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Abstract: The present study aimed to investigate the influence mechanism of carboxymethyl cellulose
(CMC) on the flotation of fine chlorite. To this end, a series of flotation tests, sedimentation tests,
and microscope analyses were conducted. Flotation tests revealed an inverse relationship between
particle size and the recovery of chlorite, indicating that finer particles exhibited higher recovery rates.
Moreover, it was observed that the recovery of fine chlorite was significantly associated with the
water recovery (proportion of water entering the floated product to the weight of water in the initial
flotation suspension) and a variety of frother types. Based on these findings, it can be inferred that
froth entrainment may constitute a crucial component of the recovery mechanism underlying fine
chlorite. Thus, reducing froth entrainment (the phenomenon of hydrophilic minerals entering floated
products through foam water) is the key to depress chlorite flotation. Flotation tests indicate that fine
chlorite recovered into froth products can be depressed effectively by CMC with a high molecular
weight. The results of sedimentation tests and microscope analyses in the presence of CMC prove
that CMC with a high molecular weight generates flocculation on fine chlorite particles while that
with a low molecular weight does not. It is suggested that the depression of chlorite flotation may be
attributed to the reduction in the entrainment resulting from the flocculation induced by CMC.

Keywords: chlorite; carboxymethyl cellulose; entrainment; flocculation

1. Introduction

As a prevalent magnesium silicate gangue mineral, chlorite is frequently associated
with sulfides, such as copper-nickel sulfide [1,2]. Due to its low hardness, chlorite is suscep-
tible to grinding, leading to the production of chlorite slimes which can negatively impact
sulfide ore flotation via a phenomenon known as “slime coating” [3]. In addition, chlorite’s
inherent floatability can result in it reporting to the concentrate during flotation, thereby re-
ducing its grade and causing downstream processing issues, including heightened smelting
costs [4,5].

Based on the above, the deleterious effect of magnesium silicate gangue minerals
on the flotation of sulfide ores is mainly attributed to the “slime coating” of magnesium
silicate gangue minerals on sulfide surfaces and the import of magnesium silicate gangue
minerals into the concentrate. Numerous additives have been explored to mitigate the
adverse impact of magnesium silicate gangue minerals. Sodium hexametaphosphate has
been found to be effective in inhibiting magnesium silicate gangue minerals; however, its
excessive use can generate phosphorus wastewater and result in environmental concerns [6].
In addition, oxalic acid has been utilized to alleviate the adverse effect of magnesium silicate
gangue minerals on sulfide flotation [7]. Unfortunately, oxalic acid’s use is limited by its
toxicity and potential health hazards upon ingestion. Thus, it is urgent to develop an
ecological and efficient depressant for the flotation separation of sulfide from magnesium
silicate gangue minerals.
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It has been reported that the primary recovery mechanism of fine magnesium silicate
gangue mineral particles (i.e., those with a diameter less than 20 µm), including chlorite,
is primarily attributed to the entrainment facilitated by water recovery. In addition, the
entrainment of minerals may be correlated with particle size [8]. However, most studies
focus on the interaction between silicate and sulfide minerals rather than the entrainment,
which also has a great influence on the concentrate grade of sulfide [9–12]. Thus, it is
also very important to investigate the entrainment of chlorite in order to devise effective
strategies for its elimination.

It is reported that the depression of silicate minerals from sulfide ore, especially when
the entrainment of silicate minerals is serious, can be achieved with some polymers [13–15].
Carboxymethyl cellulose (CMC), the most commonly employed polysaccharide depressant,
is known for its environmentally benign nature. Moreover, owing to its superior depressant
performance, CMC finds extensive usage in the flotation separation of sulfide from silicate
gangue minerals [16–18].

Many possible interaction mechanisms involving the possible contributions of electro-
static, chemical, hydrogen, and hydrophobic bonding between CMC and the surface of the
magnesia-bearing mineral have been proposed [19,20]. Because the adsorbed amount of
CMC depends on electrolyte concentration and pH, some studies have suggested that elec-
trostatic interactions are involved in the adsorption process of CMC onto minerals [3,21,22].
Liu et al. believed that the nature of the interaction between mineral surfaces and nat-
ural polysaccharides, including CMC, is likely an acid/base interaction [23]. Fu et al.
demonstrated that the adsorption of CMC on chlorite is significantly influenced by solution
conditions [24]. The investigation conducted by Feng et al. revealed that the adsorption den-
sity of CMC onto chlorite was promoted by both copper ions and calcium ions. However,
the underlying mechanisms of action for these two types of ions were found to differ [25].
In addition to silicate minerals, CMC also presents good depression performance for the
flotation of other gangue minerals through selective adsorption [26–28].

