
Citation: Huang, Y.; Huang, R.;

Huang, Y. Investigation into the

Dynamic Stability of Nanobeams by

Using the Levinson Beam Model.

Materials 2023, 16, 3404. https://

doi.org/10.3390/ma16093404

Academic Editor: Giovanni Garcea

Received: 25 March 2023

Revised: 23 April 2023

Accepted: 25 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Investigation into the Dynamic Stability of Nanobeams by
Using the Levinson Beam Model
Youqin Huang *, Richeng Huang and Yonghui Huang

Research Centre for Wind Engineering and Engineering Vibration, Guangzhou University,
Guangzhou 510006, China; 2112016135@e.gzhu.edu.cn (R.H.); huangyh@gzhu.edu.cn (Y.H.)
* Correspondence: yqhuang@gzhu.edu.cn

Abstract: Dynamic stability is an important mechanical behavior of nanobeams, which has been
studied extensively using the Euler–Bernoulli and Timoshenko beam theories, while the Levinson-
beam-theory-based dynamic instability analysis of nanobeams has not been investigated yet. Shear
deformation is not or is not suitably considered in the Euler–Bernoulli and Timoshenko theories,
so it is very important to introduce the Levinson beam theory in the dynamic stability analysis of
nanobeams, which correctly models the combined action of bending and shear in nanobeams with
smaller length/height ratios. In this work, the equation of the transverse vibration of a Levinson
beam embedded in an elastic foundation is firstly formulated based on the displacement field of
Levinson beam theory, and the nonlocal theory is further applied to the Levinson nanobeam. Then,
the governing equation of the dynamic stability of the Levinson nanobeam is derived using Bolotin’s
method to achieve a generalized eigenvalue problem corresponding to the boundaries of regions of
dynamic instability. The principal instability region (PIR) is the most important among all regions, so
the boundary of the PIR is focused on in this work to investigate the dynamic stability of the Levinson
nanobeam. When the width, length/height ratio, density, Young’s modulus, Poisson’s ratio, size scale
parameter, and medium stiffness increase by about 1.5 times, the width of the PIR changes by about
19%, −57%, −20%, 65%, 0, −9%, and−11%, respectively. If a smaller critical excitation frequency and
narrower width of the PIR correspond to the better performance of dynamic stability, the study shows
that the dynamic stability of the Levinson nanobeam embedded in an elastic medium improves under
a larger length and density and a smaller width, height, and Young’s modulus, since these factors are
related to the natural frequency of the nanobeam which controls the width of the PIR. Additionally,
the local model would overestimate the dynamic stability behavior of the Levinson nanobeam.

Keywords: dynamic instability; nanobeams; Levinson beam; elastic medium; Bolotin’s method;
parametric analysis

1. Introduction

Their excellent mechanical and electrical properties make nano-composite structures
widely used in engineering fields [1–4]. The performance of dynamic stability is one of
the crucial characteristics of nanobeams [5,6]. In the numerical analysis of the mechanical
behavior of nanobeams, the method of atomistic simulations is time-consuming and the
continuum theory is more efficient and popular. Since conventional local continuum
elasticity does not include the quantum effects owing to the discrete nature at the nanoscale,
the nonlocal continuum theory was proposed by Eringen [7,8] for the analysis of the
continuum features of nanobeams.

Eringen’s theory has been widely applied in the dynamic stability analysis of nanobeams.
Ghadiri and Hosseini [9] studied the nonlinear vibration and dynamic stability of Euler–
Bernoulli nanobeams subject to thermo-magneto-mechanical loading. Sourani et al. [10]
investigated the dynamic instability of a Euler–Bernoulli nanobeam under the action of
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axial dynamic excitation considering surface stress effects. It is known that the Euler–
Bernoulli beam theory is only suitable for slender beams, while for beams with small
length/height ratios whose shear deformation effects cannot be neglected, the Timoshenko
beam theory is usually applied. Ansari and Gholami [11] carried out the dynamic instability
analysis of nanobeams embedded in an elastic medium and thermal environment using
the Timoshenko beam theory, and the effects of static load factor, size scale parameter,
and medium spring constant were evaluated. Saffari et al. [12] explored the dynamic
instability of functionally graded nanobeams under axial and thermal loading using the
nonlocal Timoshenko model, and the influence of gradient index on the dynamic instability
region was discussed. Hashemian et al. [13] paid attention to the dynamic instability
of a Timoshenko nanobeam on an elastic foundation with the intermittent movement of
nanoparticles.

