to other
ribbons, as suggested by Fichtner-Schmittler [4]. The water molecules’ degree “n” seems
to depend entirely on the precursor’s nature as well as the fabrication procedures. For
instance, simple precipitation methods using copper nitrate and oxalic acid or copper
sulfate and potassium oxalate as starting materials lead to the formation of anhydrous
CuC2O4 and CuC2O4.0.5H2O, respectively [5,6]. Furthermore, Wenpei et al. [7] employed
hydrothermal and solvothermal methods that led to the successful synthesis of n = 0.14
and n = 0.53 compounds.

In addition to copper oxalate, copper oxide has also long been a special material owing
to (i) its unique structural features and (ii) its original physico-chemical properties [8,9].
(i) With regard to the structural features, it must be noted that MO oxides crystallize in
highly symmetrical crystal systems, notably cubic (FeO, MnO, CoO, NiO) or hexagonal
(ZnO), which is not the case for CuO. Its structure was elucidated in the monoclinic sys-
tem (space group: C 2/c) by Tunell et al. [10] in 1935. Both Cu2+ and O2− ions have
a coordination number of four, which defines different polyhedrons consisting of a dis-
torted square plane (CuO4-SP) and a tetrahedron (OCu4-T), respectively. (ii) As far as the
physico-chemical properties are concerned, it should be stated that CuO is the only binary
compound known to be “multiferroic” [11], for which it is first necessary to understand
each component separately for better monitoring and to achieve the “magnetic and ferro-
electric” coupling. Furthermore, the magnetic properties of CuO still intrigue scientists due
to the unexpected phenomena and surprising behaviors observed as functions of synthesis
methods and operating conditions. CuO is especially different from the other magnetic
metal oxides and its magnetism is perhaps the least understood among them [12]. Hu et al.
(1953) [13] demonstrated that CuO in bulk shows a specific heat anomaly at 220 K associ-
ated with the onset of antiferromagnetism. More recently, Ota and Gmelin [14] determined
an incommensurate-to-commensurate antiferromagnetic transition at a temperature of
213 K in a single CuO crystal by means of specific-heat studies. However, its magnetic
susceptibility does not show typical Néel temperature behavior, but rather a constant
susceptibility up to 130 K followed by a smooth increase up to 400 K. In addition, within the
frame of this intriguing scenario, the magnetic behavior changes and deviates significantly
from that of bulk material as the particle size decreases. As reported by Punnoose et al. [15],
the Néel temperature decreases with the particle size. For those particles with sizes above
30 nm, the Néel temperature is close to that of the bulk and the thermal curve behavior
resembles that of the bulk except at temperatures below 100 K.

On the other hand, it should be noted that the experimental synthesis conditions play
a crucial role in tuning the morphological features of nanoparticles and consequently their
physico-chemical properties. The reaction medium is one of the most important param-
eters that affect the crystallinity, shape, and the size of NPs by acting on the nucleation,
growth, and aggregation/agglomeration kinetics [16]. Wu et al. [17], for instance, studied
the effect of N,N-Dimethylacetamide (DMAC)/water mixed solvent on CuO morphol-
ogy. Different volume ratios of DMAC and water were used, namely 1:5, 1:1, 2:1, 5:1,
7:1, and 11:1, among which (i) the 5:1 ratio led to the smallest CuO size of 6.7 nm and
(ii) the highest DMAC amounts of 7:1 and 11:1 induced impurities via incomplete reaction.
More recently, Zaid et al. [18] synthesized CuO-NPs through the irradiation of copper
oxalate in different solvents (water, methanol, and ethanol) and found that as the dielectric
constant of the medium decreased, the particle size decreased reaching 8.4 nm in ethanol
compared with 11.4 nm in water. Similarly, Siddiqui et al. [19] demonstrated that solvent
properties influence the crystallinity and the shape of CuO-NPs. They used ethanol and
isopropyl alcohol as solvents in the sol-gel method and observed that isopropyl alcohol
led to flake-like CuO-NPs with the better crystallinity compared with the non-uniform
samples synthesized in ethanol. In the light of these examples and taking into account the
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environmental considerations that recommend the use of ecofriendly solvents, glycerol
(C3H8O3) seems to be a potential candidate that can be introduced as a “greener solvent” or
“organic water” for synthetic chemistry [20]. Glycerol is a natural polyol generated by the
vegetable-oil industry, a polar protic solvent completely soluble in water, that is non-volatile
under atmospheric pressure, non-toxic, biodegradable, non-flammable, inexpensive, and
available on a large scale [21–23].

