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Abstract: Purpose: The primary stability of a dental implant is critical for successful osseointegration
during immediate loading. The cortical bone should be prepared to achieve enough primary stability,
but not overcompressed. In this study, we investigated the stress and strain distribution in the bone
around the implant induced by the occlusal force applied during immediate loading at various bone
densities by the FEA method to compare cortical tapping and widening surgical techniques. Materials
and Methods: A three-dimensional geometrical model of a dental implant and bone system was
created. Five types of bone density combination (D111, D144, D414, D441 and D444) were designed.
Two surgical methods—cortical tapping and cortical widening—were simulated in the model of the
implant and bone. An axial load of 100 N and an oblique load of 30 N were applied to the crown.
The maximal principal stress and strain were measured for comparative analysis of the two surgical
methods. Results: Cortical tapping showed lower maximal stress of bone and maximal strain of bone
than cortical widening when dense bone was located around the platform, regardless of the direction
of the applied load. Conclusions: Within the limitations of this FEA study, it can be concluded that
cortical tapping is biomechanically more advantageous to the implants under occlusal force during
immediate loading, especially when the bone density around the platform is high.

Keywords: dental implant; finite element analysis; cortical tapping; cortical widening; bone density

1. Introduction

Primary stability is critical for successful osseointegration of implants, especially dur-
ing immediate loading. Implant stability is considered an important factor for the healing
process, osseointegration and eventual success of the implant [1,2]. Primary stability is
decided by the initial fixation force determined by mechanical properties immediately after
implant placement. Secondary stability, on the other hand, is determined by bone forma-
tion through biological reactions at the bone–implant interface [3]. The factors influencing
implant primary stability can be classified into the quantity and density of bone [4], the
surgical technique [5–7], and the design and surface of the implant fixture [8–10].

Cortical bone is of considerable importance for the primary stability of implants [11,12].
Studies have shown that the presence of crested cortical bones has a beneficial effect on
stabilizing the implant from micromotion that deteriorates the stability at the interface
between bone and implant in the early stages of bone healing [13]. Mosavar et al. [14]
suggested that dense cortical bone, especially the bone adjacent to the first thread, experi-
ences the maximum strain upon insertion and bears maximum compressive force and shear
stresses. Engaging the implant threads into the cortical layer seems to allow higher implant
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stability and minimize micromotion, and possibly bear the concentrated loads in the crestal
area. Meanwhile, doubts that overcompression or the induced high stresses during implant
placement may provoke early periimplant bone resorption and implant failure are raised
if this fixation in the crestal cortical bone remains over time [15–17]. The crestal region
of an implant, often composed of dense cortical bone with a minimal blood supply, is
more susceptible to bone necrosis when excessive pressure is applied during placement.
Excessive torque placed on an implant can result in high levels of strain transmitted to
the adjacent bone, applying irreversible damage in the form of microcracks and plastic
deformation that may induce ischemia with subsequent necrosis or sequestrum formation.
The high degree of compression of cortical bone generated by the implant is known to
cause cell death and necrosis, and ultimately may lead to bone resorption in the cortical
bone layer [18,19]. Therefore, although cortical fixation is crucial in obtaining primary
stability, excessive stress on the cortical bone around the implant fixture produced by the
torque applied when placing implants can induce bone resorption [19].

To prevent excessive compression on dense cortical bones, precise surgical procedures
should be followed in order not to insert the implant with a torque value that exceeds the
manufacturer’s recommendations, including adequate irrigation. Additionally, a quar-
ter reverse turn of the implant after insertion can minimize stress on the adjacent bone,
especially when using tapered implants [18].

Additional cortical drilling steps have been traditionally utilized to prevent excessive
torque values during implant insertion. Brånemark used the countersink drill as a tradi-
tional protocol for cortical bone [20]. Pretapping, which prepares the implant thread profile
prior to implant placement, has been another method to prevent overcompression of dense
cortical bone [18,20,21]. However, it is important to keep in mind that the above surgical
methods for preventing excessive pressure were based on the delayed loading protocol.
This requires an unloaded healing period of 3–6 months, during which secondary stability
increases, and thus sufficient initial stability is not a prerequisite [20,22,23].