CMC is known to be effective in reducing the floatability of minerals and its ap-
plications are diverse, with numerous systematic investigations having been conducted.
However, the understanding of the various ways in which CMC influences chlorite with
different particle sizes is currently inadequate, thereby impeding the broader application of
CMC. Furthermore, it remains unclear whether the depressive effects of CMC are predomi-
nantly attributable to flocculation/dispersion [29]. Thus, the present study aims to explore
the impact of flocculation/dispersion induced by CMC with varying molecular weights on
the flotation of chlorite with the ultimate goal of facilitating the separation of sulfide from
magnesium silicate gangue minerals during flotation.

2. Experimental Section
2.1. Samples and Reagents

The chlorite utilized in the entire experiment was sourced from Haicheng, Liaoning
Province, China. The XRD analysis (Figure 1) and chemical analysis (Table 1) data confirmed
its high purity, with only trace amounts of talc present. The samples were subjected to dry
grinding and screened to obtain three distinct size fractions: −100 + 75 µm, −75 + 38 µm,
and −38 µm, which were collected separately for subsequent analyses.

CMC used for all tests was purchased from Aladdin Industrial Corporation, Shanghai,
China. The molecular weight of the CMC we used in this work was 90,000, 250,000,
700,000, respectively. All three kinds of CMC were with the same degree of substitution,
with 0.7. Terpilenol, MIBC (methyl isobutyl carbinol), and hexanol used as frothers, and
were all obtained from Tianjin Guangfu Fine Chemical Research Institute, Tianjin, China.
Hydrochloric acid (HCl) and sodium hydroxide (NaOH) were employed as pH modifiers
and were procured from Tianjin Kermil Chemical Reagents Development Centre, Tianjin,
China. All the chemicals were of analytical grade quality.
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Figure 1. XRD of chlorite. 
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Table 1. Chemical compositions of chlorite.

Composition MgO SiO2 Al2O3 CaO TFe

Percentage/% 25.41 34.37 15.76 0.78 3.72

Stock solutions of CMC were prepared by dispersing a predetermined amount of
solid into 100 mL of vigorously stirred cold distilled water and the stirring was continued
for about 30 min until the CMC powders were dissolved completely. The solutions were
freshly prepared each day. The HCl stock solution was prepared by adding a portion of
known-weight HCl solution with a concentration of 36% to the appropriate amount of cold
distilled water and stirring. NaOH stock solution was prepared by adding a portion of
known-weight NaOH solid into the appropriate amount of cold distilled water and stirring
until the NaOH powders were dissolved completely. Deionized double distilled water was
used for all experiments.

2.2. Methods
2.2.1. Flotation Tests

Flotation tests were performed using an XFG-type mechanical agitation flotation ma-
chine made by the Changchun Prospecting Machine Factory. In a typical single mineral
flotation test, 2.0 g of mineral were added to 40.0 mL of distilled water, followed by condi-
tioning. The pH of the mineral suspension was adjusted to the desired value using HCl or
NaOH stock solution. Afterwards, CMC (if necessary) stock solution and a frother were
added into the pulp and conditioned for 5 min and 1 min, respectively. Flotation was
conducted for a duration of 4 min. Both the floated and sink products were collected, fil-
tered, and subsequently dried before being weighed to facilitate the calculation of recovery.
Each experiment was conducted in triplicate, and the average value was considered as the
final result.

2.2.2. Sedimentation Tests

Flocculation/dispersion of the chlorite was assessed via settling tests launched using
a graduated cylinder. An amount of 0.1 g of chlorite powder was conditioned in a 100 mL
beaker at the desired pH for 5 min, following which CMC stock solution was added
and gentle stirring was carried out for an additional 5 min using a magnetic stirrer. The
suspension was then transferred to a 100 mL cylinder and the water level was adjusted to
100 mL using distilled water. The cylinder was stoppered, inverted twenty times, and then
allowed to remain in an upright position for a fixed duration of 10 min. The suspension
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in the upper 25 mL of the cylinder was siphoned out and measured using a WGZ-3(3A)
type Scattering Turbidimeter fabricated by the Shanghai Xinrui Instrument Company. The
degree of flocculation/dispersion of the suspension was assessed based on the turbidity
of the supernatant liquor. Lower turbidity values were indicative of superior flocculation.
Each test was repeated thrice, and the average value was considered as the final outcome.

