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Abstract: High-entropy alloys have gained widespread concern in response to the increased require-
ments for future high-temperature structural superalloys. By combining phase-diagram calculations
with microhardness, compression behavior measurements at room temperature, and elevated tem-
perature conditions, the very important role of the Cr element on the microstructure and properties
is deeply revealed, which provides candidates materials for future high-temperature alloy appli-
cations. The increment of Cr favors the regulation of the two-phase fraction and distribution. The
thermodynamic calculations illustrate that the density and melting point of the HEAs showed an
increasing trend with the increase of the Cr content. The typical worm-like microstructure of the
Cr0.6 alloy with a dual BCC structure was detected. Meanwhile, on the one hand, the increment
of the Cr elements results in a considerable optimization of the mechanical properties of the alloy
in terms of strength and ductility at room temperature. The corresponding compressive strength
and plasticity of Cr0.6 alloy at room temperature are 3524 MPa and 43.3%. On the other hand, the
high-temperature mechanical properties of the alloy are greatly enhanced. At 1000 ◦C, the yield
strength of the Cr0.6 alloy is about 25 MPa higher than that of the Cr0.4 alloy. The superior mechanical
properties are attributed to the pronounced work-hardening response, and the work-hardening
behavior of Cr-containing HEAs was systematically analyzed by employing the modified Ludwik
model. The higher content of Cr helps the resistance of the local deformation response, improving
the nonuniform strain and promoting the balance of strength and ductility of the alloys.

Keywords: high-entropy alloys; microstructure; mechanical property; work-hardening behavior

1. Introduction

Developing lightweight alloys with excellent strength and ductility is always the
objective for the application of structural alloys due to the demand for high-performance
superalloys in increased harsh working conditions. High-entropy alloys (HEAs) and
multiprincipal element alloys have received considerable interest for community experts
and have become a worldwide hot spot since Cantor and Yeh reported their first pub-
lication [1,2]. Cr-containing HEAs have exhibited promising potential when applied in
high-temperature industrial fields as a result of their remarkable strength [3–6], favorable
ductility [7–9], distinguished corrosion resistance [10–12], superior wear and oxidation
resistance [13–15], and acceptable thermal stability [16,17].

So far, great endeavors have been devoted to examining the properties of Cr-containing
HEAs with the incorporation of the Cr element, not limited to the investigations of cor-
rosion behavior, high-temperature oxidation behavior, and thermal stability of the HEAs,
especially regarding the evolution of the microstructure and mechanical behavior with
different Cr content, is still a top research priority. The increase of the Cr element promotes
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the formation of new phases, including the Sigma phase [18,19] and Laves phase [20]. It
has been reported that the Cr element acts as a stabilizer for FCC at low contents and affects
the formation of the BCC phases at high contents, which promotes the modulation of the
mechanical properties of HEAs [21–23]. Meanwhile, the increase of the Cr element in HEAs
improves the strength and hardness at the expense of the ductility of the alloys to some
extent [24–26]. It has been reported that the volume fraction of the BCC phase increased
as a function of the Cr concentration in FCC + BCC dual-phase CrxMnFeNi HEAs [23].
The microstructure and mechanical properties of (Al7Co24Cr21Fe24Ni24)100−xCrx HEAs
are optimized and the high fracture strength with the value of 2830 MPa and the plastic
strain of 24.9% was obtained [24]. Generally, it is assumed that the Cr content plays a
decisive role in the enhancement of the corrosion properties of the Cr-containing alloys [27].
The microstructure and the corrosion and oxidation behaviors in Cr-containing HEAs
with different Cr contents are also investigated in detail [28–30]. The single-phase FCC
Ni38Fe20Cr6Mn18Co18 HEAs containing 6% Cr displayed passivity behavior at a relatively
low Cr concentration [31]. Among the numerous HEAs, the Co-free and Cr-containing
HEAs demonstrated outstanding property features [32–34], and the Co-free HEAs with
target microstructures can be obtained by advanced preparation approaches [35]. Recent
publications [36–39] have revealed that the composition manipulations of the Fe-Cr-Ni-Al
system alloy determine the mechanical properties, corrosion properties, oxidation prop-
erties, damping capacity, and the improvement of preparation techniques influences the
alloy properties. Yet, the effect of Cr elements on the microstructure and properties of
Cr-containing Fe-Cr-Ni-Al HEAs, and their corresponding mechanisms, need to be further
expounded. Thus, an attempt is tried to achieve optimization of mechanical properties
through modifying the component concentration to tellingly overcome the mechanical
properties trade off and to discuss the potential mechanisms of the effect of the Cr element
on the mechanical response of the HEAs.