The Timoshenko theory considers the shear deformation effect of the beam by as-
suming a constant shear strain along the height of the beam through a shear correction
factor, and the fluctuation of the shear correction factor with the length/height ratio would
decrease the computational accuracy, so higher-order shear deform theories are desired
by defining higher-order variations in shear strain over the height. Reddy [14] presented
nonlocal forms of higher-order Reddy and Levison beam models, and they are now widely
applied in the mechanical analysis of nanostructures [15,16].

The Levinson beam theory not only considers the combined effect of bending and
shear, avoiding the errors caused by the Euler beam model for not involving the shear
deformation, but also correctly considers the stress-free conditions of the upper and lower
surfaces of the beam while maintaining the parabolic shear strain distribution. It does not
require shear correction coefficients and decreases the inaccuracy owing to the fluctuations
of shear correction coefficients.

Iwase and Hirashima [17] applied the Levinson beam theory to treat the bending
problems of thick regular beams with bimodulus materials. Li et al. [18] investigated
the critical buckling loads of Levinson beams with functionally graded material, where
a quadratic variation in transverse shear strain through the height was assumed. Li and
Wan [19] gave the analytical results of the deflection, rotational angel, bending moment, and
shear force of the Levinson beams with functionally graded material. Karttunen and von
Hertzen [20] developed the exact Levinson beam finite element and a consistent variational
formulation of the Levinson beam. Wand and Li [21] analyzed the natural frequency of
the Levinson beam with functionally graded material and solved the two-point boundary
value problem using a shooting method. Kryskoa et al. [22–24] used a size-dependent
Levinson beam and the couple stress theory to investigate the regular and chaotic vibration
of micro-beams and compared the results with those from the Euler–Bernoulli model and
the Timoshenko model, discussing the effect of geometric and physical nonlinearity and
the size dependency and the different performances of the variational process such as
phase portraits, wavelet spectra, Fourier spectra, Poincare maps, and the largest Lyapunov
exponents. Golbakhshi et al. [25] proposed a modified couple stress model based on the
Levinson beam model to evaluate the bending and free vibration of functionally graded
porous isotropic microbeams.

However, the studies on the dynamic stability of nanobeams based on the nonlocal
Reddy and Levinson beam theories are very limited. Huang et al. [26] derived the formula-
tions of the dynamic instability of nanobeams according to the Reddy beam model and the
Bolotin method, while the Levinson beam theory has not been applied in the dynamic sta-
bility analysis of nanobeams. The Lyapunov stability theory is effective for a homogeneous,
nonlinear system, while the Bolotin method is popular for linear structures [27–29]. Conse-
quently, the main contribution of this work is to provide a more accurate evaluation method
for the dynamic stability of nanobeams based on the Bolotin method and the Levinson
beam model which would avoid the errors caused by the Euler–Bernoulli and Timoshenko
beam theories. In this paper, the formulations of Levinson’s nanobeam embedded in an
elastic foundation are derived using Eringen’s nonlocal theory. Subsequently, the eigen-
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value problem corresponding to the boundaries of dynamic instability regions are built
according to the Bolotin method. The effects of various geometric and material parameters
on the boundaries of dynamic stability are carefully explored via numerical computations.

2. Formulation of Dynamic Stability of Levison Nanobeam
2.1. Transverse Vibration of Embedded Levinson Beam

Levinson proposed the shear deformation theory for rectangular beams by assuming
that the axial displacement of any point on the cross section is a cubic function of the height
of beam section and the first-order shear deformation theory [30].

