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Abstract: Modern construction materials, including steels, have to combine strength with good forma-
bility. In metallic materials, these features are obtained for heterogeneous multiphase microstructures.
Design of such microstructures requires advanced numerical models. It has been shown in our
earlier works that models based on stochastic internal variables meet this requirement. The focus
of the present paper is on deterministic and stochastic approaches to modelling hot deformation of
multiphase steels. The main aim was to survey recent advances in describing the evolution of disloca-
tions and grain size accounting for the stochastic character of the recrystallization. To present a path
leading to this objective, we reviewed several papers dedicated to the application of internal variables
and statistical approaches to modelling recrystallization. Following this, the idea of the model with
dislocation density and grain size being the stochastic internal variables is described. Experiments
composed of hot compression of cylindrical samples are also included for better presentation of the
utility of this approach. Firstly, an empirical data describing the loads as a function of time during
compression and data needed to create histograms of the austenite grain size after the tests were
collected. Using the measured data, identification and validation of the models were performed. To
present possible applications of the model, it was used to produce a simulation imitating industrial
hot-forming processes. Finally, calculations of the dislocation density and the grain size distribution
were utilized as inputs in simulations of phase transformations during cooling. Distributions of the
ferrite volume fraction and the ferrite grain size after cooling recapitulate the paper. This should give
readers good overview on the application of collected equations in practice.

Keywords: hot metal forming; microstructure evolution; dislocation density; grain size; recrystallization;
nucleation; stochastic model

1. Introduction

Development of the modern industry requires construction materials that combine
strength and formability with a high strength-to-density ratio. Crack resistance, creep
resistance, wear resistance, and the Charpy impact properties are also significant in some
applications. Steels have met these requirements for many decades. Historically, grain
refinement was the main strengthening mechanism for steels investigated in the second half
of the 20th century, when High Strength Low Alloyed (HSLA) steels were developed [1].
An improvement in strength and workability was obtained by controlling precipitation
and its influence on recrystallization [2]. A different strengthening mechanism was used
in Advanced High Strength Steels (AHSS), which were developed during 1990s. These
steels are composed of soft ferrite with islands of hard constituents of bainite, martensite,
and retained austenite. AHSSs benefit from the best features of the phases they are made
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of and their internal microstructure [3]. These particular composite materials are locally
isotropic as they have the same material inside each phase. Nevertheless, they are heteroge-
neous at the macroscopic scale due to spatial variations of volume fractions of the phases.
Modern bainitic steels are another group that benefits from a combination of phases in
the microstructure [4,5]. Exceptional properties of metals and alloys with heterogeneous
microstructures are discussed in many publications. As far as steels are concerned, recent
papers on complex phase [6], multiphase [7], ferritic/martensitic [8], pipeline [9], and
bainitic steels [10] should be mentioned. Modern bainitic steels are used for manufacturing
rails [11] and rods [12]; the latter mainly has further application as stock for cold heading
processes [13].

Dual Phase (DP) and Complex Phase (CP) steels are the two leading examples of the
AHSSs with particular applications in car body manufacturing [14,15]. The properties of
the DP steels with the microstructure composed of the fine ferrite matrix with dispersed
hard islands of martensite have been intensively studied [16]. The high strength and total
elongation of DP steels go side-by-side with low local formability caused by large gradients
of properties at the phase boundaries. CP steels are characterized by a heterogeneous
microstructure with a fine mixture of bainite, martensite, and ferrite. Compared with
DP steel, the volume fraction of hard constituents is higher, leading to higher strength.
On the other hand, the gradients of properties between microstructural constituents are
smaller than those in DP steels. Thus, CP steels with a more heterogeneous microstructure
have better local formability [3]. This unique feature makes CP steels more suitable for
stretch-forming processes [17]. It was suggested in [18] that more balanced mechanical
properties of multiphase steels can be achieved by tailoring the microstructure gradients.

As far as modern bainitic steels are concerned, extensive research has been conducted
during the last decades of the 20th century. Numerous works of Bhadeshia should be
mentioned, such as [4,5]. The design of these steels has to be based on understanding the
mechanisms of bainite formation. Contrary to the well-documented diffusionless marten-
sitic transformations, modelling of bainite transformation, which involves compositional
change, is still a challenge [19]. A significant effect of bainite as a transformation product
on mechanical properties is observed, in particular on hardness [20], tensile strength [21],
and Charpy impact properties [22], but also on fracture resistance and creep resistance [19].
Bainitic microstructures in steels are obtained by appropriate design of the composition
and by proper control of process parameters and manufacturing conditions. Modern
bainitic steels contain about 1% of silicon, which allows to form carbide-free bainite with
ferrite plates and a high-volume fraction of retained austenite in the form of thin layers or
islands [20,23]. Relationships between microstructure and properties of bainitic steels have
been intensively studied [19]. The design of bainite in steels with heterogeneous microstruc-
tures was also investigated in the Research Fund for Coal and Steel (RFCS) project [24].
Analysis of the Continuous Cooling Transformation (CCT) diagrams for many bainitic
steels shows that their microstructures do not consist entirely of bainite. The mechanical
properties may vary significantly as a function of the cooling cycle. Experimental research
is not sufficient to fully understand the bainite transformation. Appropriate numerical
modelling could deliver more valuable findings that should support further experiments.

