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Abstract: Various uncertain factors exist in the practical systems. Random variables, uncertain-
but-bounded variables and fuzzy variables are commonly employed to measure these uncertain
factors. Random variables are usually employed to define uncertain factors with sufficient samples
to accurately estimate probability density functions (PDFs). Uncertain-but-bounded variables are
usually employed to define uncertain factors with limited samples that cannot accurately estimate
PDFs but can precisely decide variation ranges of uncertain factors. Fuzzy variables can commonly
be employed to define uncertain factors with epistemic uncertainty relevant to human knowledge
and expert experience. This paper focuses on the practical systems subjected to epistemic uncertainty
measured by fuzzy variables and uncertainty with limited samples measured by uncertain-but-
bounded variables. The uncertainty propagation of the systems with fuzzy variables described by
a membership function and uncertain-but-bounded variables defined by a multi-ellipsoid convex
set is investigated. The combination of the membership levels method for fuzzy variables and the
non-probabilistic reliability index for uncertain-but-bounded variables is employed to solve the
uncertainty propagation. Uncertainty propagation is sued to calculate the membership function of
the non-probabilistic reliability index, which is defined by a nested optimization problem at each
membership level when all fuzzy variables degenerate into intervals. Finally, three methods are
employed to seek the membership function of the non-probabilistic reliability index. Various examples
are utilized to demonstrate the applicability of the model and the efficiency of the proposed method.

Keywords: uncertainty propagation; uncertain-but-bounded variables; fuzzy variables; non-probabilistic
reliability index; multi-ellipsoid convex set

1. Introduction

Based on classical probability theory, traditional probabilistic reliability analysis has
been more and more perfect. The main purpose of probabilistic reliability analysis is to
assess reliability or failure probability. Many practical methods, such as Monte Carlo
simulation, the importance sampling method [1], the response surface method [2], the
first-order reliability method (FORM) [3], the second-order reliability method (SORM) [4],
the subset simulation [5], the directional method [6], the line sampling method [7] and the
asymptotic method for SORM [8], have been proposed to achieve this aim and apply it to
practical engineering problems.

However, the traditional probabilistic reliability model requires precise probability
density functions of the random variables, which are difficult to obtain in many practical
applications because the samples available in practical engineering problems are limited.
Although the principle of maximum entropy has been employed as an efficient technique
to model the concerned uncertainty with a probabilistic distribution [9], it has been pointed
out that classical probability reliability may be extremely sensitive to the statistical dis-
tribution of the data and even small errors in the inputs may yield misleading results in
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some cases [10,11]. This implies that the traditional probabilistic reliability model may be
unable to deal with some problems with incomplete information (or limited samples of the
inputs). Fortunately, many novel strategies such as the non-probabilistic model [10–20],
fuzzy variables and the fuzzy uncertainty propagation model [21–24] as well as the fuzzy
randomness model [25,26] have been provided to deal with such cases.

Compared with the precise probability density functions of the uncertain variables, the
bounds of the variables for many engineering problems, however, may be difficult to obtain
from the information available. Recently, non-probabilistic reliability models such as the
convex set, the interval set and the fuzzy set have been presented as attractive supplements
to the traditional probabilistic reliability model [16]. Since the convex set models, includ-
ing ellipsoid and hyper-box models, were first proposed by Ben-Haim and Elishakoff to
describe the uncertain-but-bounded variables [10–15], non-probabilistic techniques have be-
come popular in non-deterministic dynamic finite element analysis [17] and the capabilities
of the approaches have been discussed in detail [16]. Recently, the multi-ellipsoid convex set
model was also proposed to deal with the case when the uncertain-but-bounded variables
can be classified into many uncorrelated groups and each group can be defined by a single
ellipsoid convex set [18–20]. As revealed in several studies [18–20], the multi-ellipsoid
convex model can be regarded as the extension of the single ellipsoid and hyper-box
model—in other words, the single ellipsoid and hyper-box model are two specific instances
of the multi-ellipsoid convex set model. According to the non-probabilistic reliability
concept stated by Ben-Hain and Elishakoff [10–15], the non-probabilistic reliability index
of the multi-ellipsoid convex set can be expressed as the maximum allowable variability
of the systems, which can be determined by the infinity norm of the vector consisting of
Euclidean norms of the uncorrelated group uncertain-but-bounded vectors [18–20]. As
for the fuzzy variables described by membership functions, the uncertainty propagation
in mechanical systems has been investigated widely [21,22] and the membership levels
method [23,24] has been employed as an efficient means to evaluate problems with fuzzy
uncertainties. The basic principle of the membership levels method, which is used in this
paper, is that at each membership level, each fuzzy variable reduces into an interval with a
lower and an upper bound, and then the bounds of the output responses can be obtained
by optimization or any other technique [23,24]. In other words, if the fuzzy variables are
depicted by membership functions, the membership functions of the responses can be
approximated by the membership levels method. This is termed uncertain propagation
with fuzzy variables. In addition, recently, the previous models have been also employed
to deal with various degrees of uncertainty in practical engineering problems [27–34].
An improved dimensional approach to multidisciplinary interval uncertainty analysis is
developed in which the extreme values of each interval variable used to determine the
system response boundaries are solved using Chebyshev polynomial approximation and
an iterative criterion [27]. Zhou developed a fault-tree-based system reliability method to
predict the failure probability of system components by non-probabilistic interval mod-
els [28]. The unknown but constrained parameters were used as interval variables and
the eigenvalues of the elastic stiffness matrix, geometric stiffness matrix and uncertain
parameters were divided into deterministic and perturbative parts using perturbation
theory [29]. Heng et al. proposed a novel dynamic model updating procedure to efficiently
update the interval and nonstationary correlation coefficient matrix (NPCCM) of the modal
parameters and to establish their accurate and reliable uncertainty bounds [30]. Xu et al.
proposed a two-layer dimensional analysis procedure for the fuzzy finite element method
to determine the minimum and maximum (min/max) points at zero cut for each slice of
the response surface [31]. The fuzzy finite element method was also employed to solve the
issues in eigenfrequency and deflection analysis [32], nonlinear free vibration analysis [33]
and high dimensional model representation [34].

In many engineering applications, the uncertainty of the systems may result from
many different sources. In such cases, the information of some uncertain variables may
be abundant and the precise probability distribution functions (PDFs) can be accurately
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estimated by the data available; whereas in other cases with limited samples, which are not
sufficient to ensure the accurate PDFs, may be defined by uncertain-but-bounded variables.
In addition, some uncertain factors may be relevant to human knowledge and expert expe-
rience, which is commonly considered as epistemic uncertainty and fuzzy variables are fit
to this situation. Based on the realistic problems, the models dealing with mixed uncertain
variables such as the model with random variables and fuzzy uncertainties [35–38], the
combination of random variables and uncertain-but-bounded variables [39–41] and the
mixture of random variables and intervals [42,43] have been proposed to overcome the
difficulty. As the studies mentioned above reveal, a number of attempts have been made
for mixed uncertainties analysis. However, most of the existing papers focus on either the
mixed model of the random variables and fuzzy inputs or the combination of the random
variables and uncertain-but-bounded variables. For engineering applications with limited
available samples and epistemic uncertainty, the combination of uncertain-but-bounded
variables and fuzzy variables has an advantage in dealing with such a situation. It is
necessary to perform an investigation for uncertain propagation for this case. Based on
non-probabilistic reliability theory and the membership levels method, the main goal of
uncertain propagation is to estimate the membership function of the non-probabilistic
reliability index. According to the basic idea of the membership levels method, since each
fuzzy variable defined by a membership function degenerates into an interval with a lower
and an upper bound at each membership level, the output response of the structure with
fuzzy variables and uncertain-but-bounded variables will be bounded within an interval,
where the output response here is the so-called non-probabilistic reliability index. When the
membership level varies within the bound [0,1], the same procedure can be performed, and
then the membership function of the non-probabilistic reliability index can be estimated.