In this paper, it is expected that Cr-containing HEAs possess distinguished mechanical
properties, in conjunction with the strategy of alloying Cr elements, combined with ther-
modynamic predictions, served as an effective method [40] and the experimental methods,
the composition, microstructure, including phase formation, and mechanical properties
of the current as-cast alloys are systematically investigated. The present proposed alloys
exhibit excellent mechanical properties with high work-hardening capability, which offers
a clue for the advancement of high-temperature alloys.

2. Materials and Methods

The current prepared FeCryNiAl0.8 (y = 0.6, 0.4, 0.2 named as Cr0.6, Cr0.4, and Cr0.2,
respectively) HEA specimens were fabricated by vacuum arc-melting approaches. The
raw materials of Fe, Cr, Ni, and Al, with purities above 99.9%, were put in the furnace
in accordance with the melting points, and the alloy samples were remelted and flipped
at least three times to enhance homogeneity. The phase structure identifications of the
three alloys were performed by employing Cu radiation X-ray diffraction (XRD) with the
scanning angle from 20◦ to 100◦. The morphology and elemental mapping of the as-cast
alloys with the dimension of 10 mm × 10 mm × 5 mm were detected by scanning electron
microscopy (SEM) and the energy dispersive spectrometer (EDS). The microhardness of
the alloys was measured by an MHVD-5AP digital microhardness Vicker’s tester with
the parameters of 0.5 kgf load and 15 s. The obtained hardness values with an error bar
were determined for every specimen. The low-magnification morphologies of the alloys,
including the appearance of indentation, were observed by optical microscopy (OM).

The density, melting point, and constituent phase prediction of the current FeCryNiAl0.8
HEAs were calculated by JMatPro software (JMatPro v7.0, State Key Laboratory of Solidi-
fication Processing, Northwestern Polytechnical University, Xi’an, China). Compressive
mechanical behavior tests were performed utilizing an AG-X Plus 250 kN/50 kN Electronic
Universal Testing Machine under compressive rates of 2 mm/min and 0.5 mm/min at
room temperature, 800 ◦C, 900 ◦C, and 1000 ◦C, respectively. High-temperature compres-
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sion tests and room-temperature compression tests adopted the same specimen size with
Φ4 mm× 6 mm. The equations σT = (1− ε)σ and εT = ln(1− ε) were adopted to convert
the engineering stress (σ) and strain (ε) to true stress (σT) and strain (εT) relationships.