In immediate loading protocols that have been widely used in recent years, occlusal
force is applied on implants that are not completely osseointegrated. Stress and strain
magnitude and distribution induced by occlusal force could have an impact on the stability
during healing and the success of the implant. Previous studies have shown that implants
placed after cortical drilling or pretapping in low-density bone lack primary stability
due to loss of coronal fixation, and may be inadequate for early or immediate loading
protocols [4,24].

Therefore, cortical bone should be prepared so that the implant can achieve good
primary stability in its crest sufficient to withstand the occlusal load, but not be overcom-
pressed to prevent bone resorption or osteonecrosis [11,12,16]. However, there have been
no clear guidelines on how to achieve this optimal fitting in cortical bones [25].

In this study, we investigated the stress and strain distribution in the bone around
the implant induced by the occlusal force applied during immediate loading according to
surgical methods at various bone densities by the FEA method to compare cortical tapping
and widening surgical techniques. The hypothesis of this study was that no significant
differences would be found in the stress and strain distribution in the bone around the
implant induced by the occlusal force applied between the two surgical methods of cortical
widening and cortical tapping.

2. Materials and Methods

The three-dimensional geometrical model of the dental implant and bone system
was created using CAD software (Solidworks 2016; Dassault Systemes SolidWorks Corp.,
Waltham, MA, USA). The design of one dental implant (IS-II; Neobiotec Inc., Seoul, Republic
of Korea), which has an S-shaped collar and 0.8 mm thread pitch, was used. An implant
fixture of 10 mm length and 4.5 mm diameter, abutment of 8 mm length, and abutment
screw of 8.8 mm length and 1.95 mm diameter with a 2.3 mm diameter screw head and
0.4 mm pitch were designed in the software (Figure 1). The monolithic zirconia crown and
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0.1 mm cement thickness between the abutment and crown were assumed for prosthesis
(Figure 2). The physical properties of each element in the model were adopted with
reference to the relevant literature, as shown in Table 1 [26–28].
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Figure 1. Three-dimensional CAD model of dental implant system used in this study: (a) abutment,
(b) implant fixture, and (c) abutment screw.
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Figure 2. Multi-cross-sectional view of second molar surgical model with two surgical techniques.
Each surgical model consists of abutment, fixture, abutment screw, crown, cement and bone. The
bone was divided into three regions of 1©– 3© according to height. (a) Surgical model using cortical
tapping, (b) Surgical model using cortical widening.

Table 1. Material properties of the FEA model.

Types Materials Young’s Modulus (MPa) Poisson’s Ratio

Bone
D1 9500 0.3

D4 690 0.3

Abutment Ti-grade 5 114,000 0.33

Fixture Ti-grade 4 105,000 0.34

Abutment Screw Ti-grade 5 114,000 0.33

Crown Zirconia 205,000 0.19

Cement Resin 10,310 0.35

The bone model was simplified in the form of a cuboid of 12 mm in height and
15 mm × 15 mm in width and length. Previous studies have classified the density of the
alveolar bone into four categories—D1 to D4 [28–32]. In this study, different-density bones
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were combined to reproduce situations that can be encountered in actual clinical practice.
The bone was divided into three regions according to height, and one bone density among
the lowest D1 and highest D4 of bone density was set for each region (Figures 2 and 3). A
total of five types of bone density model (D111, D144, D414, D441 and D444) were designed
as shown in Table 2.
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Figure 3. (a) 200 N preload of force to tighten the abutment screw to the fixture, (b) mastication
load applied in axial and oblique (45◦) directions. The bone was divided into three regions of 1©– 3©
according to height.

Table 2. Classification of bone model: three bone regions with two bone densities.

Types Region 1© Region 2© Region 3©

D111 D1 D1 D1

D144 D1 D4 D4

D414 D4 D1 D4

D441 D4 D4 D1

D444 D4 D4 D4

The two surgical methods of cortical tapping (CP) and cortical widening (CW) were
implemented as the FEA models. For the CP model, the thread shape of the implant fixture
body was formed inside the bone so that the interface between the bone and the implant
was in full contact (Figure 3). In the CW model, bone up to 3 mm deep from the surface was
removed in a cylindrical shape with a diameter of 4 mm, which was larger than the implant
diameter. From the 3 mm depth of the bone to the fixture tip, the bone was removed in the
form of the fixture shape (Figure 3).