A nanobeam model considered as a Levinson beam is shown in Figure 1, which has
the length l, and the rectangular cross section with height h and width b. The Levinson
nanobeam has the material properties of mass density ρ, Young’s modulus E, and shear
modulus G, where G = E/2(1 + v) and v is the Poisson’s ratio. The nanobeam is resting
on an elastic foundation with the spring constant q and is subjected to axial harmonic
excitation P(t). A coordinate system is taken on the nanobeam with the axis x along the
nanobeam and the axis z perpendicular to the nanobeam.
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Figure 1. The mechanical model of Levinson’s nanobeam.

The expression of the displacement field is very important when deriving the vibration
equation of the Levinson beam. The governing equation of the transverse vibration of the
Levinson beam embedded in an elastic foundation can be derived by using the displacement
field of the Levinson beam given by Reddy [14]

uL
1 = uL(x, t) + zϕL(x, t)− c1z3

(
ϕL +

∂wL(x, t)
∂x

)
(1)

uL
2 = 0 (2)

uL
3 = wL(x, t) (3)

where (u1, u2, u3)
L denote the displacements along the coordinate axis x, y, and z, and

the superscript L denotes the Levinson beam; uL and wL denote the displacements on the
mid-plane (z = 0) along the axis x and z, and ϕL is the shear deformation; c1 is a constant,
c1 = 4/(3h2).

Furthermore, the longitudinal normal strain εL
xx is the first derivative of the axial

displacement uL
1 along the x axis relative to x, and the transverse shear strain εL

xz is the sum
of the first derivative of the transverse displacement uL

3 to x and the axial displacement to
z, i.e.,

εL
xx =

∂uL
1

∂x
(4)

εL
xz =

∂uL
3

∂x
+

∂uL
1

∂z
(5)
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Thus, the corresponding strain field can be achieved as

εL
xx =

∂uL(x, t)
∂x

+ z(1− c1z2)
∂ϕL

∂x
− c1z3 ∂2wL(x, t)

∂x2 = ε0
xx

L + zkL + z3λL (6)

2εL
xz = (1− c2z2)

(
∂wL(x, t)

∂x
+ ϕL

)
= γL + z2ηL (7)

where ε0
xx

L denotes the longitudinal normal strain on the mid-plane and kL = ∂ϕL

∂x ,

λL = −c1

(
∂ϕL

∂x + ∂2wL

∂x2

)
, ηL = −c2

(
ϕL + ∂wL

∂x

)
, γL = ϕL + ∂wL

∂x , c2 = 4
h2 For the Levinson

beam resting on an elastic medium, its equation of transverse vibration can be written by
referring to the standard formulations given by Reddy [14]:

−m0
∂2wL

∂t2 +
∂QL

∂x
− P

∂2wL

∂x2 + qwL = 0 (8)

∂ML

∂x
−QL −m2

L ∂2 ϕL

∂t2 = 0 (9)

where ML and QL denote the bending moment and shear force on the cross-section, respec-
tively; qwL is the force of elastic foundation; m0 = ρA, m2

L = 4
5 ρI, and I is the sectional

moment of inertia.

2.2. Vibration Equation of Nonlocal Levinson Beam

For the nonlocal nanobeam, the stress at a given point is affected by the strains of all
points in the structure, that is [7,31]

σij(x) =
∫

α(
∣∣x− x′

∣∣, τ)Cijklεkl(x′)dV(x′) (10)

σij,j = 0 (11)

εij =
1
2
(ui,j + uj,i) (12)

where σij and εij represent the stress tensor and strain tensor, respectively; α(|x− x′|, τ) is
the nonlocal modulus, representing the nonlocal effect generated at position x′ on another
position x; τ = e0a/l′, where l′ is the external characteristic length, a is the internal
characteristic length, and e0 is an atomic simulation constant; Cijkl is the classical elasticity
modulus tensor, and the subscripts i, j and k, l represent the directions of stress and
strain, respectively.

The differential form of the nonlocal theory is popular in the analysis of nanostructures
and for the one-dimensional nanobeam, it has the form of

σxx − µ
∂2σxx

dx2 = Eεxx (13)

σxz − µ
∂2σxz

∂x2 = 2Gεxz (14)

where σxx and σxz denote the normal stress and shear stress, respectively; µ = (e0a)2

denotes the size scale parameter of the nanobeam.
Thus, the constitutive relationship of the nonlocal Levinson beam could be

ML − µ
∂2ML

∂x2 = EIkL + EJλL (15)



Materials 2023, 16, 3404 5 of 14

QL − µ
∂2QL

∂x2 = GAγL + GIηL (16)

where J = 3
20 Ih2.