3. Results and Discussion
3.1. Constitutional-Phase Formation and Microstructure Evolution as a Function of Cr Addition

In the current work, the three FeNiCryAl0.8 system alloys with different Cr content
(the subscript y = 0.6, 0.4, 0.2) were designed to investigate the effect of Cr concentration
on the formation of alloy microstructure, density, and melting point to provide essential
research for the application of the alloys in high-temperature fields. First, the melting
points and densities of the alloys were predicted and the results are shown in Figure 1a,b.
It can be observed that the density of the alloy presents a trend of increasing and the
melting point is also on a trend of increasing with the increment of Cr content. From the
predicted values, the density of the current alloys with varied Cr elements ranges between
6.25–6.32 g/cm3, and the melting point is in the range of 1247–1282 ◦C. Compared to the
Inconel 718 superalloy with a density of 8.19 g/cm3, the density values of all the designed
compositions of the alloys were less than 7 g/cm3, which is beneficial for lightweight
superalloys with higher service temperatures. Thus, Cr0.6 HEA has great potential to
become an alternative material to meet the requirements of lightweight development in
the aviation and aerospace industries. Figure 1c,d plots the fraction of phase in alloys
containing different Cr contents and the elemental composition of the BCC2 phase in
the Cr0.6 alloy as a function of temperature. It is obvious that the variation of the two-
phase content in the alloy increases with the decrease of the Cr content, and the most
significant difference between the BCC1 and BCC2 phases in the Cr0.2 alloy indicates that
the decrease of the Cr content aggravates the formation of dual phase segregation, which
is not conducive to the coordination of the deformation of the alloy. Meanwhile, the Cr0.6
HEA shows a slight difference in the content of the two phases in the low-temperature
range and the content of the BCC2 phase is higher than that of the BCC1 phase. In addition,
it can be noticed that the content of the BCC2 phase tends to increase as the Cr content
decreases, which is speculated that the Cr element is the stabilizing element in the BCC1
phase. Further investigation of the elemental composition of the BCC2 phase in the Cr0.6
alloy suggests that the BCC2 phase is enriched with Ni and Al elements, and the difference
in the Fe-Cr elemental content of the alloy tends to become larger, while the difference
in the Ni-Al elemental content remains steady alterations. Combined with the predicted
results, no phase transformation behavior was discovered at temperatures below 1000 ◦C,
and only a slight change in the two-phase content was observed, indicating that the alloy
is more suitable for high-temperature service environments due to its excellent thermal
stability compared to conventional alloys.

Figure 2a depicts the XRD results of the Cr0.6, Cr0.4, and Cr0.2 HEAs and the phase
structures of the alloys are determined. The obtained results show that these alloys consist
of a disordered BCC phase (marked by a black diamond) and an ordered B2 phase (marked
by a five-pointed star). These are in agreement with the results reported for the Fe-Cr-Ni-Al
alloys [41,42]. A decreasing tendency of the lattice constant is displayed, which is validated
by the right shift of the diffraction peak with an increment of Cr concentrations. It can be
confirmed that the lattice constants of the two phases gradually decrease with the increase
of Cr content, and the lattice constants of the BCC1 and BCC2 phases varied from 2.883 Å
to 2.879 Å and 2.885 Å to 2.879 Å, respectively. Combined with the phase-analysis results,
several empirical descriptors, including mixing enthalpy (∆Hmix) extrapolated from the
binary mixing enthalpies, valence electron concentration (VEC), atomic-size misfit (δ),
phase-stability parameter (Ω), and electronegativity difference (∆χ), that vary with the Cr
content, were calculated as presented in Figure 2b. These parameters for HEAs have been
extensively derived to use the predictions of the phase structural analysis of HEAs [43–46].
Previous investigations have developed the empirical rules of solution phase precipitation,
and the corresponding criteria are satisfied: −15 kJ/mol ≤ ∆Hmix ≤ 5 kJ/mol, δ ≤ 6.6,
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and Ω ≥ 1.1. Meanwhile, the VEC values of 6.87 and 8 are proposed to be the threshold
of the BCC and FCC phase formation. The equations are as follows (1)–(7):

∆Hmix = ∑n
i=1,i 6=j 4∆Hmix

AB cicj (1)

δ =

√
∑n

i=1 ci

(
1− ri

r

)2
, r = ∑n

i=1 ciri (2)

VEC =∑n
i=1 ci(VEC)i (3)

Ω =
Tm∆Smix

|∆Hmix|
(4)

Tm = ∑n
i=1 ci(Tm)i (5)

∆Smix = ∑n
i=1(−Rci ln(ci)) (6)