The paper is structured as follows. Section 2 introduces the non-probabilistic convex
set model and non-probabilistic reliability index. The membership levels method estimating
the fuzzy variables is briefly given in Section 3. The detailed discussion and calculation
for uncertainty propagation with fuzzy variables and uncertain-but-bounded variables are
presented in Section 4. Five examples are proposed to demonstrate the applicability of the
presented mixed model in Section 5. The conclusion is drawn in Section 6.

2. Non-Probabilistic Convex Set Model

Compared with the precise probability distribution, the bounds of the input variables
can be easily obtained for most engineering applications. The hyper-box model and the
multi-ellipsoid convex set model can be employed to describe these uncertain-but-bounded
variables. The uncertain-but-bounded variables are independent and reach the limits
simultaneously in the hyper-box model while the uncertainties are correlated with each
other in the multi-ellipsoid convex set model. However, it can be seen that the former is
the specific instance of the latter whereas the latter is the extension of the former. In this
section, the single ellipsoid convex set model is briefly discussed, and then it is further
extended to the general multi-ellipsoid convex set model. The mathematical definition of
the multi-ellipsoid convex model is described as follows, and more detailed information
can be found in [10–20].

2.1. Single Ellipsoid Convex Set Model

The hyper-box model (or interval convex set model) is only suitable for the case where
all the uncertain-but-bounded variables are uncorrelated and vary independently. However,
the uncertain-but-bounded variables are correlated with each other in many engineering
problems, and, the hyper-box model may not apply in such cases. The ellipsoid convex
set model, which can be described by the following expression according to the ellipsoid
convex set theory [12], is verified to be a more reasonable definition for such cases.

x ∈ E =
{

x| (x− xc)TW(x− xc) ≤ θ2
}

(1)
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where xc = (xc
1, · · · , xc

n), which is presumed to lie in the reliable domain in this paper, is the
nominal value vector of the uncertain-but-bounded variables; W ∈ Rn×n is a symmetric
positive definite matrix called the characteristic matrix of the ellipsoid convex set model,
which describes the orientation and aspect ratio of the principal axes of the ellipsoid model;
θ, which defines the size of the ellipsoid model (or the magnitude of the uncertain-but-
bounded variables variability) is a positive real number. In practical engineering problems,
these parameters can be obtained from the available data, such as tolerance specifications
provided by the producers. When only one uncertain-but-bounded variable is involved in
Equation (1), the corresponding ellipsoid convex set model can be expressed as [20]

x ∈ E =
{

x|(x− xc)TW(x− xc) ≤ θ2
}

(2)

Then, Equation (2) can be further simplified into the following form

x ∈ E =
{

x|xc − θ/
√

W ≤ x ≤ xc + θ/
√

W
}

(3)

This means that the hyper-box model with only one uncertain-but-bounded variable
can be viewed as the specific instance of the single ellipsoid convex set model. In other
words, the interval convex set with only one uncertain-but-bounded variable is a one-
dimensional single ellipsoid convex set model [20].

2.2. Multi-Ellipsoid Convex Set Model

In practical engineering applications, the considered uncertain-but-bounded variables
may arise from different sources such as inaccuracies in geometry, variability in material
properties, fluctuations in external loads and errors resulting from instrument measure-
ments. Therefore, it is more reasonable to divide all the uncertain-but-bounded variables
into several uncorrelated groups according to the uncertainty source and then the multi-
ellipsoid convex model can be established based on these uncorrelated groups, where
each group is defined by a sub-dimensional ellipsoid convex set model according to the
corresponding uncertainty source. For example, the variability in material properties can
be described by an ellipsoid convex set model and errors arising from the instrument mea-
surements by another. Suppose that the uncertain-but-bounded variables can be classified
into k uncorrelated groups, and the corresponding vector is defined by

xT =
{

xT
1 , · · · , xT

k

}
(4)

where xi ∈ Rni (i = 1, · · · , k) denotes the ith group of the uncertain-but-bounded variables,
and ni is the total number of uncertainties belonging to the ith group, which satisfies the
following relation ∑k

i=1 ni = n, where n represents the total number of the uncertain-but-
bounded variables.

The single ellipsoid convex set model in Equation (1) can be extended to the multi-
ellipsoid convex set model. For the multi-ellipsoid convex set model, each group of
uncertain-but-bounded variables can be defined by the following form with an individual
ellipsoid convex set model [18–20,39,40].

xi ∈ Ei =
{

xi|
(
xi − xc

i
)TWi

(
xi − xc

i
)
≤ θ2

i

}
(i = 1, · · · , k)

(5)

where Wi ∈ Rni×ni is the characteristic matrix of the ith ellipsoid convex set model and θi is
a positive real number. Wi and θi possess an identical meaning to W and θ in Equation (1).
When the number of the groups k is equal to 1, then the multi-ellipsoid convex set model
reduces to a single one.

Obviously, if each group consists of only one uncertain-but-bounded variable, similar
to Equations (2) and (3), it will reduce to an interval expressed as Equation (6), and then



Materials 2023, 16, 3367 5 of 23

the multi-ellipsoid convex set model will degenerate into a hyper-box model. This implies
that the hyper-box convex set model is a specific instance of the multi-ellipsoid convex set
model [20].

xi ∈ Ei =
{

xi|
(
xi − xc

i
)TWi

(
xi − xc

i
)
≤ θ2

i

}
xi ∈ Ei =

{
xi|xc

i − θi/
√

Wi ≤ xi ≤ xc
i + θi/

√
Wi
} (6)

A comparison of the three cases of the convex model with three uncertain-but-bounded
variables is given in Figure 1, where (a) denotes the hyper-box model with three intervals,
(b) represents a single ellipsoid model with three correlated variables and (c) is a multi-
ellipsoid model with two sub-dimensional ellipsoids: an interval and a single ellipsoid.
Since the single ellipsoid convex set model and hyper-box convex set model are the simpli-
fied versions of the multi-ellipsoid model, and thus the non-probabilistic reliability index
can first be explained according to the two simple models, and then be further extended to
the complex model in the next section.
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2.3. The Non-Probabilistic Reliability Index
2.3.1. Normalization of Uncertain-But-Bounded Variables

The multi-ellipsoid convex set model in Equation (5) can be transformed into the
normalized form expressed in Equation (9) by the standard transformation expressed in
Equations (7) and (8) [20].

QT
i WiQi = Λi, QT

i Qi = Ii (7)

qi = (1/θi)Λ
1/2
i QT

i (xi − xc
i )(i = 1, · · · , k) (8)

Ei =
{

qi|qT
i qi ≤ 1

}
(i = 1, · · · , k) (9)

where Qi is an orthogonal matrix consisting of the normalized eigenvectors of Wi, Λi
is a diagonal matrix comprising the eigenvalues of Wi and Ii is a unit matrix, qi is the
normalized or standard vector of the ith group uncertain-but-bounded vector xi. Figure 2
shows the comparison of the three models in the normalized q-space [18].