By substituting Equations (15) and (16) into the transverse motion equations,
Equations (8) and (9), the vibration equation of the nonlocal Levinson beam can be
reached with

G
∼

AL
(

∂ϕL

∂x + ∂2wL

∂x2

)
− P ∂2wL

∂x2 + qwL + µP ∂4wL

∂x4 − µq ∂2wL

∂x2

= m0
∂2wL

∂t2 − µm0
∂4wL

∂x2∂t2

(17)

EI ∂2 ϕL

∂x2 − c1 JE
(

∂2 ϕL

∂x2 + ∂3wL

∂x3

)
− G

∼
AL
(

ϕL + ∂wL

∂x

)
= m2

L ∂2 ϕL

∂t2 − µm2
L ∂4 ϕL

∂x2∂t2

(18)

where
∼

AL = 2
3 A.

2.3. Governing Equation of Dynamic Stability of Nonlocal Levinson Beam

For a beam simply supported at both ends, its transverse and shear deformation can
be defined as [32]

wL(x, t) = D(t) sin
(nπx

l

)
(19)

ϕL(x, t) = χ(t) cos
(nπx

l

)
(20)

where D and χ denote the time coordinates of wL and ϕL, respectively.
Substituting Equations (19) and (20) into the vibration governing equation of a nonlocal

Levinson nanobeam (Equations (17) and (18)) gives − nπ
l G

∼
ALχ(t)−

( nπ
l
)2G

∼
ALD(t) +

( nπ
l
)2PD(t) + qD(t) +

( nπ
l
)2

µqD(t)

+
( nπ

l
)4

µPD(t)−m0
∂2D(t)

∂t2 − µ( nπ
l )2m0

∂2D(t)
∂t2

 sin(
nπx

l
) = 0 (21)

 −( nπ
l
)2EIχ(t) + c1

( nπ
l
)2EJχ(t) + c1

( nπ
l
)3EJD(t)− G

∼
AL χ(t)− nπ

l G
∼

ALD(t)

−m2
L ∂2χ(t)

∂t2 − µ( nπ
l )2m2

L ∂2χ(t)
∂t2

 cos(
nπx

l
) = 0 (22)

To satisfy Equations (21) and (22) at any time t, i.e., the items contained in the square
bracket diminish, we have − nπ

l G
∼

ALχ(t)−
( nπ

l
)2G

∼
ALD(t) +

( nπ
l
)2PD(t) + qD(t) +

( nπ
l
)2

µqD(t)

+
( nπ

l
)4

µPD(t)−m0
∂2D(t)

∂t2 − µ( nπ
l )2m0

∂2D(t)
∂t2

 = 0 (23)

 −( nπ
l
)2EIχ(t) + c1

( nπ
l
)2EJχ(t) + c1

( nπ
l
)3EJD(t)− G

∼
AL χ(t)− nπ

l G
∼

ALD(t)

−m2
L ∂2χ(t)

∂t2 − µ
( nπ

l
)2m2

L ∂2χ(t)
∂t2

 = 0 (24)
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Equations (23) and (24) can be expressed in the matrix form:[
−m0 − µ

( nπ
l
)2m0 0

0 −m2
L − µ

( nπ
l
)2m2

L

]
·
[ ..