Thus, based on the above-mentioned facts, the present study aims to investigate:

• the combination of the so-called “oxalic conversion” or “oxalate precipitation” route
with green chemistry by using glycerol as a green solvent to prepare CuO-NPs.

• the impact of different proportions of glycerol and oxalate ion precursors (oxalic acid
and ammonium oxalate) on the structural, morphological, and magnetic properties of
the green synthesized CuO-NPs.

2. Materials and Methods
2.1. Materials

All reagents were purchased from Sigma-Aldrich and directly used without further
purification. Anhydrous copper (II) chloride CuCl2, oxalic acid dihydrate H2C2O4.2H2O
and ammonium oxalate monohydrate (NH4)2C2O4.H2O were used as starting materials
for the preparation of copper oxalates, with distilled water and glycerol as solvents.

2.2. Synthesis Process of CuO-NPs

As shown in Figure 1, the copper oxalates were prepared by the reflux method carried
out at 90 ◦C. Copper chloride and oxalate ion precursor were separately dissolved in water
or water–glycerol mixture according to the data in Table 1. A blue-green precipitate was
directly formed after mixing the two solutions. Then, 3 h later, the system was cooled to
room temperature before being centrifuged (6000 rpm, 20 min), washed with distilled water,
and dried overnight at 50 ◦C. The resulting dried precipitates were then heated at 400 ◦C
for 4 h with a ramping rate of 5 ◦C/min in a tube furnace. Black powders were produced
and systematically subjected to X-ray powder diffraction analysis to ensure their purity.

Materials 2023, 16, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 1. Illustration of the synthesis process of CuO-NPs. 

It should be noted that the calcination temperature of 400 °C was selected based on 
the study of Christensen et al. [24] that demonstrated the formation of pure CuO at 
temperatures above 345 °C.  

The different codes used to identify the copper oxalate and oxide samples are listed 
in Table 1. 

2.3. Characterization Techniques 
X-ray powder diffraction (XRPD) analysis of the as-prepared products was 

performed on a Panalytical X’Pert MPD diffractometer (Malvern, UK) using Cu Kα 
radiation. The patterns were recorded in the 2θ range between 10° and 100° with a step 
size of 0.03° and a step time of 3 s. SEM and TEM images were obtained using a JEOL 6400 
JSM scanning electron microscope and a JEOL JEM-2100 transmission electron microscope 
at an accelerating voltage of 25 and 200 kV, respectively (Tokyo, Japan). The average 
particle sizes were determined using the ImageJ-win 32 software program. The magnetic 
properties were explored with a Quantum Design SQUID MPSM-XL magnetometer 
(Quantum Design, GmbH, Darmstadt, Germany). The hysteresis curves (M-H) were 
measured at 5 and 300 K between −5 and +5 T. Zero-field-cooled and field-cooled curves 
(ZFC-FC) were recorded from 5 to 300 K at an applied field of 1 kOe.  

2.4. Theoretical Background 
2.4.1. Estimation of the Average Crystallite Size 

The average crystallite sizes (D) for CuO powders were calculated using the 
following Debye–Scherrer equation where K is the Scherrer constant (K = 0.9) related to 
the crystallite shape, λ (nm) and θ (rad) are the X-ray radiation wavelength and the 
Bragg’s angle, respectively, and β (rad) is the full width at half maximum (FWHM) of the 
diffraction peaks determined by a pseudo-Voigt profile fit [25]:  

D = ୏஛ஒୡ୭ୱ஘ (1)

2.4.2. Hysteresis Loops Susceptibility Analysis 
At low fields (LF), the susceptibility is the sum of all magnetic contributions, i.e., 

paramagnetic (PM), diamagnetic (DM), antiferromagnetic (AFM), and ferromagnetic-like 
(FM), and can be described as follows (Equation (2)) [26]:  χ୐୊ = χ୔୑ + χୈ୑ + χ୅୊୑ + χ୊୑   (2)

Figure 1. Illustration of the synthesis process of CuO-NPs.

It should be noted that the calcination temperature of 400 ◦C was selected based
on the study of Christensen et al. [24] that demonstrated the formation of pure CuO at
temperatures above 345 ◦C.

The different codes used to identify the copper oxalate and oxide samples are listed in
Table 1.
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Table 1. Samples’ codes and experimental conditions used for the synthesis of copper oxalate precursors.