2.3.2. Non-Probabilistic Reliability Index
Single Ellipsoid Convex Set Model

When all the uncertain-but-bounded variables can be described by a single ellipsoid
convex set model, the normalized form of the single ellipsoid convex set model can be
defined by a hyper-sphere with unit radius according to Equations (7)–(9).

E =
{

q|qTq ≤ 1
}

(10)

where q = (q1, q2, · · · , qn) and n is the total number of the uncertain-but-bounded variables.
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Figure 2. Comparison of hyper-box model, single ellipsoid model and multi-ellipsoid model in
normalized space.

Figure 3 gives a single ellipsoid convex set with two uncertain-but-bounded variables
in the standard q-space [18]. The domains surrounded by the dashed-line circles are the
expanded convex set. The region encircled by the solid-line circle with unit radius, which
is centered at the coordinate origin, represents the convex set formed by all the possible
values of the two uncertain-but-bounded variables. According to the basic principle of non-
probabilistic reliability [10–20], when the circle enlarges proportionally in two directions,
all the possible values of the two uncertain-but-bounded variables will locate in the reliable
domain until the circle becomes tangential to the standard limit state curve. The maximum
allowable variability, which can be employed to measure the reliability of the systems
according to the concept of the non-probabilistic reliability index proposed first by Ben-
Hain and Elishakoff [10–15], can be determined by the shortest distance from the coordinate
origin to the standard limit state curve [18]:

η = min
q

{√
qTq

}
s.t. g(q) = 0

(11)

where q is the normalized or standard vector of the uncertain-but-bounded vector x, and
min{·} is the minimum operation, and g(q) = 0 is the normalized failure boundary.
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Multi-Ellipsoid Convex Set Model

When all the uncertain-but-bounded variables can be classified into k groups and each
group consists of only one uncertainty, the multi-ellipsoid convex set model in Equation (9)
reduces to a hyper-box model in the q-space, which can be written in the following form.

Ei =
{

qi|q2
i ≤ 1

}
(i = 1, · · · , k) (12)

where the normalized uncertain-but-bounded variables qi = (xi − xc
i )/∆xi.

Figure 4 gives three specific cases of the standard q-space for a structure with two
interval variables. Obviously, all the possible values of the two interval variables lie in the
domain of the solid-line box, which is centered as the coordinate origin and has a side-
length of 2, namely {−1 ≤ q1 ≤ 1,−1 ≤ q2 ≤ 1}. Similar to the procedure of enlarging the
convex set boundaries proportionally, the same conclusion can be drawn as follows. For
case (a), the maximum variation that the system can tolerate is the value of the vertical
coordinate of the critical point A, namely min

q|g(q)=0
(max(q1, q2)) = q2; For case (b), the

allowable maximum variability is min
q|g(q)=0

(max(q1, q2)) = q1; For case (c), the maximum

degree of variability that the structure allows is min
q|g(q)=0

(max(q1, q2)) = q1 = q2. Hence,

according to the non-probabilistic reliability theory [10–20], the non-probabilistic reliability
index for the case with two intervals can be expressed as [18]

η = min
q
{max(|q1|, |q2|)} = min

q

{
max

(∣∣∣√q2
1

∣∣∣, ∣∣∣√q2
2

∣∣∣)}
s.t. g(q) = 0

(13)

The result can be further extended to the hyper-box model with k interval variables
and the non-probabilistic reliability index is [18]

η = min
q

{
max

(∣∣∣√q2
1

∣∣∣, ∣∣∣√q2
2

∣∣∣, · · · ,
∣∣∣√q2

k

∣∣∣)}
= min

q

{
max

(∣∣∣√qT
1 q1

∣∣∣, ∣∣∣∣√qT
2 q2

∣∣∣∣, · · · ,
∣∣∣√qT

k qk

∣∣∣)}
s.t. g(q) = 0

(14)

Obviously, the non-probabilistic reliability index, which is employed to measure the
safety of the structure, is the infinity norm (L−∞ or maximum norm) of the vector.

Since the multi-ellipsoid convex set model is the extension of the hyper-box interval
convex set, and the form for the hyper-box model expressed as Equation (14) can be
extended to the non-probabilistic reliability index of the multi-ellipsoid model, which can
be defined by

η = min
q

{
max

(√
qT

1 q1, · · · ,
√

qT
k qk

)}
s.t. g(q) = 0

(15)
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3. The Membership Levels Method

The membership levels method is usually employed to calculate the fuzzy variables
in [24], as shown in Figure 5. Suppose the limit state function of a structure is expressed
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as M = F(Y), where Y = (Y1, Y2, · · · , Ym) is the fuzzy vector defined by the membership
functions. At each membership level α, the fuzzy variable Yi(i = 1, · · · , m) degenerates
into a lower and an upper bound (or interval variable) Yiα ∈ [Yiα, Yiα](i = 1, · · · , m).
The bounds of the output response M can be calculated by optimization or any other
technique. Once all the variables are defined as membership functions, the bounds of
the output response M at various a-cuts can be obtained, and then the approximation of
the membership functions of the outputs can be obtained. In other words, uncertainty
propagation from the fuzzy input Yi(i = 1, · · · , m) to the output response M can be
achieved by the membership levels method.
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4. Uncertainty Propagation with Uncertain-But-Bounded Variables and Fuzzy Variables
4.1. The Membership Function of the Non-Probabilistic Reliability Index

The non-probabilistic reliability index is employed to define the quantified measure of
the reliability of the structure with the uncertain-but-bounded variables [18–20]. The mem-
bership levels method is utilized to calculate the fuzzy variables [24], as shown in Figure 5.
However, for many engineering problems with incomplete available information, all the
uncertain variables may arise from many different sources such as internal parameters,
external loads, etc. Some of these uncertain variables may be uncertain-but-bounded vari-
ables, which can be described by the multi-ellipsoid convex set, and others may be fuzzy
variables, which can be defined by the membership function. It is necessary to investigate
uncertainty propagation within engineering problems with uncertain-but-bounded vari-
ables and fuzzy variables. The limit state function of a system with uncertain-but-bounded
variables and fuzzy variables is expressed as

M1 = G(x, Y) (16)

where xT =
{

xT
1 , · · · , xT

k
}

represent the k groups of uncertain-but-bounded variables de-
fined by the multi-ellipsoid convex set, and Y = [Y1, · · · , Ym] are the m fuzzy variables
described by the membership functions.