∆χ =
√

∑n
i=1 ci(χi − χ)2, χ = ∑n

i=1 ciχi (7)

where ci is the atomic content of ith type atoms; ∆Hmix
AB represents binary mixing enthalpy;

ri refers to the radius of ith type atoms; (VEC)i is the VEC of ith type atoms; Tm means
melting point; ∆Smix means mixing entropy; R is the gas constant; χi and χ correspond to
electronegativity and average electronegativity, respectively. Therefore, the calculations of
the phase-structure formation of the current HEAs for nominal composition are provided
as shown in Figure 2b. It can be found that the mixing enthalpy of the alloy increases with
the increment of Cr content. However, the negative mixing enthalpy favors the formation
of stable solid-solution structures. The atomic-size difference presents a gradual decrease
with the increase of Cr content, which is related to the small variation of the atomic size
of the Cr element from Fe and Ni atoms in the current alloy. With the increment of Cr
elements, the atomic sizes are all less than 6.6, which indicates that the current HEAs form a
stable solid solution structure. At the same time, it can be identified that the phase stability
parameters of the alloys are all higher than 1.1, indicating that the alloys possess high
stability characteristics. However, the current VEC values are situated in the FCC + BCC
two-phase zones according to the empirical method and exhibit a decreasing trend from
7.2 to 7 with increasing Cr content, indicating that the current experimental results do not
meet the empirical relationship and, therefore, further correction efforts are necessary.

The SEM microstructures with bright and dark gray areas of the three as-cast
alloys Cr0.6, Cr0.4, and Cr0.2 are shown in Figure 3. From Figure 3a–e, it is evident
that grain boundaries and typical dual phases are observed. In general, the Cr is
found to enhance the formation of sigma phases in the HEAs. The contents of the
BCC1 phase in the investigated alloys are calculated and analyzed increasing from
31.4% in Cr0.2 alloy to 60.5% in Cr0.6 alloy with the increase of Cr content, which is
consistent with the formation of the BCC1 phase associated with the increase of Cr
elements and thermodynamic predictions. The increase in the BCC1 phase content
caused by the increase in Cr elements can be attributed to the Cr element acting as the
stabilizing elements for Fe-Cr-rich phases in high-entropy alloys, and the preferential
formation of the BCC2 phase enriched NiAl element (more negative mixing enthalpy in
thermodynamic aspects) has an influence on the content of the BCC1 phase. Meanwhile,
the spinodal decomposition features of the current alloys are presented. The elemental
mappings of the dual phase Cr0.6 alloy are measured by the EDS results of microregions
and line scanning, as shown in Figure 3(b1–b4) and line L1. Meanwhile, the selected
regions in the Cr0.4 and Cr0.2 alloys marked by blue and red dotted boxes are displayed
in Figure 3c–f. Slight segregation for the Ni-Al rich phase in the four constituent
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elements was detected and the dropping of the actual Cr content in the three alloys is
presented with a decrement of Cr concentration (mapping and line profiles of L1–L3),
which is consistent with the results from the previous dual-phase Fe-Cr-Ni-Al alloy
system [47,48]. With increasing Cr content, it is easier to form a dual-phase woven
modulated microstructure that is favorable to enhancing the mechanical properties of
the alloys.
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Figure 1. Predicted density, melting point, and constitutional phase of the present investigated HEAs:
(a,b) represents the calculated density and melting point results for the three FeCryNiAl0.8 HEAs
with varied Cr content, respectively; (c) the predicted volume fraction of constitutional phase for
proposed Cr0.6, Cr0.4, and Cr0.2 alloys varied with elevated temperature; (d) elemental composition
in the BCC2 phase for Cr0.6 alloy.
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Figure 2. Phase formation analysis of the current HEAs: (a) the XRD patterns for proposed Cr0.6,
Cr0.4, and Cr0.2 alloys with a diffraction angle range from 20 to 100 degrees, and the diffraction peak
information of the reference standard phases are presented at the bottom of Figure 2a; (b) displays
the empirical descriptions modeling results of the investigated FeCryNiAl0.8 HEAs.
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Figure 3. Microstructure morphologies and elemental distribution results of the current FeCryNiAl0.8

HEAs: (a,b) shows the microstructure features of the Cr0.6 alloy, The corresponding elemental
mappings of Ni, Al, Cr, and Fe are displayed in (b1–b4). (c,d) and (e,f) represent the selected SEM
images for Cr0.4 and Cr0.2 specimens, respectively. The corresponding elemental mappings of Ni,
Al, Cr, and Fe of Cr0.4 and Cr0.2 specimens are displayed in (d1–d4) and (f1–f4). The line scanning
profiles of L1 to L3 in three alloys marked by the yellow arrow is displayed on the right region,
demonstrating the existence of the dual-phase microstructures.