Advanced numerical models are needed to predict distributions of microstructural fea-
tures and design thermal–mechanical cycles that allow us to obtain moderate gradients in
the microstructure. The models must be able to predict distributions of various microstruc-
tural parameters instead of their average values. Beyond this, since process optimization
is the prospective application of these models, they have to be characterized by low com-
puting costs. There are several recent intensive studies for numerical tools which can help
in prediction distributions of parameters, leading to realistic modelling of heterogeneous
materials. Models considered in the literature usually belong to two main groups models
of materials (see PhD thesis [25] for more details and extensive discussion): mean-field
and full-field. The full-field models usually describe material more completely and build
on various equations for phase transformations, kinetics of the process, microstructure



Materials 2023, 16, 3316 3 of 21

parameters, etc. Examples of models in this group are Integrative Computational Materials
and Process Engineering (ICMPE) [26], Digital Material Representation (DMR), and Repre-
sentative Volume Element (RVE) models [27]. On the other hand, mean-field models are
designed relying on averaged parameters of the material microstructure, such as dislocation
density or grain size for the sample. Applications of the full-field models to design AHSSs
are numerous [28]. Many such papers were published during first decades of the 21st
century, though we will not discuss them here. As it has been for the AHSSs, advanced
numerical methods are used to design the development of bainitic microstructures for
applications in the phase field model [29] or crystal plasticity [30]. The recent solutions
simulate the sub-division of austenite grains by bainite sheaves in an explicit way [23].

By design, the full-field models provide much better predictive capabilities; however,
they require more demanding computations, which in turn result in longer computing
times. Thus, the objective is to search for a fast mean-field model with extended predictive
capabilities. As shown in [31], the internal stochastic variables can be used to describe
the heterogeneous microstructures of alloys, leading to an interesting mean-field model.
Such models can then be effectively used for prediction of gradients of microstructural
features in designed final products. In the model described in [31], the internal variables
account for the history of the process. The stochastic character of these variables enables
not only a prediction of average values of parameters but, more importantly, a prediction
of their distributions.

The papers, in which the stochastic approach was applied to describe distributions of
microstructural features, are usually focused on a correlation between microstructure and
in-use products’ properties. Among the recent papers, statistics for geometry description
was used in homogenization methods [32] and n-point statistics was applied to predict
crack probability [33]. In a few papers, the probability distribution of selected parameters
was used as an input for a deterministic material model, e.g., the authors of [34] studied
the austenite grain size before recrystallization in term of histograms. This study provides
clear connections between histograms’ evolution and recrystallization kinetics. The internal
variable stochastic model for hot deformation was proposed in our earlier publication [35].
In our model, we introduced a stochastic approach to both dynamic and static recrystalliza-
tion at elevated temperatures. The stochastic variables were used in equations describing
the evolution of the dislocation populations and the grain size. As a consequence, the
model may predict distributions of various microstructural parameters. This model was
identified based on the experimental data [31]. In publication [36], the model was utilized
to conduct simulations of multi-step hot forming processes.

The heterogeneous multiphase microstructures discussed above are obtained during
cooling after hot forming. However, the microstructural heterogeneity depends, to a large
extent, on the state of the austenite prior to phase transformations. The austenite grain size
and dislocation density (when the recrystallization is not completed) strongly influence the
kinetics of phase transformations and resulting phase composition. Thus, in our work, we
focused on the stochastic modelling of hot forming and prediction of the heterogeneity of
the microstructure at the start temperature for transformations (Ae3). The task of the hot
forming model is to supply the input data (histograms of the dislocation density and the
grain size) for the further simulation of the phase transformations.

In summary, there were two objectives of the present work. The first was a review of
the stochastic models of recrystallization. Based on this review, we presented a model of
nucleation, which is a statistical representation of the stochastic models used in the RVE. As
an exemplary practical approach, identification and validation of the stochastic model of a
hot deformation of multiphase steels, including dynamic processes during deformation
and static processes during interpass times, were performed. The second objective was an
exemplary application of this model to the simulation of various technological routes for
the hot strip rolling process. Finally, the outputs of these simulations were utilized as an
input for modelling phase transformation during various cooling cycles. This example of
an application of modelling summarizes the paper’s contents.
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2. Constitutive Model Based on Internal Variables

Numerous models of materials’ response during hot forming that were developed in
the second half of the 20th century only used external variables as arguments in models [37].
In these models, the flow stress is a function of process parameters (e.g., temperature, strain
rate), which are grouped in the vector p: σp = f(p). The weak point of these models is that
they do not account for the history of the process. Whenever the temperature or the strain
rate change rapidly, the calculated flow stress immediately moves to a new equation of
state and is a function of the new values of the external variables. On the other hand, it
was observed experimentally that the material’s response is delayed [38]. This delay is
more significant for pure metals, but it was also observed for alloys (steels) [39]. These
observations led to the development of the models based on the internal variables (IVM).
In the IVM, the output is a function of time t, with some process parameters p and internal
variables grouped in the vector q: σp = f(t,p,q). Since the internal variables represent
the state of the material, the IVMs account for the delay of the change in this state due
to kinetics of the changes of the microstructure. Dislocation density is the main internal
variable. Below is a brief introduction and physical background for modelling deformation,
based on the dislocation theory.