The k groups of uncertain-but-bounded variables xT =
{

xT
1 , · · · , xT

k
}

can be trans-
formed into the normalized ones qT =

{
qT

1 , · · · , qT
k
}

by Equations (7)–(9). At the mem-
bership level αi, the m fuzzy variables Y = [Y1, · · · , Ym] can degenerate into m intervals
yαi

=
[
y1αi , y2αi , · · · , ymαi

]
with lower bounds y

αi
=
[
y

1αi
, y

2αi
, · · · , y

nαi

]
and upper bounds

yαi
=
[
y1αi

, y2αi
, · · · , ynαi

]
by the membership levels method stated in Section 3. Then, the

original limit state function M1 = G(x, Y) defined in (16) is mapped into the standard one
g(q, yαi

).
In order to state the principal ideas conveniently, the q-space of a problem, which

consists of a single ellipsoid convex set with two uncertain-but-bounded variables and
a fuzzy variable, is given in Figure 6. In the ellipsoid convex set model introduced in
Section 2, the normalized limit state curve g(q) = 0 divides the q-space into two parts: the
reliable domain and the failure domain, which can be seen in Figures 3 and 4. However, as
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revealed by Figure 6, the normalized g(q, yαi
) = 0(yαi

∈
[
y

αi
, yαi

]
) consists of a cluster of

normalized limit state curves and each single limit state curve corresponds to a possible
realization of the intervals yαi

=
[
y

αi
, yαi

]
. In other words, all the possible values of the

uncertain-but-bounded variables and the degraded fuzzy variables that satisfy g(q, yαi
) = 0

form a banded geometry in the standard q-space. Hence, the q-space is partitioned into
three parts: the reliable domain, the critical domain and the failure domain, as shown in
Figure 6. Figure 7 gives the case consisting of a hyper-box model with two intervals and a
fuzzy variable, the basic idea of which is the same as Figure 6.
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Obviously, the shortest distance from the coordinate origin to the normalized limit
state curve varies from η

αi
and ηαi

as demonstrated in Figures 6 and 7. According to the
mathematical definition of the non-probabilistic reliability index described in Section 2, the
non-probabilistic reliability index ηαi for the problems g(q, yαi

) = 0(yαi
∈
[
y

αi
, yαi

]
) varies

within the lower and upper bound
[
η

αi
, ηαi

]
. For the membership level αi, uncertainty

propagation (or the lower and upper bound of the non-probabilistic reliability index) can
be accomplished based on the previous procedure. When the membership level αi varies
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within the bound αi ∈ [0, 1], the membership function of the non-probabilistic reliability
index can be estimated. The following section will give some approaches to estimating the
membership function of the non-probabilistic reliability index.

4.2. Estimate the Membership Function of the Non-Probabilistic Reliability Index

Based on the membership levels method, three techniques are introduced to calculate
the membership function of the non-probabilistic reliability index. Before all the procedures
are performed, the membership level αi is supposed to take a value of αi = i × 1

N (i =
0, 1, · · · , N), where N is the total number of partitions. In order to reduce the computational
cost, N takes a value of N = 5 in the numerical examples. The following three methods are
employed for the normalized limit state curve g(q, yαi

), where q are normalized uncertain-
but-bounded variables and yαi

are upper and lower bounds (degenerated fuzzy variables)
for y.

4.2.1. Double-Loop Optimization

Based on these properties of the model with fuzzy variables and uncertain-but-
bounded variables, the lower η

αi
and the upper ηαi

bounds of the non-probabilistic reliabil-
ity index can be calculated from Equations (17) and (18), as shown in Figure 8:

η
αi
= min

yαi

η(yαi
)

s.t. y
αi
≤ yαi

≤ yαi

(17)

ηαi
= max

yαi

η(yαi
)

s.t. y
αi
≤ yαi

≤ yαi

(18)

where αi = i× 1
N (i = 0, 1, · · · , N) is the value of the membership level, the non-probabilistic

reliability index corresponding to yαi
is given as the following form

η(yαi
) = min

q,yαi

{
max

(√
qT

1 q1, · · · ,
√

qT
k qk

)}
s.t. g(q, yαi

) = 0
(19)
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The symbols in Equation (19) are identical to the ones in Equation (15).

4.2.2. Single-Loop Optimization

Firstly, the minmax optimization problem expressed as Equation (19) can be trans-
formed into an equivalent minimization problem by introducing a variable δ [19].

η(yαi
) = min

q,yαi
,δ

δ

s.t. g(q, yαi
) = 0

qT
i qi ≤ δ2(i = 1, 2, · · · , k)

(20)

Then, with the combination of the three sub-optimization problems expressed in
Equations (17), (18) and (20), respectively, the lower bound η

αi
and the upper bound ηαi

can be equivalently transformed into the single-loop optimization problems expressed as
Equations (21) and (22).

η
αi
= min

q,δ,yαi

δ

s.t. g(q, yαi
) = 0

qT
i qi ≤ δ2(i = 1, 2, · · · , k)

y
αi
≤ yαi

≤ yαi

(21)

ηαi
= max

q,δ,yαi

δ

s.t. g(q, yαi
) = 0

qT
i qi ≤ δ2(i = 1, 2, · · · , k)

y
αi
≤ yαi

≤ yαi

(22)

where the notations in Equations (21) and (22) are in accordance with the ones in Equations (17)
and (18), respectively. The flowchart of computing η

αi
and ηαi

is shown in Figure 9.
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4.2.3. The Outer Optimization by Random Sampling Method

The only constraints of the outer loop in Equations (17) and (18) are the bounds
expressed as y

αi
≤ yαi

≤ yαi
. As revealed in Section 4.1 and in Figures 6 and 7, each

possible realization of the intervals yj
αi =

[
y

αi
, yαi

]
is in accordance with a single nor-
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malized limit state curve, where the solid lines (a) and (b) in Figures 6 and 7 represent
the normalized limit state curve corresponding to η

αi
and ηαi

, respectively. In order to
estimate the non-probabilistic reliability index η

αi
and ηαi

, we can first simulate M real-

izations yj
αi (j = 1, 2, · · · , M) within the intervals

[
y

αi
, yαi

]
uniformly, and then estimate

the non-probabilistic reliability index η(yj
αi ) of the normalized limit state curve corre-

sponding to the jth realization yj
αi by Equation (19) or (20). Finally, the minimum and

maximum of the sequences η(yj
αi )(j = 1, 2, · · · , M) can be employed to approximate the

lower and upper non-probabilistic reliability index η
αi

and ηαi
, which can be expressed as

Equations (23) and (24). The corresponding flowchart of estimating η
αi

and ηαi
is given in

Figure 10.
η

αi
= min

(
η(y1

αi
), η(y2

αi
), · · · , η(yM

αi
)
)

(23)

ηαi
= max

(
η(y1

αi
), η(y2

αi
), · · · , η(yM

αi
)
)

(24)
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Figure 10. Estimate the η
αi

and ηαi
by the random sampling method.

Three methods have been given for estimating the membership function of the non-
probabilistic reliability index in Sections 4.2.1–4.2.3. Here, we will discuss the computational
cost relevant to the three methods.

For the double-loop optimization method, N = 5 membership levels have been
employed, i.e., αi = i × 1

N (i = 0, · · · , N − 1). Thus, the total computational cost is
N−1
∑

i=0

[
N
(

η
αi

)
+ N

(
ηαi

)]
, in which N

(
η

αi

)
is the number of optimization iterations for
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solving η
αi

in Equation (17) and N
(

ηαi

)
is the number of optimization iterations for solv-

ing ηαi
in Equation (18). During every optimization iteration, we need to solve η(yαi

) that
is a minimum-maximum nesting optimization in Equation (19), which is a time-consuming
process.

For the single-loop optimization method, N = 5 membership levels have been
employed, i.e., αi = i × 1

N (i = 0, · · · , N − 1). Thus, the total computational cost is
N−1
∑

i=0

[
N′
(

η
αi

)
+ N′

(
ηαi

)]
, in which N′

(
η

αi

)
is the number of optimization iterations for

solving η
αi

in Equation (21), and N′
(

ηαi

)
is the number of optimization iterations for

solving ηαi
in Equation (22). Obviously, there is no nesting optimization when solving η

αi
and ηαi

, as shown in Equations (21) and (22), and thus the computational cost relevant to
each optimation iteration is low.