2.2.3. Microscope Analyses

Visual examination of the flocculation/dispersion state of fine chlorite was performed
using a polarized optical microscope Leica DM4800. The procedure for the preparation of
the slurry was identical to that mentioned in the sedimentation tests. A drop of slurry was
dispensed onto a glass slide by pipette during the stirring of the slurry, following which
the sample was examined using a microscope, which was fitted with a video camera.

3. Results and Discussion
3.1. The Flotation Behaviors of Chlorite with Different Particle Sizes

Figure 2 illustrates the variation in the flotation recovery of chlorite with different
particle sizes as a function of pH. It can be observed that the flotation recovery of the fine
fraction (−38 µm) without using any collector is dramatically higher than the other two
coarse fractions (−100 + 75 µm and −75 + 38 µm respectively) over the entire range of
the pH values tested. Apparently, the recovery of chlorite increases as the particle size of
chlorite decreases, which indicates the recovery mechanism of fine chlorite particles may
be due to froth entrainment. Similar results were also obtained by Pietrobon et al. in their
research [8]. Li et al. [30] believed that during the flotation process of fine-grained minerals
hydrophilic minerals would be mechanically entrained into the concentrate, leading to a
decrease in the concentrate grade, which has been a major issue in the flotation of fine-
grained minerals. Kirjavainen et al. [31] studied the flotation of fine sericite and quartz in
the absence of hydrophobic minerals and found that the entrainment of hydrophilic gangue
minerals was influenced by the quality and shape of particles. The smaller particle sizes
of minerals corresponded with the higher levels of entrainment. When the particle size
of the minerals was close to the colloidal particle size, the entrainment ratio was mainly
determined by the particle size and the entrainment ratio was close to 1.
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Figure 2. The recovery of chlorite in different size fractions with flotation condition of C (MIBC) = 
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3.2. The Recovery Mechanism of Fine Chlorite

In the flotation process, fine-grained minerals and hydrophilic minerals may be en-
trained into the concentrate by foam water. It is well known that the froth entrainment is
closely linked to the water recovery (proportion of water entering the floated product to
the weight of water in the initial flotation suspension) during flotation. Figure 3 illustrates
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the flotation recovery of −38 µm chlorite as a function of water recovery. It shows that
at the beginning of flotation, the recovery of fine chlorite increases faster than the water
recovery. The recovery of fine chlorite increases essentially linearly with water recovery at
an acceptable error level. Many previous studies have confirmed a correlation between the
entrainment recovery of gangue and the water recovery of floated products in flotation [32].
Li et al. [30] proposed that the recovery of hydrophilic gangue caused by froth entrainment
is linear with the water recovery of concentrate in flotation, and the relationship between
the two indices conformed to the following equation.

Rg = e·Rw (1)

where Rg is the recovery of hydrophilic gangue caused by froth entrainment, %; e is the
entrainment factor of hydrophilic gangue; and Rw is the water recovery of the floated
concentrate, %.
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That is, the recovery of fine chlorite is directly proportional to the water recovery due
to the froth entrainment of flotation.

The water recovery in flotation is determined by the froth’s behaviors which are bound
up with the properties of frothers and frothers almost do not change the hydrophobicity of
mineral. Thus, in order to verify the froth entrainment, the flotation of −38 µm chlorite
were carried out with three types of frothers. No collector was used in the flotation tests.
The results are presented in Figure 4. It indicates that the flotation recovery of the fine
chlorite rises in tandem with an increase in the concentration of a frother and this trend is
observed across all three types of frothers used in the study, namely terpilenol, hexanol,
and methyl isobutyl carbinol (MIBC). Figure 4 also shows that the recovery of flotation
with terpilenol as a frother is obviously higher than that with hexanol and MIBC, and the
recovery is almost the same when the last two were used as frothers.

From Figures 3 and 4 we can conclude that the fine chlorite particles are recovered
into froth products because of not only hydrophobicity but also froth entrainment. It is not
surprising that the recovery of the fine chlorite is higher in the higher frother concentration
since froth entrainment is closely related to foam volume, and the foam is rich with a high
frother concentration. In addition, it is reasonable that there are significant differences
among the recoveries of fine chlorite under different frothers. It has been reported that
terpilenol presents better foam stability, higher foam viscosity, and higher water recovery
than MIBC when they are used as frothers, but hexanol, as a kind of hexahydric alcohol,
was similar to MIBC in foaming ability [33,34]. That is, the flotation recovery of the fine
chlorite should be higher under terpilenol than MIBC for the higher water recovery, and
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the recovery under hexanol and MIBC should be the same in theory. The results presented
in Figure 4 are confirmed by all evidence.
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3.3. Influences of CMC on the Flotation of Chlorite with Different Particle Sizes