Oxalate Ion Source Water:Glycerol Volume (mL) Copper Oxalate Code Copper Oxide Code

H2C2O4.2H2O

60:0 H0oxa H0
45:15 H1oxa H1
30:30 H2oxa H2
15:45 H3oxa H3

(NH4)2C2O4.H2O

60:0 N0oxa N0
45:15 N1oxa N1
30:30 N2oxa N2
15:45 N3oxa N3

2.3. Characterization Techniques

X-ray powder diffraction (XRPD) analysis of the as-prepared products was performed
on a Panalytical X’Pert MPD diffractometer (Malvern, UK) using Cu Kα radiation. The
patterns were recorded in the 2θ range between 10◦ and 100◦ with a step size of 0.03◦

and a step time of 3 s. SEM and TEM images were obtained using a JEOL 6400 JSM
scanning electron microscope and a JEOL JEM-2100 transmission electron microscope at
an accelerating voltage of 25 and 200 kV, respectively (Tokyo, Japan). The average particle
sizes were determined using the ImageJ-win 32 software program. The magnetic properties
were explored with a Quantum Design SQUID MPSM-XL magnetometer (Quantum Design,
GmbH, Darmstadt, Germany). The hysteresis curves (M-H) were measured at 5 and 300 K
between −5 and +5 T. Zero-field-cooled and field-cooled curves (ZFC-FC) were recorded
from 5 to 300 K at an applied field of 1 kOe.

2.4. Theoretical Background
2.4.1. Estimation of the Average Crystallite Size

The average crystallite sizes (D) for CuO powders were calculated using the following
Debye–Scherrer equation where K is the Scherrer constant (K = 0.9) related to the crystallite
shape, λ (nm) and θ (rad) are the X-ray radiation wavelength and the Bragg’s angle,
respectively, and β (rad) is the full width at half maximum (FWHM) of the diffraction peaks
determined by a pseudo-Voigt profile fit [25]:

D =
Kλ

β cos θ
(1)

2.4.2. Hysteresis Loops Susceptibility Analysis

At low fields (LF), the susceptibility is the sum of all magnetic contributions, i.e.,
paramagnetic (PM), diamagnetic (DM), antiferromagnetic (AFM), and ferromagnetic-like
(FM), and can be described as follows (Equation (2)) [26]:

χLF = χPM + χDM + χAFM + χFM (2)

On the other hand, because the FM contributions saturate at high fields (HF), only PM,
DM, and AFM ordering contribute to the susceptibility. Therefore, FM-like contributions
can be discarded at HF, and high field susceptibility can be described using Equation (3) as:

χHF = χPM + χDM + χAFM (3)

Consequently, FM contributions can be evaluated by calculating the difference repre-
sented by Equation (4):

χFM = χLF − χHF (4)

Using the previous equations, the hysteresis loops that contain more than one magnetic
response can be separately analyzed to study the different magnetic contributions.
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3. Results and Discussion
3.1. X-ray Structural Analysis and TEM Observations

Figure 2 displays the XRPD patterns for the copper oxalates and oxides, which are in
agreement with the JCPDS cards no. 21-0297 and 48-1548, respectively. The well-defined
diffraction peaks indicate the good crystallinity of the different samples. However, the
intensity of these peaks varied depending on the solvent volume ratio mixture and C2O4

2−

starting material. The samples prepared in water exhibited the highest peak intensity and
so the best crystallinity, whereas an increase in the glycerol amount resulted in a decrease
in the peak intensity without losing the crystallinity of the material. This behavior was
observed for both the N and H samples. Furthermore, the diffraction peaks for the N
samples appeared slightly wider than those for the H samples, indicating the formation
of smaller crystallites. This conclusion was quantitatively supported by calculating the
average crystallite size D of CuO-NPs using Equation (1) for the two highest peaks (−111)
and (111) that were fitted by the pseudo-Voigt function. The obtained results are collected in
Table 2. As shown, the smallest crystallites corresponded to the N3 sample with D = 19 nm.
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Figure 2. XRPD patterns with magnification of the highest intensity peaks of (a) copper oxalate and
(b) copper oxide powders.