For the random sampling method, N = 5 membership levels have been employed, i.e.,
αi = i× 1

N (i = 0, · · · , N− 1). In order to solve η
αi

and ηαi
, we first generate M realizations

yj
αi (j = 1, 2, · · · , M) within the intervals yj

αi (j = 1, 2, · · · , M) uniformly, and then we can

estimate the non-probabilistic reliability index η(yj
αi ) of the normalized limit state curve

corresponding to the jth realization yj
αi (j = 1, 2, · · · , M). Thus, the total computational

cost is
N−1
∑

i=0

M
∑

j=1
N′′
[
η(yj

αi )
]
, in which N′′

[
η(yj

αi )
]

is the computational cost for estimating

η(yαi
) given in Equation (19) or (20). In general, the number of realizations (i.e., yj

αi (j =
1, 2, · · · , M)) is not small, and this paper M takes a value of 1000, i.e., M = 1000.

It is obvious that the double-loop optimization method is the most complex procedure,
the random sampling method is the second most complex, and the single-loop optimization
method is the least complex. The computational cost relevant to the single-loop opti-
mization method can be afforded as the number of uncertainties increases, as shown in
Section 5.

5. Numerical Examples

It is prohibitive to approximate the membership function of the non-probabilistic
reliability index accurately due to the large computational cost. In order to reduce the
computational consumption, the lower and upper bounds of the non-probabilistic reliability
index corresponding to six membership levels are estimated first, and then the membership
function of the non-probabilistic reliability index can be obtained by linking these six values,
namely αi = i× 1

N (i = 0, 1, · · · , 5). The total number of realizations is 1000 for the random
sampling method. The symbol NOFC represents the number of function calculations.

5.1. A Simple Linear Performance Function

Give a simple performance function g(x) = x1 + x2 − x3 − 2, where x1 and x2 are
two uncertain-but-bounded variables defined by the following single ellipsoid convex set
x2

1 + x2
2 ≤ 1; x3 is a fuzzy variable with the following membership function:

µx3(x3) =

{ 1
2 x3 − 1

2 1 ≤ x3 ≤ 3
− 1

2 x3 +
5
2 3 ≤ x3 ≤ 5

(25)

where µx3(x3) is the membership level. Tables 1 and 2 summarize the estimation of the
membership function of the non-probabilistic reliability index by single-loop optimization
and double-loop optimization, respectively. Figure 11 shows a comparison of the results
achieved using the two methods.
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Table 1. The estimated results by using single-loop optimization.

0.0 0.2 0.4 0.6 0.8 1.0

NOFC 8 + 20 8 + 16 8 + 12 8 + 12 8 + 12 8
η 2.1213 2.4042 2.6870 2.9698 3.2527 3.5355
η 4.9497 4.6669 4.3841 4.1012 3.8184 3.5355

Table 2. The estimated results by using double-loop optimization.

0.0 0.2 0.4 0.6 0.8 1.0

NOFC 36 + 36 24 + 36 24 + 36 24 + 36 24 + 36 24
η 2.1213 2.4042 2.6870 2.9698 3.2527 3.5355
η 4.9497 4.6669 4.3841 4.1012 3.8184 3.5355
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reliability index. (a) The membership function of the non-probabilistic reliability index by single-loop
optimization. (b) The membership function of the non-probabilistic reliability index by double-loop
optimization.

This is a simple linear problem, and single-loop optimization and double-loop op-
timization have obtained an accurate estimator of the membership function of the non-
probabilistic reliability index. The results show that the single-loop optimization method
and double-loop optimization method can give good results for the linear performance
function.

5.2. Fourth-Order Polynomial Performance Function

Give a nonlinear performance function g(x) = 1
40 x4

1 + 2x2
2 + x3 + 3, where x1 is a fuzzy

variable described by the following membership function

µx1(x1) =

{ 1
2 x1 − 1

2 1 ≤ x1 ≤ 3
− 1

2 x1 +
5
2 3 ≤ x1 ≤ 5

(26)

and x2 and x3 are two uncertain-but-bounded variables defined by the following single
ellipsoid convex set x2

2 + x2
3 ≤ 1, Tables 3–5 give the summarization of the estimation

of the membership function of the non-probabilistic reliability index by the single-loop
optimization, double-loop optimization and random sampling method, respectively. The
comparison of the estimated results is shown in Figure 12.
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Table 3. The estimated results by using the single-loop optimization.

0.0 0.2 0.4 0.6 0.8 1.0

NOFC 53 + 405 57 + 545 112 + 518 151 + 362 115 + 398 135
η 3.0250 3.0960 3.2624 3.5856 4.1424 5.0250
η 32.9722 18.2668 13.0190 9.5960 6.5653 5.0250

Table 4. The estimated results by using the double-loop optimization.

0.0 0.2 0.4 0.6 0.8 1.0

NOFC 216 + 611 156 + 372 162 + 734 196 + 386 238 + 422 135
η 3.0250 3.0960 3.2624 3.5856 4.1424 5.0250
η 18.6250 14.1936 10.7792 8.2128 6.3408 5.0250

Table 5. The estimated results by random sampling.

0.0 0.2 0.4 0.6 0.8 1.0

NOFC 66,472 65,471 65,481 65,066 65,616 71
η 3.0254 3.0969 3.2638 3.5873 4.1438 5.0250
η 18.5276 14.1329 10.7446 8.1957 6.3347 5.0250
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For this example, it can be seen that the results by single-loop optimization are the
best; the ones by the random sampling method and double-loop optimization are almost
the same. The computational cost of the single-loop optimization is the least while that of
the random sampling method is very large.

5.3. A High Nonlinear Performance Function

Suppose a high nonlinear performance function g(x) = 1.016
√

x1x2
3

x2x4
4
− 400, where x1

and x2 are two fuzzy variables with the membership functions depicted as follows

µx1(x1) =

{ x1
0.1×107 − 14 1.4× 107 ≤ x1 ≤ 1.5× 107

−x1
0.2×107 + 8.5 1.5× 107 ≤ x1 ≤ 1.7× 107 (27)

µx2(x2) =

{ x2
0.2×10−4 − 11.5 2.3× 10−4 ≤ x2 ≤ 2.5× 10−4

−x2
0.1×10−4 + 26 2.5× 10−4 ≤ x2 ≤ 2.6× 10−4 (28)



Materials 2023, 16, 3367 17 of 23

and x3 and x4 are two correlated uncertain-but-bounded variables with the single ellipsoid
convex set expressed as (

x3 − 0.98
4.9× 10−2

)2
+

(
x4 − 20

1.0

)2
≤ 1 (29)

Tables 6–8 give the approximation of the membership function of the non-probabilistic
reliability index by the single-loop optimization, double-loop optimization and the random
sampling method, respectively. Figure 13 shows a comparison of the estimated results.
As can be seen, the random sampling method has achieved the best estimated results but
with expensive computational costs, while the single-loop optimization method has given
suboptimal results with cheap computation costs. In addition, the single-loop optimization
method and random sampling method have achieved good estimated results for the lower
bound of the membership function of the non-probabilistic reliability index.

Table 6. Summary of estimated results using single-loop optimization.

0 0.2 0.4 0.6 0.8 1.0

NOFC 62 + 85 70 + 91 69 + 84 83 + 95 454 + 121 90
η 3.4356 3.5418 3.6475 3.7527 3.8609 3.9618
η 4.5565 4.3511 4.2831 4.2012 4.0819 3.9618

Table 7. Summary of estimated results using double-loop optimization.