The findings from the flotation tests conducted on chlorite with different particle sizes
in the presence of CMC are illustrated in Figures 5–7. The results indicate the influences
on the chlorite with different particle sizes caused by one certain type of CMC, especially
the CMC with low molecular weight, is not the same. The chlorite in all the particle size
fractions can be almost fully depressed by the CMC with a high molecular weight of 700,000.
Additionally, the depressing effect on the −100 + 75 µm and −75 + 38 µm chlorite caused
by the CMC with a molecular weight of 90,000 is as strong as that brought by the CMC
with a molecular weight of 250,000 and 700,000. However, it is particularly noteworthy
that, for the fine chlorite (−38 µm), the CMC with a low molecular weight of 90,000 is
not an effective depressant, as is evidenced by the dramatically high recovery despite
the highest dosage of this CMC. In fact, as shown in Figure 7, the CMC with a higher
molecular weight gave a lower flotation recovery of the fine chlorite. Taking into account
the flotation behaviors of chlorite observed in previous tests, it can be concluded that froth
entrainment may contribute to the difficulties of the depression of fine chlorite by the low
molecular weight CMC. In addition, it is interesting that in the flotation of the −38 µm
chlorite (Figure 7) the two types of lower molecular weight CMC display a rise in recovery
upon the addition of CMC at a low concentration.

3.4. Correlation between Froth Entrainment and Flocculation Caused by CMC

It has been mentioned above that the flotation recovery of the fine chlorite (−38 µm) in
the presence of three types of CMC with the molecular weight of 90,000, 250,000, 700,000, re-
spectively, are drastically different (Figure 7). In addition, the differences may be generated
by froth entrainment in the flotation.

It is well known that the recovery due to froth entrainment is also closely linked with
fine particles. To investigate the influence of CMC molecular weights on the flotation
of fine chlorite, a series of settling tests were carried out. The results are presented in
Figure 8. It shows that the CMC with a molecular weight of 90,000 disperses the fine
chlorite. On the other hand, the CMC with a higher molecular weight (250,000 and 700,000,
respectively) induces strong flocculation on fine chlorite, and the CMC with a higher
molecular weight gives stronger flocculation. In addition, Figure 8 indicates that the two
types of lower molecular weight CMC have a strong dispersing effect at the lowest dosage.
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This is complementary to the rise in flotation recovery at the same concentrations presented
in Figure 7.
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Figure 9, which is composed of four images taken with a polarized optical microscope
under different conditions, is evidence of the flocculation/dispersion of the fine chlorite.
The images confirm that when conditioned without CMC or in the presence of the CMC
with a molecular weight of 90,000, the fine chlorite particles are in a good state of dispersion.
However, with the addition of the CMC with a high molecular weight of 250,000 and
700,000, respectively, the sizes of the fine chlorite particles are enlarged, which indicates
that flocculation occurs on the fine chlorite particles. In addition, we can see clearly that the
CMC with a higher molecular weight results in stronger flocculation, as mentioned above.
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Figure 8. Settling behavior of −38 µm chlorite in the presence of different types of CMC with
condition of pH = 9.0 ± 0.2.

These results reveal that the CMC with a low molecular weight almost does not
affect the settling behavior of the fine chlorite and is not an effective depressant for its
failure in reducing froth entrainment in flotation, despite the fact that it can render the fine
chlorite particles hydrophilic. On the other hand, the CMC with a high molecular weight,
which generates flocculation on the fine chlorite particles, gives a low flotation recovery
of the fine chlorite because of the reduction of froth entrainment. Thus, the conclusion
can be drawn that froth entrainment is an important factor for the difference between the
low molecular weight CMC and the high molecular weight CMC in the depression of
fine chlorite. In addition, the flocculation caused by the high molecular weight CMC is
significant in reducing the froth entrainment of fine chlorite particles, which is consistent
with the findings suggested by Liu et al. [23].
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4. Conclusions

This study systematically investigated the influence of CMC with different molecular
weights on the flotation of chlorite. Flotation results indicate that the recovery of fine
chlorite increases with particle size reduction due to the entrainment through water recov-
ery. However, a high molecular weight CMC is found to be more effective in depressing
the flotation of fine chlorite than a low molecular weight one. Sedimentation tests and
microscope analysis show that the flocculation/dispersion state plays an important role
in the depression effect of CMC on the flotation of fine chlorite. A high molecular weight
CMC can flocculate fine chlorite particles to reduce froth entrainment as well as hydrophily,
while a low molecular weight CMC fails. It is suggested that the reduction of entrainment
because of flocculation caused by CMC is key to realizing the depression of fine chlorite
flotation, which also provides a reference for the flotation of other fine minerals.
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