3.2. Influence of Cr on Mechanical Properties of FeNiCryAl0.8 HEAs
3.2.1. Microhardness Variation with Different Cr Content

Figure 4 plots the Vickers microhardness results of three fabricated alloys, it can be
noticed that the hardness value of the as-cast alloys presents a decreasing trend with the
reduction of the Cr element. However, the steady variation range of decrease is presented,
and the hardness value decreases from HV459 of the Cr0.6 specimen to HV438 of the Cr0.2
specimen, approximately a decrease of HV21, which is associated with the reduction of
Cr content in the present alloy to the decrease of strength of the alloy. To some extent, the
increased content of the BCC1 phase promoted by the increment of Cr concentration could
also promote the enhancement of hardness and mechanical properties [49]. The hardness
results indicate that the Cr0.6 alloy presents more distinguished mechanical properties by
adding the Cr elements strategy. Meanwhile, the representative appearance of indentation
of the three alloys is shown in Figure 4b–d.
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Figure 4. Variation of measured microhardness and the appearance of indentation with different Cr
content in FeCryNiAl0.8 HEAs: (a) microhardness values; (b–d) are corresponding to the representa-
tive morphology of indentation of present alloys.

3.2.2. Room-Temperature Mechanical Behavior of FeCryNiAl0.8 HEAs with Different
Cr Concentration

Figure 5 displays the room-temperature compressive stress versus strain curves of
the three prepared alloys, and Figure 5a,b exhibit the engineering stress–strain curves
and the true stress–strain curves for the different Cr contents, respectively. In the cur-
rently investigated alloys, it can be observed that the overall strength and plasticity
of HEAs are substantially increased with the increase of Cr elements, and the corre-
sponding mechanical property parameters are tabulated in Table 1. A similar elastic
deformation stage and yield strength values are observed in three alloys. Fascinatingly,
the compressive strength of the Cr0.6 alloy is revealed to be the largest one, about
3524 MPa, and the compressive strain is about 43.3%. As the Cr content reduces from
Cr0.6 alloy to Cr0.4 alloy, the strength and ductility of the specimen decrease with a com-
pressive strength of 2751 MPa and a compressive strain of about 30% in the Cr0.4 alloy.
From the macroscopic fractured image of the Cr0.6 alloy shown in the inset illustration
of Figure 5a, it can be observed that there was no complete fracture of the Cr0.6 alloy and
macrocracks were observed along approximately 45 degrees (shear fracture), indicating
that the Cr0.6 alloy exhibits a favorable strength–ductility combination. However, the
excellent work-hardening ability of the two alloys is observed, ensuring the uniform
deformation of HEAs to achieve large ductility. In contrast, the Cr0.2 alloy displays a
compressive strength of 1896 MPa and a compressive strain of only 15.7%. To estimate
the comprehensive behavior of current HEAs, several developed HEAs retain limited
mechanical properties [37,50]. Therefore, the strength and ductility of the Cr0.6 alloy
are well balanced. With a long work-hardening stage, the Cr0.6 alloy can effectively
optimize the mechanical properties of the alloys. Additionally, the fracture surfaces of
the Cr0.4 and Cr0.2 alloys were carried out to investigate their fracture types. Further,
the fracture-surfaces results of both alloys reveal that the fracture characteristics of the
alloys present typical river-like patterns with cleavage steps, which indicate that the
main fracture mode in both alloys corresponds to cleavage brittle fracture as shown
in Figure 5d,e.
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Figure 5. Compressive stress versus strain response under room temperature for the developed
three HEAs: (a) engineering compressive curves for Cr0.6, Cr0.4, and Cr0.2 alloys and the macro-
scopic fractured photograph of Cr0.6 alloy after the measurement is illustrated in the inset image
of Figure 5a; (b) true compressive relationships for Cr0.6, Cr0.4, and Cr0.2 alloys; (c) comparison of
compressive strength and fracture for Cr0.6, Cr0.4, and Cr0.2 alloys with representative developed
alloys [37,50]; SEM images and macroscopic appearance (insert illustration) of the fractured
surface after compressive testing of the (d) Cr0.2 alloy and (e) Cr0.4 alloy.