0 0.2 0.4 0.6 0.8 1.0

NOFC 150 + 150 150 + 150 150 + 150 150 + 150 75 + 150 75
η 3.7706 3.8082 3.8461 3.8844 3.9618 3.9618
η 4.3695 4.2851 4.2021 4.1206 4.0405 3.9618

Table 8. Summary of estimated results using random sampling.

0 0.2 0.4 0.6 0.8 1.0

NOFC 75,892 77,724 79,897 81,096 82,208 83
η 3.4419 3.5468 3.6512 3.7552 3.8587 3.9618
η 4.9787 4.7778 4.5758 4.3725 4.1679 3.9618
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5.4. A Cantilever Beam

A cantilever beam subjected to a concentrated force P is shown in Figure 14. The beam
has a length of L, a width of b and a height of h. Young’s modulus of the material is E.
The structure becomes unsafe when the tip displacement is greater than 0.15 in. Thus, the
limit-state function is defined as

G = 0.15− 4PL3

Ebh3 (30)
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Figure 14. A cantilever beam.

In this example, E(psi.), P(lb.) and L(in.) are described by fuzzy variables and the
membership functions are expressed as the following three relationships. In addition, b and
h are considered to be uncertain-but-bounded variables, and their uncertainty information
is summarized in Table 9.

µE(E) =
{

(E− 0.5× 107)/5× 106 0.5× 107 ≤ E ≤ 1.0× 107

(E− 1.1× 107)/(−1× 106) 1.0× 107 ≤ E ≤ 1.1× 107 ; (31)

µP(P) =
{

(P− 50)/50 50 ≤ P ≤ 100
(P− 110)/(−10) 100 ≤ P ≤ 110

; (32)

µL(L) =
{

(L− 29)/1 29 ≤ L ≤ 30
(L− 31)/(−1) 30 ≤ L ≤ 31

; (33)

Table 9. Information of uncertain-but-bounded variables for a cantilever beam.

Uncertain Variable Nominal Value Convex Model Description

b(in.) 0.8359 [
δb δh

][1 0
0 1

][
δb
δh

]
≤ 0.12

h(in.) 2.5093

Tables 10–12 summarize the results of the membership function by the three methods.
A comparison of the estimated results of the non-probabilistic reliability index is shown
in Figure 15. As shown in Tables 10–12 and Figure 15, the random sampling method has
achieved the best estimated result for the membership function of the non-probabilistic
reliability index but with heavy computational costs, while the single-loop optimization
method has obtained suboptimal results but with low computation costs. In addition, all
three methods have achieved good estimated results for the upper bound of the membership
function of the non-probabilistic reliability index.

Table 10. Summary of results using single-loop optimization.

0 0.2 0.4 0.6 0.8 1.0

NOFC 185 + 224 184 + 220 175 + 215 174 + 205 182 + 204 35
η 0.9558 1.001 1.2234 1.3521 1.4675 1.7622
η 3.6652 3.2254 2.8415 2.4511 2.1012 1.7622
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Table 11. Summary of results using double-loop optimization.

0 0.2 0.4 0.6 0.8 1.0

NOFC 484 + 7067 484 + 2944 484 + 2302 502 + 1693 372 + 968 22
η 1.2338 1.3394 1.4451 1.5510 1.6570 1.7632
η 3.6444 3.2065 2.8069 2.4370 2.0906 1.7632

Table 12. Summary of results using random sampling.

0 0.2 0.4 0.6 0.8 1.0

NOFC 61,820 57,345 57,067 56,263 54,650 60
η 0.00777 0.03082 0.56639 1.01325 1.4083 1.7624
η 3.72747 3.28465 2.87335 2.48583 2.1168 1.7624
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5.5. A Performance Function with 12 Variables

The function is given by

g(x) = 2x1x2x3x4 − x5x6x7x8 + x9x10x11x12 (34)

where xi(i = 1, · · · , 4) and xi(i = 5, · · · , 8) are uncertain-but-bounded variables defined
by a multi-ellipsoid convex set with two single ellipsoid convex set models, respectively.

4

∑
i=1

(
xi − 8

1

)2

≤ 1;
8

∑
i=5

(
xi − 8

1

)2

≤ 1 (35)

and xi(i = 9, · · · , 12) are fuzzy variables expressed as

µxi (xi) =

{ 1
2 xi − 3 6 ≤ xi ≤ 8
− 1

2 xi + 5 8 ≤ xi ≤ 10
, (i = 9, · · · , 12) (36)

Tables 13–15 give the corresponding estimated results of the membership functions.
The estimated membership functions of the non-probabilistic reliability index are given in
Figure 16. The results show that the three methods have achieved good estimated results,
and the computational consumption cost of the single-loop optimization is the least. The
random sampling method is not practical for many engineering applications owing to the
prohibitive computational cost. The results show that three methods can achieve good
results for the nonlinear performance function with multiplication operation, addition
operation and subtraction operation.
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Table 13. Summary of results using single-loop optimization.

0 0.2 0.4 0.6 0.8 1.0

NOFC 164 + 254 134 + 239 149 + 254 224 + 224 149 + 224 149
η 1.8367 1.9713 2.1341 2.3289 2.5594 2.8297
η 4.8907 4.3767 3.9147 3.5041 3.1435 2.8297

Table 14. Summary of results using double-loop optimization.

0 0.2 0.4 0.6 0.8 1.0

NOFC 1745 + 1855 1690 + 1910 1745 + 1800 1690 + 1635 1745 + 1745 109
η 1.8367 1.9713 2.1341 2.3289 2.5594 2.8297
η 4.8907 4.3767 3.9147 3.5042 3.1435 2.8297

Table 15. Summary of results using random sampling.

0 0.2 0.4 0.6 0.8 1.0

NOFC 106,468 105,187 101,965 101,722 100,016 131
η 1.8378 1.9724 2.1352 2.3297 2.5599 2.8297
η 4.8802 4.3691 3.9096 3.5012 3.1421 2.8297

Materials 2023, 16, x FOR PEER REVIEW 22 of 25 
 

 

Table 14. Summary of results using double-loop optimization. 

 0 0.2 0.4 0.6 0.8 1.0 

NOFC 1745 + 1855 1690 + 1910 1745 + 1800 1690 + 1635 1745 + 1745 109 
  1.8367 1.9713 2.1341 2.3289 2.5594 2.8297 
  4.8907 4.3767 3.9147 3.5042 3.1435 2.8297 

Table 15. Summary of results using random sampling. 

 0 0.2 0.4 0.6 0.8 1.0 

NOFC 106,468 105,187 101,965 101,722 100,016 131 
  1.8378 1.9724 2.1352 2.3297 2.5599 2.8297 
  4.8802 4.3691 3.9096 3.5012 3.1421 2.8297 

 

 
(a) 

 
(b) 

Figure 16. Cont.



Materials 2023, 16, 3367 21 of 23Materials 2023, 16, x FOR PEER REVIEW 23 of 25 
 

 

 
(c) 

Figure 16. Comparison of estimated results by three methods; (a) The estimated membership func-

tion by using single-loop optimization; (b) The estimated membership function by using double-

loop optimization; (c) The estimated membership function by using random sampling optimiza-

tion. 