D(t)
..
χ(t)

]
+−( nπ

l
)2G

∼
AL + q +

( nπ
l
)2

µq − nπ
l G

∼
A

c1
( nπ

l
)3EJ − nπ

l G
∼

AL −
( nπ

l
)2EI + c1

( nπ
l
)2EJ − G

∼
AL

·[D(t)
χ(t)

]

−
[
−
( nπ

l
)2 −

( nπ
l
)4

µ 0
0 0

]
P
[

D(t)
χ(t)

]
= 0

(25)

i.e.,
ML

..
d +

{
Ke

L − P(t)Kg
L
}

d = 0 (26)

where

ML =

[
a1

L a2
L

a3
L a4

L

]
, Ke

L =

[
a5

L a6
L

a7
L a8

L

]
, Kg

L =

[
a9

L 0
0 0

]
, d =

{
D(t)
χ(t)

}
are the matrices of mass, stiffness, geometric stiffness and the deformation vector, with

a1
L = −m0−µ

( nπ
l
)2m0, a2

L = 0, a3
L = 0, a4

L = −m2
L−µ

( nπ
l
)2m2

L, a5
L = −

( nπ
l
)2G

∼
AL +

q+
( nπ

l
)2

µq, a6
L = − nπ

l G
∼

AL, a7
L = c1

( nπ
l
)3EJ− nπ

l G
∼

AL, a8
L = −

( nπ
l
)2EI + c1

( nπ
l
)2EJ−

G
∼

AL, a9
L = −

( nπ
l
)2 −

( nπ
l
)4

µ.
The axial excitation P(t) can be expressed as

P(t) = [α + β cos(θt)]Pcr
L (27)

where α and β denote the ratios of the static and dynamic components of P(t) to the Euler
buckling load Pcr, respectively; θ denotes the excitation frequency.

Thus, Equation (26) can be rewritten as

ML
..
d +

{
Ke

L − [[α + β cos(θt)]Pcr
L]Kg

L
}

d = 0 (28)

Equation (28) is a type of Mathieu–Hill equation with periodic coefficients. The
distribution of the solutions of the Mathieu–Hill equation on a parametric plane is divided
by regions of stable solutions and unstable solutions, and the boundaries of these two types
of regions can be fixed by solving the eigenvalue problem corresponding to Equation (28).
Among the regions of dynamic stability, the first region corresponding to the first-order
eigenvalue has the largest width and represents the most dangerous region, called the
principal region of dynamic instability. The boundary of the principal instability region
(PIR) could be obtained by solving the eigenvalue problem [33].∣∣∣∣Ke

L − Pcr
L(α± β

2
) ·Kg

L − θ2

4
ML
∣∣∣∣ = 0 (29)

Consequently, the study of the dynamic stability of the Levinson nanobeam can be
carried out corresponding to the flow chart given in Figure 2.
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Figure 2. Flow chart of dynamic stability analysis on the Levinson nanobeam.

3. Results and Discussions

A Levinson-type nanobeam with the parameters shown in Table 1 is investigated in
this section, and the parameter values are set according to the literature [34]. According to
the geometric and material properties indicated in Table 1, the boundaries of the principle
instability region (PIR) can be obtained by solving Equation (29) and are demonstrated on a
parametric plane (e, theta) as shown in Figure 3 (the red line), where e = β/2(1−α) denotes
the amplitude parameter of excitation. The computation of the PIR and the drawing of
all figures in this section were carried out on the platform of MATLAB. In Figure 3, the
area enclosed by the left and right boundaries represents the principal region of dynamic
instability (PIR). That is, if the point corresponding to the excitation parameters α, β, and θ
is located inside the PIR, the nanobeam would be in the state of dynamic instability, or if
the point is located outside the PIR, the dynamic state of the nanobeam could be stable.

Table 1. Geometric and material parameters of the Levinson nanobeam.

Material Parameters Geometric Parameter

E (TPa) 1.8 l (nm) 20
ρ (kg/m3) 1300 h (nm) 1

υ 0.5 b (nm) 0.3
q (GPa) 0.1 µ (nm2) 0.3

Meanwhile, the intersection of the boundaries of the PIR on the horizontal ordinate
axis, θ∗, is the central critical frequency of excitation for dynamic instability, so θ∗ represents
the position of the PIR on the parametric plane. Therefore, the determination of the bound-
aries of the PIR are crucial for evaluating the dynamic stability of the Levinson nanobeams.