2.1. Deterministic Model

Introduction of the movement of dislocations as a mechanism for plastic deformation
is attributed to Taylor who, in 1934, formulated the expression of the shear stress of
the material [40]. His theory has become a basis for all subsequent models. The model
presented in (1) originates from the KEM (Kocks–Estrin–Mecking) approach [41,42]. In this
approach, the evolution of dislocation populations governs the flow stress and competition
of storage and annihilation of dislocations during plastic deformation controls a hardening.
After discretization in time, the evolution of the dislocation density ρ(t) is described by
the equation:

ρ′(t) = A1
.
ε− A2ρ(t)

.
ε

1−a7 (1)

where: t—time,
.
ε—strain rate, A1 = 1/(bl), b—length of the Burgers vector, l = a1Z−a2—

mean free path for the dislocations, Z—Zener-Hollomon parameter, A2 = a3 exp[−a4/(RT)],
R—gas constant, T—temperature in K, a4—activation energy for self-diffusion, a7—strain
rate sensitivity of the dynamic recovery, and a1, a2, and a3—other coefficients.

According to Equation (1), during deformation, the dislocation density increases
monotonically until the state of equilibrium between hardening and recovery is reached.
The KEM model has been developed during the last few decades with a focus ranging
from phenomenological solutions [43] to distinction between various types of dislocations
(mobile, trapped) [44]. Several dislocation density reaction models were applied to describe
the deformation of various superalloys, such as Ti-alloys [45] and Ni-alloys [46]. The
effect of reverse deformation on the evolution of dislocations was investigated in [47].
Several researchers investigated deformation at lower temperatures [48] when recovery is
a dominant softening mechanism.

The theory behind Equation (1) is suitable for modelling processes in which dislo-
cation interactions result in an immediate response of the system. This is true only in
the case of the Dynamic Recovery (DRV). In reality, however, an excess of stored energy
may lead to Dynamic Recrystallization (DRX) which, in turn, implies a delay in the re-
sponse of the system. Introducing the DRX follows the one-internal variable model of
Sandström and Lagneborg [49]. The required excess of the energy accumulates and can be
mathematically simulated by the modification of Equation (1), with a time needed for the
development of the dislocation population (stored energy) to a point at which widespread
elimination of dislocations is observed. This time is called the critical time for the DRX. The
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numerical solution of this problem was proposed in [50]. In this model ρ(t) satisfies the
following equation:

ρ′(t) = A1
.
ε− A2ρ(t)

.
ε

1−a7 − A3ρ(t)a6 ρ(t− tcr)
.
ε

1−a7 · 1(tcr ,+∞)(t) (2)

where: tcr—time at which recrystallization begins, as a consequence of reaching critical dis-
location density ρcr and, A3 = a5exp[−a6/(RT)], a6—activation energy for recrystallization,
a5—coefficient, and 1(tcr ,+∞)(t)—indicator function of (tcr,+∞). The indicator function
represents the delay in response to the change in processing conditions as it switches on the
last part of the equation when t > tcr. Consequently, the Equation (2) is a delayed differential
equation (DDE) with respect to time. Besides the numerical solution for this equation,
a detailed theoretical analysis of this equation in the case when

.
ε = 1 was performed

in [51]. Classical approaches to the ordinary differential equations (ODE), presented in the
literature e.g., [52,53], require some regularity of right-hand side function, usually Lipschitz
condition, which is not satisfied by (2). Therefore, Ref. [51] also contains rigorous analysis
of the error for the considered equations. It is also interesting that while [54] shows that
simple DDEs in the form of (2) cannot be easily used in the modelling of biological or phys-
ical phenomena, a natural application to materials science is discussed in [51]. Specifically,
it appears that admissible solutions of (2) for the case when

.
ε = 1 exist are bounded and,

furthermore, when a8 ∈ {0, 1}, it is possible to derive the exact formulas for tcr, which is
the time when the recrystallization occurs (Equation (15) in [49]):

tcr =
1

A2
ln

(
ρ0 − A1

A2

ρcr − A1
A2

)
(3)

It is also possible to provide exact mathematical formulas for ρ(t), the dislocation
density (Equations (17) and (18) in [49]):

ρ(t) = exp(−A2(t− ntcr)) ·
(

φn−1(ntcr) +
∫ t

ntcr
exp(−A2(s− ntcr)) · (A1 − A3φn−1(s− tcr))ds

)
(4)

for t ∈ [ntcr, (n + 1)tcr] for a8 = 0 and

ρ(t) = exp
(
−
∫ s

ntcr
A2 + A3φn−1(s− tcr)ds

)
·
(

φn−1(ntcr) + A1 ·
∫ t

ntcr
exp

(∫ s

ntcr
A2 + A3φn−1(u− tcr)du

)
ds
)

(5)

for t ∈ [ntcr, (n + 1)tcr] for a8 = 1 with the initial value ρ(ntcr) = φn−1(ntcr) in both cases.
Unfortunately, those equations are in the integral form; however, since they exist and are
unique, it is justified to use the numerical approximation. Additionally, in [49] authors
present a detailed error analysis of the Euler method for DDEs of this kind (Equation (2)
satisfies the required conditions, see Lemma 3.1 and Remark 3.7 from [49]). With the
auxiliary ODE, the upper bound on the Euler method for a specified horizon can be
estimated, as shown by Theorem 3.2 in [49]. The consequence of this analysis is that unique
solutions exist for the real-world parameter ranges, which can be efficiently approximated
by the Euler method. This ensures correctness of conclusions from numerical simulations.