As far as the CuO purity is concerned, no additional peaks were observed for any
samples except for N1, N2, and N3 that exhibited a small diffraction peak at 2θ = 36.54◦.
This latter is a signature of the Cu2O phase which crystallizes in the cubic system, Pn3m
space group (Figure 2b) [27]. A two-phase (CuO-Cu2O) Rietveld refinement was conducted
and revealed that N1, N2, and N3 contained 2.29, 5.41, and 5.32% of the Cu2O phase,
respectively. The final Rietveld plots and the refined cell parameters for all samples are
gathered in Figure 3 and Table 2, respectively.
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Table 2. Average crystallite sizes (nm) and refined cell parameters for CuO.

Samples H0 H1 H2 H3 N0 N1 * N2 * N3 *

Average crystallite sizes

D(−111) (nm) 25.08 25.62 24.49 24.49 26.35 24.86 24.21 21.47
D(111) (nm) 20.41 19.38 19.03 18.82 20.56 18.73 18.05 16.50

Daverge (nm) 22.75 22.50 21.76 21.65 23.45 21.79 21.13 18.98

Lattice parameters (C 2/c space group)

a (Å) 4.6841 4.6849 4.6838 4.6840 4.6835 4.6849 4.6843 4.6853
b (Å) 3.4274 3.4286 3.4282 3.4280 3.4267 3.4277 3.4277 3.4280
c (Å) 5.1293 5.1318 5.1296 5.1304 5.1292 5.1299 5.1292 5.1321

β (◦) 99.420 99.397 99.408 99.394 99.413 99.397 99.399 99.389

* Cu2O (%): 2.29, 5.41 and 5.32 for N1, N2, and N3 respectively.
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To obtain further insight into the presence of Cu2O in N1, N2, and N3 samples, which
may be attributed to the incomplete oxidation of Cu2O to CuO at 400 ◦C, N1oxa, N2oxa,
and N3oxa were calcined at 500 ◦C and the resulting oxides were analyzed by XRPD.
Figure S1 shows the superposition of powder patterns for N1-2-3 samples synthesized at
400 and 500 ◦C, with magnification from 2θ = 32◦ to 44◦ shown in Figure 4, and reveals
that the diffraction peak associated with the Cu2O phase disappears at 500 ◦C thereby
confirming the hypothesis of incomplete oxidation of Cu2O to CuO at 400 ◦C.
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Figure 4. Magnified XRPD patterns (2θ = 32–44◦) for (a) N1, (b) N2, and (c) N3 samples synthesized
at 400 and 500 ◦C.

To evaluate the CuO particle sizes (PS) and agglomeration state, TEM images were
recorded as shown in Figure 5. Oval-shaped CuO nanoparticles with smaller sizes and less
pronounced agglomeration were observed with an increase of the glycerol amount. The
average particle sizes were deduced from log-normal fitting of size distribution histograms
as (42.3, 33.8, 33.3, and 27.4 nm) and (36.4, 28.6, 25.2, and 24.2 nm) for (H0, H1, H2, and H3)
and (N0, N1, N2, and N3) samples, respectively. A slight difference in PS was observed for
25 (50) and 50% (75%) glycerol amounts in H (N) samples, although a significant decrease
in particle size was noticed from the aqueous medium to higher glycerol volumes for both
sample types (from 42.3 to 27.4 nm for H0 and H3 and from 36.4 to 24.2 nm for N0 and N3,
with a ratio of H0/H3 to N0/N3 of approximately 1.5).
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Figure 6 shows a graphical comparison between the crystallite and particle sizes for H and
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3.2. Scanning Electron Microscopy

To understand better the effect of using different C2O4
2− ion precursors and volume

ratios of water/glycerol mixture solvent while keeping the same reaction temperature,
time, and total volume of solvents, a deeper investigation was performed using the SEM
images of the copper oxalate and oxide samples, as shown in Figure 7.
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Figure 7. SEM images of (a) copper oxalate precursors with two magnifications (The red circle highlights
the torus structure observed for H1oxa sample) (b) copper oxide powders.