The influence of the cross-sectional width b of the Levinson nanobeam on the width
of the principal instability region (PIR) is shown in Figure 4. It is indicated that for the
Levinson nanobeam embedded in a medium, the increment in width makes the critical fre-
quency θ∗ move to the higher frequency zone, and the width of the PIR enlarges. However,
the effect gets weaker when its value becomes larger. It is noteworthy that the abscissa here
is only the excitation frequency, not the ratio of excitation frequency to 2 times the natural
frequency of a beam commonly set in the literature. The reason for such operation is to



Materials 2023, 16, 3404 8 of 14

demonstrate the effects of various parameters on the excitation frequency, excluding the
natural frequency.
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Comparatively, when the length/height ratio increases (the length increases or the
height decreases), i.e., the nanobeam becomes slenderer, the critical frequency of exci-
tation moves to the lower frequency zone, and the width of the PIR shrinks (Figure 5).
Hence, when the nanobeam becomes slenderer, the possibility of dynamic instability de-
creases, while it would be unstable under a smaller excitation frequency. Moreover, the
length/height ratio has a much more significant effect than the sectional width.

In order to demonstrate the necessity of a higher-order beam model under larger
sectional heights, the PIR boundaries from the Levinson and Euler–Bernoulli beam theo-
ries are compared in Figure 6, where the excitation frequency is nondimensionalized by
θ = θL

√
ρ/E. It is clearly shown that, when the height is relatively small, the boundaries

of both beam theories are close, but when the height increases, the widths and positions of
the PIRs from the two beam theories become different.
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If the mass density of the Levinson nanobeam increases, the critical excitation fre-
quency and the width of the PIR also reduces (Figure 7), so the increment in density would
enhance the dynamic stability of the Levinson nanobeam if better performance in dynamic
stability is judged by a smaller excitation frequency and a narrower PIR width.

In contrast, when the Young’s modulus of a Levinson nanobeam increases, both the
critical excitation frequency and the width of the PIR increase (Figure 8), i.e., the dynamic
stability of the Levinson nanobeam gets worse. In addition, the Poisson’s ratio has little
effect on the PIR (Figure 9).

Furthermore, with the increase in the size scale parameter, both the critical excitation
frequency and the width of PIR decreases (Figure 10). Therefore, neglecting the small-
scale effect of a nanobeam would overestimate its dynamic stability performance, and the
nonlocal model should be used for evaluating the dynamic stability of a nanobeam.



Materials 2023, 16, 3404 10 of 14
Materials 2023, 16, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 7. Effect of mass density. 

In contrast, when the Young’s modulus of a Levinson nanobeam increases, both the 

critical excitation frequency and the width of the PIR increase (Figure 8), i.e., the dynamic 

stability of the Levinson nanobeam gets worse. In addition, the Poisson’s ratio has little 

effect on the PIR (Figure 9). 

 

Figure 8. Effect of Young’s modulus. 

  

Figure 9. Effect of Poisson’s ratio. 

Furthermore, with the increase in the size scale parameter, both the critical excitation 

frequency and the width of PIR decreases (Figure 10). Therefore, neglecting the small-

Figure 7. Effect of mass density.

Materials 2023, 16, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 7. Effect of mass density. 

In contrast, when the Young’s modulus of a Levinson nanobeam increases, both the 

critical excitation frequency and the width of the PIR increase (Figure 8), i.e., the dynamic 

stability of the Levinson nanobeam gets worse. In addition, the Poisson’s ratio has little 

effect on the PIR (Figure 9). 

 

Figure 8. Effect of Young’s modulus. 

  

Figure 9. Effect of Poisson’s ratio. 

Furthermore, with the increase in the size scale parameter, both the critical excitation 

frequency and the width of PIR decreases (Figure 10). Therefore, neglecting the small-

Figure 8. Effect of Young’s modulus.

Materials 2023, 16, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 7. Effect of mass density. 

In contrast, when the Young’s modulus of a Levinson nanobeam increases, both the 

critical excitation frequency and the width of the PIR increase (Figure 8), i.e., the dynamic 

stability of the Levinson nanobeam gets worse. In addition, the Poisson’s ratio has little 

effect on the PIR (Figure 9). 

 

Figure 8. Effect of Young’s modulus. 

  

Figure 9. Effect of Poisson’s ratio. 