Beyond the evolution of the internal variables, the solution of the Equation (2) allows
calculation of the flow stress σp accounting for softening due to recrystallization and
recovery. The flow stress is proportional to the square root of the dislocation density:

σp(t) = a6bG
√

ρ(t) (6)

where: a6—coefficient, depending on the material, and G—shear modulus.
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2.2. Case Study—Deterministic Internal Variable Model

As [51] had the rigorous error analysis for the Euler method performed and the
stability of this method investigated, it could be confidently applied to a real industrial
process. Numerical tests were conducted on a more complicated equation than (2), with
strain rate, temperature, and other parameters defined as time dependent. The model
coefficients were obtained for DP steel by inverse analysis for the experimental data (hot
compression of cylindrical samples performed at constant temperatures and strain rates).
The inverse algorithm specified in [37] was also applied. As an example of an application,
we considered the industrial process of hot strip rolling because of its heterogeneity of
deformation. We decided to use DP steel as a material for the numerical tests. Roll pass
data are given in [51]. To calculate distributions of strains, stresses, and temperatures in the
roll gap, the authors of [51] used the Thermal–Mechanical Finite Element (FE) model in the
macro scale, which is described in detail in [37]. The Levy–Mises flow rule was used as the
constitutive law:

σ =
2
3

σp
.
εi

.
ε (7)

where: σ,
.
ε—stress and strain rate tensors, respectively,

.
εi—effective strain rate, and

σp—the flow stress provided by (6). An effect of this approach is briefly presented below.
Distributions of the strain, the strain rate and the temperature in the roll gap, calculated

by the FE code, are shown in Figure 1. Since the process is symmetrical with respect to
the horizontal axis, only a top part of the roll gap is shown. Equation (2) was solved
along the flow lines in the roll gap using current local values of the strain rate and the
temperature calculated by the FE model. The results for the two lines—one located in
the center of the strip and the other 2 mm below the surface—are presented in Figure 2.
Starting dislocation density ρ0 equals 104 m−2. The entry temperature is equal to 1060 ◦C.
The results were determined using the Euler method with time-dependent coefficients
A1(t), A2(t), A3(t). Analysis of these results shows that they correctly reproduce the effect
of distinct temperature and strain rate histories for the two considered areas. One can
see in Figure 2 that, in the center of the strip, while the temperature increases (Figure 1)
due to deformation heating, the dislocation density decreases as an effect of the dynamic
recrystallization. Additionally, the dislocation density in the surface increases during the
temperature decrease because of heat transfer to the cool roll. Consequently, the critical
dislocation density for DRX is higher and reached later. In the central part, the strain rate
decreases monotonically by cause of the monotonic deformation of this part. The results
from the Euler method presented in Figure 2 replicate proper material behavior in these
conditions of the deformation. For a detailed description, see [51].
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3. Stochastic Model for Hot Forming

The delayed differential Equation (2) considered in the previous section is built on
critical time tcr, which is an artificial parameter. The reason for this situation is that in a
real material, the onset of the recrystallization may occur in a different time in various
parts (various material points) and this process is highly stochastic in nature. The model
based on Equation (2) describes the process on average; therefore, it cannot completely and
adequately reproduce the stochastic behavior of the material, providing only partial insight
into the process. Beyond this, the critical time tcr is not a physical quantity. It is important
to realize that using this time in the model only allows use to average the material response
to deformation, which is a weak point of the model (2). A stochastic approach based on
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Equation (2) is a method to avoid the artificial critical time and build the model, which is
closer to the reality.

In common understanding, the recrystallization is a process which is responsible for
replacement of a deformed microstructure with high dislocation density by new grains
practically free of dislocations. In general, the recrystallization is considered a specific
type of transformation. Processes of phase changes in metallic materials are composed
of nucleation and growth stages. It means that the two phases can coexist during the
recrystallization. In the recrystallization, the deformed part of the material with increased
dislocation density is considered an old phase and the part of the material with rebuilt
microstructure and free of dislocations is regarded a new phase. Two types of recrystal-
lizations are distinguished. The first is dynamic recrystallization (DRX), which occurs
during the deformation. The second is static recrystallization (SRX), which occurs after the
deformation. In many industrial processes, recrystallization is considered a phenomenon
which, to a large extent, determines the final microstructure and mechanical properties of
the alloys.

3.1. State-of-the-Art in Stochastic Approach to Modelling Recrystallization

The research on recrystallization dates back to the 19th century; the physical basis
of the theory of the recrystallization was summarized in [55]. During hot deformation of
metals and alloys, a competition of storage (strain hardening) and annihilation (recovery)
of dislocations leads either to saturation (for high SFE—Stacking Fault Energy) or tends
to increase the energy stored in the material (for low SFE). When the energy stored in the
microstructure is high enough, new grains nucleate. In parallel, migration of grain bound-
aries occurs as a result of capillary effects and stored energy gradients across interfaces [56].
Combining those mechanisms leads to the so-called Dynamic Recrystallization (DRX) [55].
The tendency toward DRX increases with decreasing Zener–Hollomon parameter. Recrys-
tallization can also occur at relatively lower temperatures after deformation (SRX).

Different deterministic mean-field phenomenological models of recrystallization,
based mainly on the JMAK (Johnson–Mehl–Avrami–Kolmogorov) equation, were pro-
posed during the latter half of the 20th century. The predictive capabilities of these models
are limited and they are constrained to average values of microstructural features. The
development of numerical methods led to more sophisticated models that explicitly re-
produce microstructural evolutions. These are the so-called full-field models based on
phase-field or Cellular Automata and LSM approaches. The full-field models accurately
describe recrystallization; however, a high computational cost is their major limitation. In
contrast, the main advantage of all mean-field models is their very low computational cost.