A finite element analysis (FEA) program (ABAQUS CAE2016; Dassault Systems,
Vélizy-Villacoublay, Yvelines, France) was used to construct assembled models for each
component of the dental implant system (fixture, abutment, abutment screw), crown,
cement, and bone. The mesh of the FEA model was formed using Hypermesh software
(Altair Hypermesh v19.0; Altair Engineering, Troy, MI, USA). With reference to previous
studies, the mesh size of the bone was set within a minimum of 0.15 mm to a maximum
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of 0.75 mm, and that of the implant system was set from a minimum of 0.03 mm to a
maximum of 0.15 mm. From 0.15 mm to 0.3 mm and from 0.03 mm to 0.1 mm were set for
the mesh sizes of the crown and the cement, respectively [26,33]. Information on elements,
nodes, and mesh sizes used in the present study are shown in Table 3.

Table 3. Number of nodes and elements and mesh sizes of the components.

Components Elements Nodes
Mesh Size (mm)

Maximum Minimum

Bone (widening) 398,016 72,982 0.75 0.15

Bone (tapping) 386,123 71,233 0.75 0.15

Abutment 541,131 118,764 0.15 0.03

Fixture 790,066 146,527 0.15 0.03

Abutment Screw 502,530 93,818 0.15 0.03

Crown 147,556 30,528 0.3 0.15

Cement 42,608 14,282 0.1 0.03

A preload of 200 N was applied to the abutment screw as a force to tighten the
abutment screw to the fixture (Figure 3). To reproduce the vertical and lateral force applied
on the teeth during mastication, an axial load of 100 N and an oblique load of 30 N at
45 degrees [34–36] were applied in this study (Figure 3). An axial load of 100 N was applied
to three cusps and three fossa corresponding to 187 nodes, and a 45-degree tilted load of
30 N was applied to the three cusps through 86 nodes. The side and bottom surfaces of
the bone were fully constrained against motion and rotation in the three axes of x, y, and
z. A “tie contact” was applied to the interface between the bone surrounding the fixture
and the fixture in consideration of initial fixation. The interfaces between the inner surfaces
of the crown, cement and the abutment were constructed to be perfectly bonded. On the
other hand, a coefficient of friction of 0.5 and the “surface-to-surface” contact condition
were considered between the components of the dental implant system (fixture, abutment,
and abutment screw) [37].

The maximal principal stress and maximal principal strain were measured for compar-
ative analysis of the two surgical methods. A higher principal stress and strain value means
a higher risk of bone fracture and implant fixation failure. Peak von Mises stress (PVMS)
was measured to compare the failure risk of the implant systems, crown and cement, for
the two surgical methods.

3. Results

The maximal principal stress and maximal principal strain values in the five bone
situations with the two surgical methods are shown in Figure 4.

The maximal principal stress of CW group under axial loading was at least 64.7%
and up to 126% higher than the CP group in all types of bone, except in the D444 bone
(Figure 4a) (Table 4). The maximal principal strain of the CW group under axial loading was
higher than the CP group in all bone qualities, with a minimum of 43.4% and a maximum
of 149.4% higher bone deformation compared with the CP group (Figure 4b) (Table 4). The
CW group also showed higher stress under the 45-degree tilted oblique load in all bone
densities, with a minimum of 34.8% and a maximum of 202.9% higher values compared
with the CP group (Figure 4c) (Table 4). Similarly to the maximal principal stress results, the
CW group showed more bone deformation than the CP group in all type of bone density.
The strain of the CW group was at least 51.4% and up to 213.5% higher than the CP group
(Figure 4d) (Table 4).
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Table 4. The maximal principal stress and strain of CP and CW in five bone-quality conditions.

Type of Loading Bone Quality
Maximal Principal Stress (MPa)

CP CW

100 N at
axial direction

D111 20.52 46.39
D144 22.09 46.94
D414 7.22 12.82
D441 3.71 6.11
D444 7.27 6.96

30 N at
45 degrees

D111 22.15 67.08
D144 22.68 68.47
D414 10.14 14.02
D441 7.16 10.04
D444 8.01 10.78

Type of Loading Bone Quality
Maximal Principal Strain (×10−3)