Furthermore, with the increase in the size scale parameter, both the critical excitation 

frequency and the width of PIR decreases (Figure 10). Therefore, neglecting the small-

Figure 9. Effect of Poisson’s ratio.



Materials 2023, 16, 3404 11 of 14

Materials 2023, 16, x FOR PEER REVIEW 12 of 14 
 

 

scale effect of a nanobeam would overestimate its dynamic stability performance, and the 

nonlocal model should be used for evaluating the dynamic stability of a nanobeam. 

 

Figure 10. Effect of size scale parameter. 

When the Levinson nanobeam is embedded in a stiffer medium, the critical excitation 

frequency and the width of the PIR also reduces (Figure 11), i.e., the elastic foundation 

enhances the dynamic stability performance of the Levinson nanobeam. 

 

Figure 11. Effect of medium stiffness. 

In summary, when any of the above parameters change, the value of critical excita-

tion frequency and the width of the PIR vary in the same direction, i.e., both the critical 

excitation frequency and the width of the PIR become smaller or larger. When the width, 

length/height ratio, density, Young’s modulus, Poisson’s ratio, size scale parameter, and 

medium stiffness increase by about 1.5 times, the width of the PIR varies by about 19%, 

−57%, −20%, 65%, 0, −9%, and −11%, respectively. To reduce the critical excitation fre-

quency and the width of the PIR, the Levinson nanobeam should have a smaller cross-

sectional width and height or Young’s modulus and a larger length, density, and founda-

tion stiffness. According to the theory of dynamic stability, the critical excitation fre-

quency is basically two times the natural frequency of the loaded beam. Since smaller 

cross-sectional dimensions or Young’s moduli lead to higher natural frequencies, and 

larger lengths, densities, and foundation stiffnesses could result in smaller natural fre-

quencies, the critical excitation frequency would become smaller when these parameters 

vary in the above directions. Moreover, the higher-order Levinson beam theory achieves 

a more accurate boundary of the PIR than the lower-order Euler–Bernoulli beam theory 

when the sectional height of the nanobeam is larger. 

Figure 10. Effect of size scale parameter.

When the Levinson nanobeam is embedded in a stiffer medium, the critical excitation
frequency and the width of the PIR also reduces (Figure 11), i.e., the elastic foundation
enhances the dynamic stability performance of the Levinson nanobeam.
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In summary, when any of the above parameters change, the value of critical excita-
tion frequency and the width of the PIR vary in the same direction, i.e., both the critical
excitation frequency and the width of the PIR become smaller or larger. When the width,
length/height ratio, density, Young’s modulus, Poisson’s ratio, size scale parameter, and
medium stiffness increase by about 1.5 times, the width of the PIR varies by about 19%,
−57%, −20%, 65%, 0, −9%, and −11%, respectively. To reduce the critical excitation
frequency and the width of the PIR, the Levinson nanobeam should have a smaller cross-
sectional width and height or Young’s modulus and a larger length, density, and foundation
stiffness. According to the theory of dynamic stability, the critical excitation frequency is
basically two times the natural frequency of the loaded beam. Since smaller cross-sectional
dimensions or Young’s moduli lead to higher natural frequencies, and larger lengths, den-
sities, and foundation stiffnesses could result in smaller natural frequencies, the critical
excitation frequency would become smaller when these parameters vary in the above
directions. Moreover, the higher-order Levinson beam theory achieves a more accurate
boundary of the PIR than the lower-order Euler–Bernoulli beam theory when the sectional
height of the nanobeam is larger.
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4. Conclusions

The dynamic instability of a nanobeam subjected to an elastic foundation and axial
harmonic excitation is investigated using the Levinson beam model. The transverse vibra-
tion equations of the embedded Levinson nanobeam are derived and the nonlocal form of
the vibration equations are built using Eringen’s theory. The boundaries of the principal
instability region (PIR) of the Levinson nanobeam are determined using the Bolotin method.