The oxalate samples (Figure 7a) demonstrated a gradual change in shape from quasi-
spherical particles for H0oxa, H1oxa, H2oxa, N0oxa, N1oxa, and N2oxa to rice-husk-like
and cluster forms for H3oxa and N3oxa samples, respectively, as the glycerol level increased.
In addition, some torus structures were also noticed in sample H1oxa, as highlighted by
the red circle.
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The morphologies of the copper oxides (Figure 7b) were found to be similar to their
corresponding copper oxalate precursors, except for H3oxa and N3oxa prepared with the
higher volume of glycerol which showed an evolution from a flat surface and large clusters,
respectively, to small clusters with a porous structure. This indicates that the water/glycerol
mixed solvent not only reduced the particles size but also led to different surface textures.
From the viewpoint of nucleation and growth mechanisms during the synthesis process, it
is important to note that cloudy solutions were obtained once the oxalate precursor was
added to the copper solution. This suggests a rapid nucleation step and strong interactions
between the system molecules. In the aqueous solution, the high ionic mobility led to
instantaneous precipitation and spontaneous aggregation of the copper oxalates. However,
increasing the glycerol volume made the liquid medium more viscous, as glycerol has a
viscosity approximately 1000 times greater than that of water [28]. As a consequence, the
ions’ diffusion length was slowed and therefore growth of the particles was prevented.

According to Zelent et al. [29], different hydrogen bonding interactions can occur
between solvent molecules, namely water–water, water–glycerol and glycerol–glycerol.
In a pure water solvent, particles are loosely bonded together. As the amount of glycerol
increases, the solvent polarity and the H-bonding interactions increase, resulting in the
formation of smaller particles. These results agreed with those obtained by Wang et al.
for the synthesis of ZnO nanoparticles in water/glycerol solvent [30]. With regard to the
effect of the oxalate ions source, the observed differences between Hoxa and Noxa samples
were due to the larger size of (NH4)+ compared to H+ which led to greater separation
between particles, less agglomeration, and therefore better dispersion. To the best of our
knowledge, few studies have reported on oxalic acid and ammonium oxalate as starting
materials for the preparation of metal oxalates in terms of their effects on the characteristics
of the resulting powders. In particular, Baco-Carles et al. [31] and Nagirnyak et al. [32]
respectively studied the correlations between the morphologies of β-CoC2O4.2H2O and
SnC2O4 prepared using H2C2O4.2H2O and (NH4)2C2O4.H2O and the resulting cobalt and
tin(IV) oxide powders.

3.3. Magnetic Properties of CuO

Figure 8a,b displays the results of the thermal susceptibility measurements (ZFC and
FC curves) performed for all the CuO samples in the temperature range 5–300 K under an
applied magnetic field of 1000 Oe. As can be seen, independently of the synthesis conditions,
the magnetic behavior resembles that of the bulk material at temperatures above 100 K [12].
The calculated susceptibilities varied from 3.3 × 10−6 to 3.5 × 10−6 emu.g−1.Oe−1, values
very close to those reported by Kobler and Chattopadhyay [33] for CuO single crystals.
Punoose et al. [15] also made a similar observation that the susceptibility of particles with a
size of 37 nm exhibited comparable behavior to the bulk.

However, below 100 K, all the ZFC-FC curves split and rose with the appearance of
a cusp around 50 K that was not observed in the bulk but has recently been observed in
11 nm CuO nanoparticles [34]. To understand better the thermal susceptibility behavior,
the derivative (dχ/dT) of the ZFC curves was calculated from 5 to 300 K, as shown in
Figure 8c,d for samples H2 and N2. Two main points were identified: (i) Tg~50 K where the
derivative is null and (ii) TI = 210 K where the derivative reaches a maximum indicating a
concavity change in the susceptibility curve (although not shown, all the samples exhibited
similar Tg and TI values).

The temperature TI = 210 K is close to the incommensurate-to-commensurate antifer-
romagnetic transition at 213 K reported by Ota and Gmelin [14]. Therefore, our results
show that the whole magnetic behavior of the synthesized nanoparticles was close to that
of the bulk, but this transition temperature was slightly decreased because of the smaller
particle size.
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On the other hand, Tg has recently been observed by other authors at 20 K [34]. These
cusps can be assigned to a spin glass behavior caused by frustrated spins at the particle
surface which coexist with antiferromagnetic interactions inside the particles, and these
cusps can move from low to high temperatures as frustration increases [35]. In this work,
the particle sizes were around 20–40 nm which can give place to frustration. In addition,
the incomplete bindings of the atoms at the surface and the high surface/volume ratio can
enhance this frustration [36]. Therefore, the maximum found at Tg = 50 K is attributed to
competing ferromagnetic—antiferromagnetic interactions inside the nanoparticles, where
the ferromagnetic contribution comes from the spin glass frustration. Indeed, the split and
rise of the FC and ZFC magnetization curves at temperatures smaller than 100 K confirm
the presence of competing antiferromagnetic–ferromagnetic interactions.