CP CW

100 N at
axial direction

D111 2.29 5.71
D144 2.54 5.81
D414 5.74 9.95
D441 6.35 10.29
D444 7.98 11.45

30 N at
45 degrees

D111 2.46 7.71
D144 2.53 7.82
D414 8.06 14.62
D441 8.90 15.64
D444 11.08 16.77
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The stress and strain of the bone were higher when the load was applied in the oblique
direction than in the axial direction, and this was more evident in the CW group than in
the CP group (Figure 4) (Table 3). Cross-sectional views of the stress and strain values for
five different bone density and two different surgical techniques under 100 N axial load
and 30 N oblique load are shown in Figures 5 and 6.
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The CW group showed a wider area with stress of 6 MPa or more under the same load
and bone-quality conditions than the CP group (Figure 5). As for the strain, the CW group
also showed higher strain and a wider area of high strain than the CP group around the
platform and the tip of the fixture (Figure 6).

To analyze the failure risk of the dental implant system and crown for the two surgical
methods in different bone densities, the PVMS values for each component (crown, abutment,
fixture, and abutment screw) were measured, and are shown in Table 5 and Figure 7.

Table 5. The PVMS of CP and CW in five bone-quality conditions.

Component Type of Loading Bone Quality
PVMS (MPa)

CP CW

Abutment

100 N at
axial direction

D111 318.88 321.73
D144 364.34 319.12
D414 364.34 368.82
D441 362.28 367.06
D444 358.28 364.16

30 N at
45 degrees

D111 290.47 314.71
D144 291.85 316.62
D414 354.94 361.05
D441 354.51 361.08
D444 353.53 360.61

Fixture

100 N at
axial direction

D111 212.34 225.32
D144 212.03 239.54
D414 251.48 253.60
D441 251.29 253.29
D444 249.38 251.27

30 N at
45 degrees

D111 242.29 253.11
D144 242.42 252.59
D414 288.21 290.65
D441 286.75 288.94
D444 285.27 287.40

Crown

100 N at
axial direction

D111 28.84 30.48
D144 28.66 30.34
D414 31.66 31.89
D441 31.59 31.83
D444 31.45 31.78

30 N at
45 degrees

D111 33.36 33.90
D144 33.38 33.91
D414 34.22 34.30
D441 34.22 34.31
D444 34.24 34.35

Screw

100 N at
axial direction

D111 307.93 316.36
D144 309.83 317.9
D414 343.44 347.47
D441 346.03 349.76
D444 341.50 345.22

30 N at
45 degrees

D111 321.66 333.93
D144 323.20 334.69
D414 381.33 387.40
D441 378.52 384.32
D444 371.03 376.68
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Figure 7. The PVMS of each component for the 5 bone densities and 2 surgical techniques under
100 N axial load and 30 N oblique load. (a) PVMS of crown, (b) PVMS of abutment, (c) PVMS of
fixture, and (d) PVMS of abutment screw.

The CW group showed higher stresses at the dental implant system (abutment, fixture
and abutment screw) and the crown than the CP group (Table 5) (Figure 7). The stress on
the abutment under the oblique direction load decreased compared to the vertical direction
load. The stress applied to the fixture and abutment screw increased as much as the stress
applied to the abutment decreased. On the other hand, when the load was applied in
the axial direction, the stress applied to the abutment increased and the stress applied to
the fixture and abutment screw decreased (Table 5) (Figure 7). The PVMS values of the
cement showed no difference between the CW and CP groups, and those under the oblique
direction were higher than under the vertical direction.

4. Discussion

We focused on the relationship between the surgical methods and stress and strain
distribution on different bone density conditions when occlusal force was applied during
healing period before complete osseointegration. We compared two surgical techniques—
cortical tapping and cortical widening—as methods of preventing overcompression of the
bone. Cortical tapping is a method of preparing the implant thread profile into the recipient
bed of the cortical bone before implant insertion to allow pressure-free seating. To pretap,
especially on the crestal cortical bone, the cortical tapping drill is shorter than the implant
length, with its upper structure identical to the structure of the coronal part of the implant.
Cortical widening, such as countersink drilling, is performed to enlarge the crestal area
before implant insertion with a countersink drill, which has slightly larger diameter than
the implant diameter to prevent overcompression of the dense cortical bone.