The problem of the stochastic character of the nucleation during recrystallization has
been studied by researchers [57]; a majority of the published solutions are dedicated to the
full-field models, in which microstructure is represented explicitly by the Cellular Automata
space [58] or by the Representative Volume element (RVE) [59], with the Level Set Method
applied to describe the motion of the interface [60]. Extended crystal plasticity was used
in [57]. Several researchers attempted to capture the stochastic nature of recrystallization
by adopting an MCP-like approach (Monte Carlo–Potts) [61]. A comprehensive review of
these models can be found in the PhD thesis [62]. As has been mentioned, the full-field
models require long computing times and their application to the optimization of processes
is inefficient. Stochastic mean-field models can be proposed as a compromise between
deterministic phenomenological laws and full-field models.

As far as stochastic mean-field recrystallization models are considered, the stochastic
vertex model of the recrystallization is proposed in [63]. In this model, the structure of
grains is defined by a set of vertices (triple points). It is assumed that a grain boundary can
move during recrystallization only if the stored energy difference between two neighboring
grains is greater than some critical value. The deterministic equations of triple point
movements are replaced by the Monte Carlo model. The model of [63] was applied to
predict the recrystallization texture of copper.
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Few mean-field solutions are based on an implicit description of the microstructure by
a set of representative grains defined by their size and dislocation density [64]. Each grain
is considered in a Homogeneous Equivalent Medium (HEM) and evolution is governed by
its interaction with the HEM. This model was used to describe recrystallized fractions and
grain size distributions, though the agreement with the measurements is poor. This poor
agreement is due to the fact that all grains which have nucleated at a given time have the
same size and dislocation density. In contrast, in a real microstructure, each grain develops
depending on its neighborhood. To eliminate this drawback, in [25] a topological approach
for the mean-field stochastic modelling of DRX was proposed. The authors named their
model NHM (NeighborHood Model). The NHM is an upgrade of the model proposed
in [64] based on the consideration of a particular neighborhood for each grain instead
of the whole average microstructure as HEM. Presented simulations confirmed the low
computing cost of the HEM, which enables the simulation of the microstructural evolutions
in less time than full-field models.

3.2. Mathematical Background

A model that incorporates the stochastic character of the phenomena, thanks to the
application of the Monte Carlo method, may predict probability distribution of parameters
(dislocation density, grain size). This is its main difference to the models without stochastic
characters, which were only able to predict parameters’ averages. Nevertheless, when
using it we need to determine the number of Monte Carlo realizations in order to properly
recover properties of real process in the histogram. Before this action, we need to establish
a method for measuring the performance of the model.

As has been mentioned in the introduction, minimizations of the computation cost
is one of crucial concerns in modelling. However, in this model it should be taken with
extreme caution. Due to a limited number of solutions, a reliable histogram could not be
created. That problem stems from the possibly huge impact of the random factor. Moreover,
the results are not reproducible. Thus, to find the optimal number of solutions and bins,
we decided to use Mean Average Percentage Error and its slightly modified version,
Weighted Mean Average Percentage Error, to describe distance between histograms, giving
us information about the differences between the considered bins. Moreover, to be more
precise, we used Earth Mover’s Distance ranking function, which is more sensitive in
detecting shape differences in the compared histograms. A detailed description of this
approach can be found in [35].

The big-picture overview follows several steps. Firstly, we simulated the process using
the model and, as a result, obtained distribution through a histogram. We then collected
analogous data from the experiments and represented them on a histogram. The solution
depended on a formulation of the objective function measuring the difference between the
two histograms [35] for a given parameter, namely those delivered by the model with the
coefficients returned by optimization and obtained from experimental measurements. An
arbitrary ranking metric d for measuring the distance between distributions (histograms),
e.g., Bhattacharyya distance dH [35,65], might be used in this context. Consequently, the
objective function defined in this way can be associated with a measure of the optimization
quality for the stochastic problem. Importantly, the definition of the objective function
chosen has to be adequate for the considered problem.

3.3. Main Equations of the Model

As we earlier described, a desired extension of the Equation (2) is introducing stochas-
tic variables and combining phenomenological microstructure evolution equations with
statistics accounting for the random character of the recrystallization. The stochastic
approach is based on substituting the critical time tcr with a nucleation probability. To
complete this task, authors of [51] first presented the Equation (2) in a finite difference form:

ρ(ti) = ρ(ti−1) +
(

A1
.
ε− A2ρ(ti−1)

.
ε

1−a7 − A3ρ(ti−1)
a6 ρ(ti−1 − tcr) · 1(tcr ,+∞)(ti−1)

)
∆t (8)
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where: ti—the time of ith iteration and ∆t—a time step.
The artificial delay term used in the model (8) is now replaced by a more realistic

stochastic variable ξ(ti). This way, the evolution of the dislocation density is no longer a
deterministic function of time, becoming stochastic:

ρ(ti) = ρ(t0)(1− ξ(ti)) +
(

ρ(ti−1) +
(

A1
.
ε− A2ρ(ti−1)

.
ε

1−a7
)

∆t
)

ξ(ti) (9)

This new model contains analogous elements, as shown in deterministic model (1). In
particular, we still use coefficients A1 and A2 which, similarly to (1), represent hardening
and recovery in the material (see [51] for more details). At the same time, we removed
coefficient A3 connected with critical time in (2); its role is taken by ξ(ti). Its distribution is
defined by the following formulas:

P(ξ(ti) = 0) =

{
p(ti) if p(ti) < 1
1 otherwise

P(ξ(ti) = 1) = 1− P(ξ(ti) = 0)
(10)

In Equation (10), the function p depends on the present state of the material at a
given time step, which strongly affects the probability of recrystallization of a material.
This function was defined based on the expert knowledge about nucleation probability
during recrystallization [57]. To avoid long computing times, the formula for probability
was limited only to statistical evaluation of selected phenomena (stored energy, grain
boundaries) by neglecting others (crystallographic orientation). In the first approach, the
probability of the nucleation was based on the simple homogeneous Poisson Point Process,
leading to the following equation:

p = a4ρa6
3γτ

D
exp

(
−a5

RT

)
∆t (11)

In Equation (11), coefficient γ represents the migrating boundary area related to the
grain size. The time dependence of this fraction is discussed in [49]. It is the effect of two
opposing phenomena. The first is an increase in the fraction of the grain boundary area
which is migrating (1 − exp(X(ti)). The second is the impingement factor (1 − X(ti)), which
takes into account the fact that the migrating boundary encounters ever-more regions
which have already been recrystallized. Since in the Poissonian model of the nuclea-tion
the recrystallized volume fraction X(ti) is not known for individual Monte Carlo points, it
was substituted by the probability P(ξ(ti−1) = 0). Thus, in the first approach the migrating
boundary area related to the grain size is expressed by the following equation:

γ(ti) =
(
1− exp(−P(ξ(ti−1) = 0)− q)a8

)
(1− P(ξ(ti−1) = 0)) (12)

where: q—a small artificial number to avoid zero value of γ in the case P(ξ(t−1) = 0) = 0.
The authors of [57] set it to q = 0.1 and also define ξ(t0) = 0.

The Equation (9) changed deterministic values of ρ into stochastic variables with
some probability distribution in each step. Since we do not have an analytic formula, an
alternative approach to reveal these distributions is conducting Monte Carlo simulations.
Namely, we compute a large number of particular trajectories of (9), depending on randomly
generated values of ξ(ti) according to rules in (13). Initial values ρ(t0) are drawn from the
Gauss distribution, with the expected value selected as 104 m−2 for start time t0 = 0. The
results of these computations were then aggregated into histograms, one for each time
step ti.

In the second approach, the nucleation probability was based on the non-homogeneous
Poisson Point Process, assuming that the growing recrystallized grains cause a decrease in
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the nucleation of new grains. The following equation was proposed as a substitution of the
Equation (12):

γ(ti) =
(
1− exp(−X(ti−1)− q)a8

)
(1− X(ti−1)) (13)

where: X(ti−1) = nX/nMC, nX—number of points, which have recrystallized before the time
ti, and nMC—number of Monte Carlo points.

The model contains 16 coefficients, which are grouped in the vector a. The coefficients
were identified using an inverse solution for the experimental data, some of which were in
the form of histograms describing the grain size.

3.4. Identification

A standard method in modelling is the so-called inverse problem [66,67], where we
try to identify coefficients of the model. The model we introduced earlier depends on the
coefficients a = {a1, . . . , a16}. The general algorithm of identification is well known [37] and
beyond this survey. It is sufficient to say that we have to perform an optimization task, with
vector a becoming input variable of objective function [31]. The authors in [35] proposed
this function to be:

Φ(a) = d(Hc(a), Hm) (14)

where: Hc(a)—histogram calculated on the basis of several model simulations of, Hm—
histogram measured in the experiment, and d—a ranking function comparing two his-
tograms.

For practical reasons, the approach in [35] relied on measurements of forces in the
compression tests which, using inverse algorithm [67], were transformed to the flow stress
(σm). As its counterpart, model flow stress (σc) was obtained by the application of (6). This
way, an extended version of (15) was proposed as an objective function:

Φ(a) = Φσ(a) + ΦD(a)

Φσ(a) = wσ

Nt
∑

i=1
d(σci(a), σmi)

ΦD(a) = wD
Nt
∑

i=1
dH(Hci(a), Hmi)

(15)

where: Nt—number of tests and wσ, wD—weighted coefficients.
In Equation (16), the distance d(σci(a), σmi) between measured and calculated average

dislocation density in the i-th experiment was measured as the mean square root error
(MSRE):

d(σci(a), σmi) =
1

Ns

√√√√ Ns

∑
j=1

(
σcij(a)− σmij

σmij

)2

(16)

where: Ns—number of sampling points for measurements of the loads in the i-th test.
The Bhattacharyya metrics [65] were used to calculate the distance between two

histograms d(Hci(a),Hm). We refer the reader to [31] for more details on the Inverse
Analysis (IA) for the stochastic model and the Sensitivity Analysis (SA), which preceded
inverse analysis.