For a better understanding of the magnetic behavior of the synthesized CuO-NPs,
the hysteresis cycles were measured at 5 and 300 K for all H and N samples, as shown
in Figure 9. It is worth noting that saturation magnetization was not observed at any
temperature. However, the magnetization at 300 K was greater than at 5 K, in agreement
with the higher susceptibility of the bulk sample at room temperature [15,33]. At low
temperatures, hysteresis cycles were observed (insets in Figure 9).
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Previous studies on CuO nanoparticles show ferromagnetic hysteresis cycles at low
temperatures [37–39]. So, to determine the presence of ferromagnetic interactions, the high
field susceptibility was extracted from the hysteresis curves according to Equation (4). Two
different behaviors were observed in the H and N samples (Figure 10). For H0 and H1, it
was not possible to determine a ferromagnetic curve. However, ferromagnetic interactions
were detected for H2 and H3 and the hysteresis curve of H3 shows higher magnetization
and coercivity than H2 (Table 3). This is quite consistent with the decreasing particle size
from H0→ H3, and also supports the results of the thermal magnetization: as the particle
size decreases there appear competing ferromagnetic–antiferromagnetic interactions inside
the particles due to the contribution of the spin glass at the surface and the still antifer-
romagnetic core. It is worth noting that these two magnetic phases are coupled, and the
hysteresis curves do not show independent contributions of the two phases. This is also
supported by the higher coercive field of H3, suggesting that the exchange interactions
became stronger with decreasing particle size.

Table 3. Saturation magnetization (Ms) and Coercivity (Hc) of H (H2, H3) and all N samples.

Sample Saturation Magnetization: Ms (emu.g−1) Coercivity: Hc (Oe) Particle Size (nm)

H2 0.0005 500 33.3
H3 0.0023 1200 27.4
N0 0.0014 680 36.4
N1 0.0024 460 28.6
N2 0.0014 540 25.2
N3 0.0025 390 24.2

Regarding N samples, the saturation magnetizations as well as the coercive fields
remained almost constant for all the samples, consistent with their smaller particle sizes
(Table 3). Batsaikhan et al. [40] reported that the onset of FM interaction in CuO strongly
depends on the particle size; it seems to reach its maximum at around 10 nm, and then
decreases for larger and smaller sizes. The particle sizes in this work were above this limit,
and the magnetic behavior resembled that of the bulk, with the exception of a spin glass
frustration at the particle surface. Considering that the FM contribution arises from the
atoms at the surface, it is possible to estimate the contribution from the surface volume
(which is FM) to the core volume (which is still AFM). To estimate the surface volume, a
shell of 4.34 Å was considered (which is a pseudocubic cell with the same volume as the
CuO cell). For 10 nm NPs, the surface volume is 13% of the whole volume, whereas for
30 nm NPs, the surface volume is smaller than 4%. This result explains the great differences
observed in NPs with sizes around 10 nm [34,40] and the magnetization values obtained in
this work.
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4. Conclusions

In summary, CuO-NPs were synthesized via thermal decomposition of pre-prepared
copper oxalates through a reflux process. X-ray powder diffraction analysis was used to
determine the purity and the average crystallite size. The analysis revealed the presence of
a small amount of Cu2O for the samples prepared from oxalate ammonium as the oxalate
ion precursor and water/glycerol mixture as the solvent at 25%, 50% and 75% V/V ratios.
The TEM observations showed similar shapes but different average particle sizes in the
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range 24–42 nm, according to C2O4
2− starting material and solvent type. The effects of

these two parameters on the morphological features of CuO were studied by SEM analysis,
which indicated an evolution from a spherical to rice-husk-like particles. The magnetic
properties of the CuO-NPs were evaluated using M-T and M-H curves and interpreted by
the coexistence of dominant antiferromagnetic and weak ferromagnetic interactions. The
ZFC-FC curves showed that the magnetic behavior of these NPs was similar to that of the
bulk above 100 K; however, a cusp appeared around 50 K which was attributed to spin
glass due to the high frustration existing at the surface of small particles. Ferromagnetic
contributions from spin glass at the NPs’ surface were extracted from the hysteresis cycles.
In addition, the derivatives of the ZFC curves show that a maximum is reached at 210 K,
indicating a concavity change. This temperature is possibly related to the Néel temperature
in bulk (230 K), although it is decreased because of the smaller size of the NPs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma16093426/s1, Figure S1: XRPD patterns for N1, N2, and N3 samples.
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