The maximal stress of bone was higher with the cortical widening technique than
cortical pretapping, and it was more obvious when a high-density bone was located around
the platform of the implant (D111 and D144). Higher stress was observed when oblique load
applied than axial load in the cortical widening technique, while no significant difference
was observed between oblique and axial loads in the cortical pretapping technique. The
reason for this could be that the space was formed around the fixture platform in the
CW group and the length of the fixture engaged in the bone without the space was short
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(Figures 5 and 6). The maximal strain of the bone showed a similar trend. Higher maximal
strain of the bone was observed when using cortical widening than cortical pretapping
for all bone densities. Higher strain was observed when oblique force applied than axial
force in both surgical techniques in all bone densities, except for cortical tapping in the
dense bone located around the fixture platform. When dense bone was located around
the platform (D111 and D144), the maximal stress and strain of bone with cortical tapping
were lower than with cortical widening, regardless of the direction of the applied load. The
lower stress and strain of the bone with the pretapping technique can be interpreted such
that the fixture installed with this technique could receive lower stress in the surface of the
cortical bone around the fixture, resulting in less damage to cortical bone and consequently
a higher success rate.

The stress was concentrated in the part with high bone density due to the high modulus
of elasticity of the bone. The magnitude of the maximum stress increased significantly
when high-density bone (D1) was placed around the implant platform (D111 and D144)
than when the density of bone around the implant platform was low (D414, D441, and
D444). As for the maximal principal strain of bone, the strain rate was much larger around
the platform where the bone density around the platform was low (D414, D441, and D444)
compared with when the bone density around the platform was high (D111 and D144).
When comparing the stress and strain distribution according to the location of the high-
density bone (D144, D414, and D441), it was remarkably observed that the maximum stress
was high and maximum strain low when the high-density bone was located around the
fixture platform. Similarly to previous literature [34,37,38], our results showed that the
bone density around the platform is a critical factor for the stress and strain of bone. High
bone density around the platform is advantageous to reduce the strain on the bone, but
increases the stress on the bone around the fixture, possibly resulting in overcompression or
osteonecrosis. Therefore, a separate cortical preparation could be required for high-density
crestal bone to obtain optimal primary stability without jeopardizing the threshold level of
irreversible damage.

In this study, cortical tapping and cortical widening techniques were compared as
cortical preparation methods. Lower stress and strain on bone was observed with cortical
tapping than cortical widening, regardless of the direction of occlusal force in all bone
density conditions. The differences in stress and strain of two surgical methods was more
obvious when the density of upper bone was high (D111 and D144).

The results of our study support previous research comparing insertion torque values
of cortical pretapping and widening (drilling) techniques. In another study, higher insertion
torque values were recorded for pretapping than widening, especially for class 4 bone in
the presence of a 1 mm of cortical bone layer. The authors concluded that cortical widening
presented lower insertion torque, because the cortical drill diameter was slightly larger
than the implant diameter and deprived the crestal cortical bone and allowed passive
fitting of the implant, but at the same time decreased primary stability. The pretap drill
was shorter than the implant length, with its upper structure identical (slightly smaller
in diameter) to the structure of the coronal part of the implant [25]. The lower structure
of the tap was more sharply tapered and narrower to assist insertion into the undersized
channel. In our study, comparing the stress and strain induced by occlusal force during
immediate loading on the bone around the fixtures installed by the cortical pretapping and
widening techniques, respectively, using the FEA methods, it was similarly concluded that
cortical tapping that showed lower stress and strain under occlusal force may be the more
advantageous surgical technique to maintain primary stability during healing, especially
when the bone density around the platform is high. If the implant is inserted exactly into the
thread profile prepared by cortical tapping, in a theoretical point of view, maximum surface
contact between the implant and the dense cortical bone will be achieved, thereby being
more likely to bear the occlusal load. However, this requires further investigation [25].

In this study, maximal stress of bone and maximal strain of bone was higher in cortical
widening at all bone densities, and the difference in stress between the two procedures was
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larger, especially when the bone density around the implant platform was high. Clinically,
in case of high bone density, separate drilling is performed to prevent side effects caused by
excessive condensation. Therefore, the results of this study showing that cortical tapping
is biomechanically more advantageous than widening may be clinically useful when the
bone density is high, at least of the upper part.

5. Conclusions

Within the limitations of this FEA study, it can be concluded that cortical tapping is
biomechanically more advantageous for implants under occlusal force during immediate
loading, especially when the bone density around the platform is high.
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