Table 1. Extracted mechanical property indicators varied with Cr content under room-tempera-
ture conditions.

Sample E (MPa) σs (MPa) σb (MPa) εf (%)

Cr0.6 3623 1118 3524 43.3
Cr0.4 3905 1036 2751 30.0
Cr0.2 3642 1103 1896 15.7

3.2.3. High-Temperature Mechanical Behavior of FeCryNiAl0.8 HEAs with Different
Cr Content

To further investigate the high-temperature mechanical properties of the alloys to meet
the background of high-temperature environment applications, the three as-cast alloys
were subjected to high-temperature compression measurements at 800 ◦C, 900 ◦C, and
1000 ◦C. Figure 6a,b shows the engineering and true stress versus strain curves of the three
HEAs at 800 ◦C. The three alloys possess a high strength of about 400 MPa at 800 ◦C. It can
be noticed that continuous strengthening is observed after the yielding and softening effects
of the three alloys can be seen from the true stress and strain behaviors which contribute to
the recovery and the recrystallization effects are superior to the effect of work hardening.
It can be observed that the Cr0.6 alloy has a similar yield strength to the other alloys at
800 ◦C, though the Cr0.6 alloy is more resistant to high-temperature deformation behavior
with an increasing applied strain and does not soften easily. Meanwhile, the Cr0.6 alloy
exhibits significant resistance to softening compared to the Cr0.4 alloy until the temperature



Materials 2023, 16, 3348 9 of 14

increases to 1000 ◦C as shown in Figure 6c,d, and the yield strength has a more moderate
increment than the Cr0.4 alloy with the values of 25 MPa.
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(c,d) exhibit the engineering compressive behavior at 900 ◦C and 1000 ◦C for Cr0.6 and Cr0.4 alloys,
respectively. The insert images represent the macroscopic appearance of Cr0.6 and Cr0.4 fractured
specimens after measurement.

3.2.4. Effect of Cr Content on Work-Hardening Behavior of FeNiCryAl0.8 Alloys

Generally, the high work-hardening behavior in the alloy is reflected by favorable local
plastic deformation resistance, contributing to the alloy with the excellent strength–ductility
combination. Thus, it is necessary to investigate the work-hardening behavior of the cur-
rent HEAs. Based on the previous results of room-temperature compression, the current
HEAs exhibit excellent work-hardening ability. Furthermore, the key parameter of the work-
hardening effect is the work-hardening exponent n. Meanwhile, a higher value of n ex-
presses the resistance to uniform deformation, endowing acceptable cold formability for the
studied HEAs.

A large number of mathematical relationships have been proposed to describe the
work-hardening behavior based on the work-hardening interpretation from previous
studies. The most general expression proposed by Hollomon [51,52] has been displayed:

σT = KεT
n (8)

where K is associated with the strength coefficient, which is a constant, and n means the
work-hardening exponent.

Ludwik has introduced an additional term to further explain the nonzero stress
influence stem from the Hollomon equation, as expressed in Equation (9) [53,54]:

σT = σT
0 + KεT

n (9)
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In the present work, since the Hollomon model is quite simple, the modified Ludwik
expression was chosen, which can be described as Equation (10) [55]:

σT = kεT
n1+n2lnεT (10)

Here, the factor εn2lnε indicates that kεn1 is improved by εn2lnε.
The data of the fitting results are summarized in Table 2. It can be noted that the

current adopted modified Ludwik model of working-hard behavior exhibits a good fitting
effect with high precision (R2 > 99%). Thus, the corresponding mathematical expressions
after fitting the Cr0.6, Cr0.4, and Cr0.2 alloys are shown in Equations (11)–(13). Meanwhile,
the increment of Cr content can significantly enhance the work-hardening ability of the
current HEAs, ensuring an alloy with remarkable ductility characteristics.