3.5. Numerical Tests

The numerical tests performed in [35] and the main conclusions following from these
tests are described below. The objective of the tests was to select the optimal numerical
parameters of the solution and evaluate the reliability of the inverse solution for the
objective function based on the histograms. Simulations for various numbers of bins in the
histograms (nb), Monte Carlo points (nMC), and time steps (nt) were performed and the
following optimal values were selected: nb = 10 and nt = 20,000. In order to test the impact
of a time step on a solution, the cumulative probability of dislocation density reduction
after the given time was computed in [35]. Roughly speaking, it is the probability that
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ξ(ti) (Equation (10)) obtained the value ξ(ti) = 1 at least once during the process. While
probabilities in Equation (10) depend on length of time step, the results of the numerical
tests in [35] showed cumulative probabilities that looked similar despite different time steps.
The optimal number of time steps was obtained by adapting these steps to the temperature
variations so that the time step does not exceed 0.1 s and the temperature change in the
one-time step does not exceed 0.1 ◦C. The optimal parameters were selected by searching
for the balance between the accuracy (repeatability of distributions, convergence) and the
computing time. Five various metrics were analyzed in [35] as a measure of the distance
between histograms and, as a result, the Bhattacharyya function [65] was selected as the
best performing. Its utility was independent of the optimization method (two were tested:
Particle Swarm Optimization (PSO) and Nelder–Mead Simplex Method).

4. Case Studies—Stochastic Model

The stochastic model we described earlier will be now applied to a simulation of the
two hot forming processes. The first is a laboratory compression test with varying strain
rates. The second is the industrial hot strip rolling process.

4.1. Varying Strain Rate Test

In this test, the strain rate was changed by order of magnitude at various stages of the
deformation. The objective of the simulations of this test was to show the model’s capability
to account for the history of the deformation and predict a delay in the material’s response,
which has been observed experimentally by many researchers [38,39]. Compression of the
sample measuring φ10 × 12 mm was considered. The material was carbon steel S355J2
(see [68] for the coefficients of the model for this steel). Below we present the results for
the tests when the strain rate is changed by an order of magnitude twice during the total
strain of 0.8. The first change between 0.1 s−1 and 1 s−1 was at the strain of 0.4 and the
second change between 1 s−1 and 10 s−1 was at the strain of 0.6. Symmetrically, simulations
were performed for the strain rate decreasing from 10 s−1 to 1 s−1 and to 0.1 s−1. The
average austenite grain size after pre-heating was 35 µm and the sample temperature was
1150 ◦C, which meant that, in the slow test at the strain of 0.4, the dynamic recrystallization
(DRX) had already begun. The Finite Element (FE) program was applied to calculate
current local temperatures and strain rates in the sample, accounting for the inhomogeneity
of deformation. Our in-house FE program [69] was used and it was possible to solve
the stochastic model in each Gauss integration point in the FE mesh using calculated
temperatures and strain rates as inputs. The results for the center of the sample are
presented below. Changes in the flow stress in the varying strain rate tests are shown in
Figure 3. A delay in the material response is well seen in this figure. Histograms of the
dislocation density after these tests are shown in Figure 3b and histograms of the grain size
are in Figure 3c. The histograms’ full bars represent dislocation density and grain size after
the constant strain rate tests. The bars with a pattern represent dislocation density and the
grain size after the varying strain rate tests.

It is seen in Figure 3b that DRX is launched during the slow test (
.
ε = 0.1 s−1). The

recrystallized volume fraction is above 60%. However, after the strain of 0.4 the strain rate
is increased and the effect of the DRX is negligible. In contrast, when the strain is decreased
during the test to 0.1 s−1, the flow stress (dislocation density) decreases below the value
predicted for the constant strain rate of 0.1 s−1 test. This outcome is due to the fact that,
during the fast part of the test, energy is accumulated in the material (dislocation density
increases). This energy accelerates the DRX during the final slow part of the test. This
observation is confirmed by Figure 3d, where changes of the dislocation density right after
the strain rate change are shown.
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As far as the grain size is considered, an increase in the strain rate causes a decrease in
the grain size, which could be expected. The largest grain size was obtained for the tests in
which the final part of the deformation was with the strain rate of 0.1 s−1.

The general conclusion from these simulations is that after the change in the strain
rate, the state of the system had not reached the state which was predicted for the constant
strain rate deformation.

4.2. Industrial Hot Strip Rolling Process

The hot strip mill composed of a reverse roughing mill, 6-stand continuous finishing
mill and 2-section laminar cooling was considered [70]. Rolling of the strip 1500 × 3 mm
was simulated. The material was steel DP600 with the symbol S406 in publication [71]. The
work roll radius was 400 mm in all stands and the distance between stands was 5 m. The
rolling schedule for the finishing mill was: 67→ 40.6→ 19.1→ 9.4→ 5.4→ 3.7→ 3 mm.

Two rolling strategies were considered: (i) classical rolling with the end of rolling
temperature about 900 ◦C (V1); and (ii) rolling with an ultra-fast cooling system between
stands 4 and 5 and stands 5 and 6. The temperature at the end of rolling was below 850 ◦C
(V2). In both cases, phase transformations during the following laminar cooling were
simulated. Calculated time-temperature profiles and load parameters for both variants
are shown in [70]. An small effect of additional cooling between stands on loads was
evaluated in that publication. The selected results obtained from the stochastic model for
the finl two passes of the finishing mill are shown in Figure 4. These results allow us to
compare different rolling strategies as far as microstructure evolution is considered. It
is seen that in the schedule V1, recrystallization is completed during all interpass times
and almost the whole material has dislocation density in the lowest bin. The results in
Figure 4c indicate that an additional cooling leads to a partial recrystallization between
stands 4 and 5 and a lack of recrystallization after the last stand. A decrease in the end
of rolling temperature causes an increase in the dislocation density at the beginning of
transformations (temperature Ae3).