6. Conclusions 

This paper investigates the uncertainty propagation for systems with fuzzy variables 

and uncertain-but-bounded variables, and the membership function of the non-probabil-

istic reliability index is employed to define the uncertainty propagation. The proposed 

methods can be applied for uncertain analysis of any systems (such as structures and ma-

chines) that are subjected to uncertain factors with limited samples and uncertainty rele-

vant to human knowledge and expert experience. Three algorithms, namely, single-loop 

optimization, double-loop optimization and random sampling are proposed to solve the 

membership function of the non-probabilistic reliability index. Five examples with linear 

and nonlinear problems are employed to demonstrate the applicability of the proposed 

methods. The results show that single-loop optimization is more efficient and stable than 

double-loop optimization. Although the results using the random sampling method are 

better than those using single-loop optimization for most cases, the former approach is 

not suitable for many engineering applications due to its huge computation cost. In addi-

tion, the results also show that the single loop method fits to the linear performance func-

tions and nonlinear performance functions with multiplication operation, addition oper-

ation and subtraction operation. Meanwhile, the computational cost relevant to the single-

loop optimization method can be afforded as the number of uncertainties increases. The 

main contribution of the proposed method is to propose a model to deal with the uncer-

tainty analysis for systems with fuzzy variables and uncertain-but-bounded variables and 

to give three methods for solving this issue. Future research can focus on the more adapt-

able approaches that can find the global optimal solutions for linear performance func-

tions and nonlinear performance functions. 

Author Contributions: Algorithm analysis, Y.X. and Z.T.; manuscript writing, Y.X., L.D. and P.L.; 

methods research, Y.X. and Z.T. All authors have read and agreed to the published version of the 

manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China under 

Grant 51875087, by the National Defense Technology Industry Nuclear Power Technology Innova-

tion Center Fund under Grant HDLCXZX-2021-HD-029, and by the Guangdong Basic and Applied 

Basic Research Foundation under Grant 2019A1515011708. And The APC was funded by National 

Natural Science Foundation of China. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Figure 16. Comparison of estimated results by three methods; (a) The estimated membership function
by using single-loop optimization; (b) The estimated membership function by using double-loop
optimization; (c) The estimated membership function by using random sampling optimization.

6. Conclusions

This paper investigates the uncertainty propagation for systems with fuzzy variables
and uncertain-but-bounded variables, and the membership function of the non-probabilistic
reliability index is employed to define the uncertainty propagation. The proposed methods
can be applied for uncertain analysis of any systems (such as structures and machines) that
are subjected to uncertain factors with limited samples and uncertainty relevant to human
knowledge and expert experience. Three algorithms, namely, single-loop optimization,
double-loop optimization and random sampling are proposed to solve the membership
function of the non-probabilistic reliability index. Five examples with linear and nonlinear
problems are employed to demonstrate the applicability of the proposed methods. The
results show that single-loop optimization is more efficient and stable than double-loop
optimization. Although the results using the random sampling method are better than
those using single-loop optimization for most cases, the former approach is not suitable
for many engineering applications due to its huge computation cost. In addition, the
results also show that the single loop method fits to the linear performance functions
and nonlinear performance functions with multiplication operation, addition operation
and subtraction operation. Meanwhile, the computational cost relevant to the single-loop
optimization method can be afforded as the number of uncertainties increases. The main
contribution of the proposed method is to propose a model to deal with the uncertainty
analysis for systems with fuzzy variables and uncertain-but-bounded variables and to give
three methods for solving this issue. Future research can focus on the more adaptable
approaches that can find the global optimal solutions for linear performance functions and
nonlinear performance functions.

Author Contributions: Algorithm analysis, Y.X. and Z.T.; manuscript writing, Y.X., L.D. and P.L.;
methods research, Y.X. and Z.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 51875087, by the National Defense Technology Industry Nuclear Power Technology Innovation
Center Fund under Grant HDLCXZX-2021-HD-029, and by the Guangdong Basic and Applied Basic
Research Foundation under Grant 2019A1515011708. And The APC was funded by National Natural
Science Foundation of China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Materials 2023, 16, 3367 22 of 23

Acknowledgments: The authors express their gratitude to the Chinese scientific research manage-
ment department, to the University of Electronic Science and Technology of China, to the Nanjing
Research Institute of Simulation Technology and to the Tianfu Innovation Energy Establishment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Melchers, R.E. Importance sampling in structural system. Struct. Safe 1989, 6, 3–10. [CrossRef]
2. Rajashekhar, M.R.; Ellingwood, B.R. A new look at the response surface approach for reliability analysis. Struct. Safe 1993, 12,

205–220. [CrossRef]
3. Hasofer, A.M.; Lind, N.C. Exact and invariant second-moment code format. ASCE J. Eng. Mech. Div. 1974, 100, 111–121.

[CrossRef]
4. Hohenbichler, M.; Rackwitz, R. Improvement of second-order reliability estimates by importance sampling. J. Eng. Mech. 1988,

114, 2195–2199. [CrossRef]
5. Au, S.K.; Beck, J.L. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Eng. Mech. 2001,

16, 263–277. [CrossRef]
6. Jinsuo, N.; Ellingwood, B.R. Directional methods for structural reliability analysis. Struct. Safe 2000, 22, 233–249.
7. Schuëller, G.I.; Pradlwarter, H.J.; Koutsourcelakis, P.S. A critical appraisal of reliability estimation procedures for high dimensions.

Probabilistic Eng. Mech. 2004, 19, 463–473. [CrossRef]
8. Adhikari, S. Reliability analysis using parabolic failure surface approximation. J. Eng. Mech. 2004, 130, 1407–1427. [CrossRef]
9. Soize, C. Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J. Acoust. Soc. Am. 2001,

109, 1979–1996. [CrossRef]
10. Elishakoff, I. Essay on uncertainties in elastic and viscoelastic structures: From A M. Freudenthal’s criticisms to modern convex

modeling. Comput. Struct. 1995, 56, 871–895. [CrossRef]
11. Elishakoff, I. Are probabilistic and anti-optimization approaches compatible? In Whys and Hows in Uncertainty Modelling:

Probability, Fuzziness and Antioptimization; Springer Wien: New York, NY, USA, 1999.
12. Ben-Haim, Y.; Elishakoff, I. Convex Models of Uncertainty in Applied Mechanics; Elsevier Press: Amsterdam, The Netherlands, 1990.
13. Ben-Haim, Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Struct. Safe 1995,

17, 91–109. [CrossRef]
14. Ben-Haim, Y. Robust Reliability in the Mechanics Sciences; Springer: Berlin, Germany, 1996.
15. Ben-Haim, Y. Robust reliability of structures. Adv. Appl. Mech. 1997, 33, 1–41.
16. Moler, B.; Beer, M. Engineering computation under uncertainty—Capabilities of non-traditional models. Comput. Struct. 2007, 86,

1024–1041. [CrossRef]
17. Moens, D.; Vandepitte, D. Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis.

Arch. Comput. Methods Eng. 2006, 13, 389–464. [CrossRef]
18. Luo, Y.; Kang, Z.; Luo, Z.; Li, A. Continuum topology optimization with non-probabilistic reliability constraints based on

multi-ellipsoid convex model. Struct. Multidiscip. Optim. 2008, 39, 297–310. [CrossRef]
19. Kang, Z.; Luo, Y.; Li, A. On non-probabilistic reliability-based design optimization of structures with uncertain-but-bounded

parameters. Struct. Safe 2011, 33, 196–205.
20. Kang, Z.; Luo, Y. Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex

models. Comput. Methods Appl. Mech. Eng. 2009, 198, 3228–3238. [CrossRef]
21. Adhikari, S.; Chowdhury, R.; Friswell, M.I. High dimensional model representation method for fuzzy structural dynamics. J.