σT = 2995.5εT
0.308+0.012lnεT (11)

σT = 3124.1εT
0.343+0.014lnεT (12)

σT = 2396.7εT
0.184−0.005lnεT (13)

Table 2. Summarized key parameters fitting results are obtained from the compressive curves in the
ambient environment.

Sample k n1 n2 R2

Cr0.6 2995.5 0.308 0.012 0.99945
Cr0.4 3124.1 0.343 0.014 0.99891
Cr0.2 2396.7 0.184 −0.005 0.99472

Based on the above-obtained microstructure and property results, the mechanisms of
the Cr content on the microstructure and properties of the current HEAs require further
discussion. This investigation of room-temperature and high-temperature mechanical
properties of the current HEAs, accompanied by distinct Cr contents, exhibits that the
increment of Cr content could promote the room-temperature mechanical properties of
the alloy to be significantly enhanced depending on the significant work-hardening effect.
Not only that, the optimizations of high-temperature mechanical properties for the current
alloys with the increment of Cr contents are also achieved. In general, the local plastic
deformation determines the mechanical properties of the alloys to the close-yield strength
process. The alloys are susceptible to local deformation that promotes early macroscopic
nonuniform deformation, which manifests as a result of inferior plasticity leading to
premature failure. Combined with the extracted room-temperature yield-strength results,
the three alloys have similar yield strengths, indicating that the increment of the Cr element
generates a certain limited solid-solution strengthening effect. The results of the phase
diagram reflect that the increment of Cr alters the content and distribution of the constituent
phases in the alloy. The increase of Cr content increases the content of the BCC1 phase and
decreases the content of the BCC2 phase, which can improve the mechanical properties of
the Cr0.6 alloy by a heterogeneous dual phase formation. The heterogeneous dual phase
deformation contributes to the improvement of the local deformation properties and the
coordinated deformation between the weak and strong phases. Further analysis reveals
that the increase of the Cr element can make the alloy resist local deformation and prolong
the nonuniform plastic-deformation phase, which is realized as an outstanding work-
hardening effect at the macroscopic level, endowing the alloy with excellent comprehensive
strength and ductility [56,57].
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4. Conclusions

In this work, the effect on the microstructure and mechanical properties of FeNiCryAl0.8
HEA are systematically investigated by adopting the Cr alloying strategy. The main conclu-
sions are as follows:

(1) The thermodynamic prediction results illustrate that the density and melting point
of the alloys displayed an increasing trend with the increase of the Cr element. Si-
multaneously, it can be found that the BCC2 phase content was higher than the BCC1
phase content, and the variation in the dual phase fraction gradually decreased with
the increment of the Cr elements. The typical worm-like microstructure of the Cr0.6
alloy with dual BCC structures was detected. The higher content of Cr facilitated the
regulation of the phase fraction and mapping.

(2) In terms of mechanical properties of the current HEAs, the microhardness of the alloy
tended to increase slightly with the increased Cr elements, and the corresponding
Vicker’s microhardness of the Cr0.6 alloy was HV459. The introduction of the Cr
element made the strength and ductility of the mechanical properties of the alloys at
room temperature substantially optimized. The compressive strength and plasticity
of the Cr0.6 alloy at room temperature were 3524 MPa and 43.3%, respectively.

(3) The introduction of the Cr element also significantly improved the high-temperature
mechanical properties of the alloy. The strength and plasticity of the Cr0.6 alloy were
better than those of the Cr0.4 alloy and Cr0.2 alloy. The yield strength of the Cr0.6 alloy
was approximately 25 MPa higher than that of the Cr0.4 alloy at 1000 ◦C.

(4) The superior mechanical properties resulted from the obvious work-hardening be-
havior. The work-hardening behavior of the HEAs was systematically analyzed by
adopting the modified Ludwik model. The Cr element improved the local deformation
characteristics, and the coordinated deformation of the dual phase was carried out,
improving the nonuniform strain and promoting the strength and ductility balance of
the alloys.
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