Comparison of the grain size for the two rolling strategies shows that a decrease in the
temperature in stands 5 and 6 leads to a decrease in the austenite grain size after rolling. It
can be concluded that the model can be used to predict histograms of the micro-structural
features as a function of the process parameters. The microstructural features predicted by
the model have a direct influence on the phase transformations during cooling.
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5. Future Applications of the Stochastic Model

The control of phase transformations determines the properties of hot-rolled products
during cooling. In order to account for the effect of the heterogeneity of the microstructure
on the properties, the stochastic model of the phase transformation is needed. A model
which considers the stochastic character of nucleation is the objective of our current research.
In the meantime, we performed simulations of phase transformations using a deterministic
model with the stochastic input in the form of histograms of the dislocation density and the
grain size as an input. Simulations of the laminar colling of strips and cooling of rods in
the Stelmor system were performed; the results are described in the following two sections.
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5.1. Laminar Cooling of Hot Rolled Strips

Phase transformations were simulated during laminar cooling using a deterministic
model with stochastic input (histograms calculated by the stochastic model for hot defor-
mation). The deterministic model of phase transformations in the steel DP600 is described
in [71]. The typical laminar cooling system composed of two sections and described in [72]
was considered. This system allows a three-stage cooling sequence: fast/slow/fast cooling.
In consequence, the DP microstructure composed of ferrite and martensite can be obtained.
Since the input data for the deterministic phase transformation model were stochastic, the
calculated phase composition was obtained in the form of histograms, which are shown
in Figure 5a. It is seen in this figure that the deformation of the austenite (V2) results
in an increase in the ferrite volume fraction. Beyond the ferrite, martensite and a small
amount of bainite (below 0.02) were predicted by the model. The ferrite grain size was also
calculated by the model. The deterministic equation proposed in [73], which accounts for
the effect of the austenite deformation, was used. Since the input parameters (grain size,
dislocation density) are stochastic; similarly to the previously presented experiments, the
ferrite volume fractions and the ferrite grain size were obtained in the form of histograms.
As expected, deformation of the austenite accelerates nucleation of the ferrite and the
ferritic transformation is faster. As a consequence, volume fraction of ferrite is larger for the
rolling schedule V2 (Figure 5a). Moreover, the distribution of the ferrite volume fraction can
be considered as an uncertainty of the predictions due to uncertainty in the microstructural
parameters after hot forming. Analysis of the results in Figure 5b shows that finer ferrite
grain size was predicted for the rolling schedule V2.
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5.2. Cooling of Rods in the Stelmor System

Simulation of phase transformations during cooling in the Stelmor system was per-
formed. As it has been outlined in the previous section for the hot strip rolling, a determin-
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istic phase transformation model with stochastic input was used. Simulations of the last
few passes during the hot rolling of rods were performed by the Thermal–Mechanical FE
program coupled with the stochastic model of the microstructure evolution; histograms of
the dislocation density and the grain size after rolling were also calculated. Details of this
process are described in [74] and are not repeated here. Steel S355J2 was the investigated
material. Since the recrystallization was completed after the last stand, only the effect of the
grain size on the transformations kinetics was considered. The Stelmor system described
in [74] was considered and the accelerated cooling cycle W440 shown in Figure 4 in that
publication was simulated. The histograms of the austenite grain size after rolling are
shown in Figure 6a. It is seen that the grain size has reasonably wide range of variance,
which is due to non-uniform rolling conditions and heterogeneity of the microstructure
after rolling. The histogram of the ferrite volume fraction is shown in Figure 6b. The
remaining material was pearlite. The histogram in Figure 6b can be considered as an uncer-
tainty in the prediction of the phase composition due to heterogeneity of the microstructure
after hot rolling.
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6. Summary

The main objective of this survey paper was a review of the stochastic modelling
of the microstructure during hot strip rolling that is used in contemporary research. As
an example of applications, we presented a stochastic model for the hot deformation.
When this model is coupled with the FE program, it can be applied to any hot forming
process. The phase transformations part is still developed in present research, providing
a ground for further advancements. Considered approach defines a deterministic phase
transformation model with stochastic input data (histograms of the dislocation density and
the grain size calculated by the hot deformation model). Let us briefly summarize main
aspects of presented models and applications:
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• Capability to predict histograms of different microstructural features instead of their
average values is the main advantage of the model. It reflects real-world situa-
tions more adequately than models using averaged values of dislocation density
or grain size.

• All considered models are classified as mean-field models that do not needing explicit
representation of the microstructure. In consequence, their computing costs are low.

The numerical tests of the model allowed us to select optimal numerical parameters,
which give a balance between accuracy and computing costs. The following observations
were made:

• Due to the stochastic nature of Equation (9), the repeatability of histograms depends on
the number of points. However, it can be kept at a reasonably low level depending on
the design of the experiment. In considered cases, we observed that 20,000 simulations
with 10 bins allowed us to reduce differences between generated histograms to the
level of 3%.

• In the Inverse Analysis, error on target to computed histogram was decreased to 6%,
which is a reasonable score bearing in mind that comparison of the two histograms at
exactly the same parameters can result in 3% difference.

The presented models behave well on the varying strain rate test and results of
validation are satisfactory. Predictions of the models were in qualitative agreement with
published information about these tests, which ensures the utility of the considered models
in practical applications in material science. In particular, presented models can be used
to simulate industrial hot strip rolling. The results are in agreement with our knowledge
about this process, confirming the model’s capability to support a design for the optimal
rolling technology.

Accounting for the random character of the nucleation during phase transformation is
still an open problem for further research. When successful, it can lead to a more accurate
description of metallurgical processes, keeping computing times low.
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