The value of critical excitation frequency and the width of the PIR would be reduced
under smaller sectional dimensions and Young’s moduli and larger lengths, densities, and
foundation stiffnesses. This is owing to the fact that the critical excitation frequency of
dynamic instability is commonly two times the natural frequency, while the increments
in cross-sectional dimensions and Young’s moduli enlarge the natural frequency, and the
increments in the length, density and foundation stiffness decrease the natural frequency.
For the specific nanobeam studied, when the width, length/height ratio, density, Young’s
modulus, Poisson’s ratio, size scale parameter, and medium stiffness increase by about
1.5 times, the width of the PIR changes by about 19%, −57%, −20%, 65%, 0, −9%, and
−11%, respectively.

The length/height ratio of the nanobeams has a more obvious effect on the PIR, and
the Poisson’s ratio has little effect. When the sectional height is larger, the Levinson beam
model produces better results of the PIR than the Euler–Bernoulli beam theory. Additionally,
ignoring the small-scale effect of the Levinson nanobeam would overestimate the dynamic
stability performance.

The proposed method can be used for the dynamic stability evaluation of nanobeams
with smaller length/height ratios to produce higher accuracy than the Timoshenko beam
model, which have been typically employed for such nanobeams in previous studies. The
shear correction coefficient adopted by the Timoshenko beam model would fluctuate with
the changes in the structural aspect ratio and result in calculation errors, while this is no
longer required in the Levinson beam model, since the shear strain disappears at the top
and bottom of the beam.
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31. Karličić, D.; Kozić, P.; Pavlović, R.; Nešić, N. Dynamic stability of single-walled carbon nanotube embedded in a viscoelastic

medium under the influence of the axially harmonic load. Compos. Struct. 2017, 162, 227–243. [CrossRef]
32. Huang, Y.Q.; Fu, J.Y.; Liu, A.R. Dynamic instability of Euler–Bernoulli nanobeams subject to parametric excitation. Compos. Part B

Eng. 2019, 164, 226–234. [CrossRef]

https://doi.org/10.1016/S0894-9166(16)30007-6
https://doi.org/10.1080/17455030.2023.2177500
https://doi.org/10.1016/0020-7225(72)90070-5
https://doi.org/10.1016/j.compositesb.2019.106928
https://doi.org/10.1016/j.mechmat.2020.103403
https://doi.org/10.1080/15376494.2016.1227489
https://doi.org/10.1016/j.physb.2017.06.029
https://doi.org/10.1016/j.mechmat.2020.103452
https://doi.org/10.1016/j.ijengsci.2007.04.004
https://doi.org/10.1016/j.compstruct.2015.10.026
https://doi.org/10.1016/j.mtcomm.2022.104043
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:2(149)
https://doi.org/10.1016/S0894-9166(15)30052-5
https://doi.org/10.1007/s10483-015-1956-9
https://doi.org/10.1016/j.mechrescom.2015.03.006
https://doi.org/10.1007/s10483-016-2094-9
https://doi.org/10.1016/j.ijnonlinmec.2017.03.005
https://doi.org/10.1016/j.ijnonlinmec.2017.03.006
https://doi.org/10.1016/j.cnsns.2017.02.015
https://doi.org/10.1142/S1758825122500697
https://doi.org/10.3390/ma16041626
https://doi.org/10.1016/j.automatica.2023.110965
https://doi.org/10.1002/asjc.2830
https://doi.org/10.1049/cth2.12155
https://doi.org/10.1016/0022-460X(81)90493-4
https://doi.org/10.1016/j.compstruct.2016.12.003
https://doi.org/10.1016/j.compositesb.2018.11.088


Materials 2023, 16, 3404 14 of 14

33. Bolotin, V.V. The Dynamic Stability of Elastic Systems; Holden-Day Inc.: San Francisco, CA, USA, 1964.
34. Ansari, R.; Gholami, R.; Sahmani, S. On the dynamic stability of embedded single-walled carbon nanotubes including thermal

environment effects. Sci. Iran. 2012, 19, 919–925. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.scient.2012.02.013

	Introduction 
	Formulation of Dynamic Stability of Levison Nanobeam 
	Transverse Vibration of Embedded Levinson Beam 
	Vibration Equation of Nonlocal Levinson Beam 
	Governing Equation of Dynamic Stability of Nonlocal Levinson Beam 

	Results and Discussions 
	Conclusions 
	References