Sound Vib. 2011, 330, 1516–1529. [CrossRef]
22. Moens, D.; Vandepitte, D. The fuzzy finite element method for frequency response function analysis of uncertain structures.

AIAA J. 2002, 40, 126–136. [CrossRef]
23. Buckley, J.J. Fuzzy Probabilities: New Approach and Applications; Springer Press: Berlin, Germany, 2005.
24. Radecki, T. Level-fuzzy sets. J. Cybernet. 1977, 7, 189–198. [CrossRef]
25. Moller, B.; Graf, W.; Beer, M. Safety assessment of structures in view of fuzzy randomness. Comput. Struct. 2003, 81, 1567–1582.

[CrossRef]
26. Moler, B.; Beer, M. Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics; Springer Press: Berlin, Germany,

2004.
27. Wang, L.; Xiong, C.; Wang, X.; Xu, M.; Li, Y. A dimension-wise method and its improvement for multidisciplinary interval

uncertainty analysis. Appl. Math. Model. 2018, 59, 680–695. [CrossRef]
28. Changcong, Z.; Qi, C.; Chunping, Z.; Zhao, H.; Shi, Z. Fault tree analysis of an aircraft flap system based on a non-probability

model. J. Tsinghua Univ. (Sci. Technol.) 2021, 61, 636–642.
29. Qiu, Z.; Li, X. A new model for the eigenvalue buckling analysis with unknown-but-bounded parameters. Aerosp. Sci. Technol.

2021, 113, 106634. [CrossRef]
30. Ouyang, H.; Liu, J.; Li, Z.; Han, X. A novel dynamic model updating method for composite laminate structures considering

non-probabilistic uncertainties and correlations. Compos. Struct. 2022, 287, 115359. [CrossRef]

https://doi.org/10.1016/0167-4730(89)90003-9
https://doi.org/10.1016/0167-4730(93)90003-J
https://doi.org/10.1061/JMCEA3.0001848
https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2195)
https://doi.org/10.1016/S0266-8920(01)00019-4
https://doi.org/10.1016/j.probengmech.2004.05.004
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:12(1407)
https://doi.org/10.1121/1.1360716
https://doi.org/10.1016/0045-7949(94)00499-S
https://doi.org/10.1016/0167-4730(95)00004-N
https://doi.org/10.1016/j.compstruc.2007.05.041
https://doi.org/10.1007/BF02736398
https://doi.org/10.1007/s00158-008-0329-1
https://doi.org/10.1016/j.cma.2009.06.001
https://doi.org/10.1016/j.jsv.2010.10.010
https://doi.org/10.2514/2.1621
https://doi.org/10.1080/01969727708927558
https://doi.org/10.1016/S0045-7949(03)00147-0
https://doi.org/10.1016/j.apm.2018.02.022
https://doi.org/10.1016/j.ast.2021.106634
https://doi.org/10.1016/j.compstruct.2022.115359


Materials 2023, 16, 3367 23 of 23

31. Xu, M.; Du, J.; Wang, C.; Li, Y.; Wang, L.; Chen, J. A dual-layer dimension-wise fuzzy finite element method for structural analysis
with epistemic uncertainties. Fuzzy Sets Syst. 2019, 367, 68–81. [CrossRef]

32. Patle, B.K.; Hirwani, C.K.; Singh, R.P.; Panda, S.K. Eigenfrequency and deflection analysis of layered structure using uncertain
elastic properties–a fuzzy finite element approach. Int. J. Approx. Reason. 2018, 98, 163–176. [CrossRef]

33. Singh, V.K.; Panda, S.K. Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin-Walled
Struct. 2014, 85, 341–349. [CrossRef]

34. Balu, A.S.; Rao, B.N. High dimensional model representation based formulations for fuzzy finite element analysis of structures.
Finite Elem. Anal. Des. 2012, 50, 217–230. [CrossRef]

35. Adduri, P.R.; Penmetsa, R.C. Confidence bounds on component reliability in the presence of mixed uncertain variables. Int. J.
Mech. Sci. 2008, 50, 481–489. [CrossRef]

36. Du, L.; Choi, K.K. An inverse analysis method for design optimization with both statistical and fuzzy uncertainties. Struct.
Multidiscip. Optim. 2008, 37, 107–119. [CrossRef]

37. Mourelatos, Z.P.; Zhou, J. Reliability estimation and design with insufficient data based on possibility theory. AIAA J. 2005, 43,
1696–1705. [CrossRef]

38. Adduri, P.R.; Penmetsa, R.C. System reliability analysis for mixed uncertain variables. Struct. Safe 2009, 31, 375–382. [CrossRef]
39. Luo, Y.; Kang, Z.; Li, A. Structural reliability assessment based on probability and convex set mixed model. Comput. Struct. 2009,

87, 1408–1415. [CrossRef]
40. Kang, Z.; Luo, Y. Reliability-based structural optimization with probability and convex set hybrid models. Struct. Multidiscip.

Optim. 2010, 42, 89–102. [CrossRef]
41. Elishakoff, I.; Colombi, P. Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on

acoustic excitation parameters. Comput. Methods Appl. Mech. Eng. 1993, 104, 187–209. [CrossRef]
42. Berleant, D.J.; Ferson, S.; Kreinovich, V.; Lodwich, W.A. Combining interval and probabilistic uncertainty: Foundations,

algorithms, challenges-an overview. In Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their
Applications, Pittsburgh, PA, USA, 20–23 July 2005.

43. Kreinovich, V.; Xiang, G.; Starks, S.A.; Longpre, L.; Ceberio, M.; Araiza, R.; Beck, J.; Kandathi, R.; Nayak, A.; Torres, R.; et al.
Towards combining probabilistic and interval uncertainty in engineering calculations: Algorithms for computing statistics under
interval uncertainty, and their computational complexity. Reliab. Comput. 2006, 12, 471–501. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.fss.2018.08.010
https://doi.org/10.1016/j.ijar.2018.04.013
https://doi.org/10.1016/j.tws.2014.09.003
https://doi.org/10.1016/j.finel.2011.09.012
https://doi.org/10.1016/j.ijmecsci.2007.09.015
https://doi.org/10.1007/s00158-007-0225-0
https://doi.org/10.2514/1.12044
https://doi.org/10.1016/j.strusafe.2009.02.001
https://doi.org/10.1016/j.compstruc.2009.06.001
https://doi.org/10.1007/s00158-009-0461-6
https://doi.org/10.1016/0045-7825(93)90197-6
https://doi.org/10.1007/s11155-006-9015-4

	Introduction 
	Non-Probabilistic Convex Set Model 
	Single Ellipsoid Convex Set Model 
	Multi-Ellipsoid Convex Set Model 
	The Non-Probabilistic Reliability Index 
	Normalization of Uncertain-But-Bounded Variables 
	Non-Probabilistic Reliability Index 


	The Membership Levels Method 
	Uncertainty Propagation with Uncertain-But-Bounded Variables and Fuzzy Variables 
	The Membership Function of the Non-Probabilistic Reliability Index 
	Estimate the Membership Function of the Non-Probabilistic Reliability Index 
	Double-Loop Optimization 
	Single-Loop Optimization 
	The Outer Optimization by Random Sampling Method 


	Numerical Examples 
	A Simple Linear Performance Function 
	Fourth-Order Polynomial Performance Function 
	A High Nonlinear Performance Function 
	A Cantilever Beam 
	A Performance Function with 12 Variables 

	Conclusions 
	References

