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Abstract: The oxygen reduction reaction (ORR) activity of a Cu-doped Ba0.5Sr0.5FeO3−δ (Ba0.5Sr0.5

Fe1−xCuxO3−δ, BSFCux, x = 0, 0.05, 0.10, 0.15) perovskite cathode was investigated in terms of oxygen
vacancy formation and valence band structure. The BSFCux (x = 0, 0.05, 0.10, 0.15) crystallized in a
cubic perovskite structure (Pm3m). By thermogravimetric analysis and surface chemical analysis, it
was confirmed that the concentration of oxygen vacancies in the lattice increased with Cu doping. The
average oxidation state of B-site ions decreased from 3.583 (x = 0) to 3.210 (x = 0.15), and the valence
band maximum shifted from −0.133 eV (x = 0) to −0.222 eV (x = 0.15). The electrical conductivity
of BSFCux increased with temperature because of the thermally activated small polaron hopping
mechanism showing a maximum value of 64.12 S cm−1 (x = 0.15) at 500 ◦C. The ASR value as an
indicator of ORR activity decreased by 72.6% from 0.135 Ω cm2 (x = 0) to 0.037 Ω cm2 (x = 0.15) at
700 ◦C. The Cu doping increased oxygen vacancy concentration and electron concentration in the
valence band to promote electron exchange with adsorbed oxygen, thereby improving ORR activity.

Keywords: Ba0.5Sr0.5Fe1−xCuxO3−δ; oxygen vacancy; valence band; oxygen reduction reaction;
area-specific resistance

1. Introduction

One of the important challenges for the commercialization of solid oxide fuel cells
(SOFCs) is to lower the operating temperature to an intermediate temperature (IT) range of
500–800 ◦C [1]. The intermediate operating temperature increases the polarization resis-
tance of conventional cathodes like La1−xSrxMnO3, resulting in reduced electrochemical
activity of the cathode for the oxygen reduction reaction (ORR). To solve this problem,
cobalt-based oxides with mixed ionic-electronic conductibility (MIEC) have been studied
as potential cathode materials for IT-SOFCs [2–4]. However, cobalt-based oxides have
disadvantages, such as high thermal expansion coefficients (TECs), because of the flexible
redox behavior of cobalt and easy evaporation and reduction of cobalt [5,6]. Therefore,
developing cobalt-free cathodes with a good ORR activity for IT-SOFCs is needed.

Among the iron-based cathode materials, the cubic BaFeO3−δ (BFO) materials exhibit
good oxygen–electron mixed conduction and excellent chemical and thermal stabilities com-
pared with those of cobalt-based materials [7]. The cubic BFO exhibits high oxygen ion
conductivity due to the existence of disordered oxygen vacancies and three-dimensional
oxygen diffusion pathways [8]. For stabilization of the BFO cubic phase, the A-site was doped
with Sr, La, Ce, etc., and Ba0.5Sr0.5FeO3−δ (BSF) achieved high electronic conductivity [9–11].
In addition, the relatively low oxygen reduction reaction rate of Ba0.5Sr0.5FeO3−δ can be im-
proved by substituting Fe with other transition metals to promote oxygen inflow and oxygen
ion transport [12].

Replacing cations with lower valences (2+/3+) for Fe3+/4+ cations can form more
oxygen vacancies, which can enhance the ORR activity. For this purpose, some researchers
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have doped Ni, Gd, etc., at the Fe site, and perovskite cubic materials substituted with
B-sites such as BaFe0.75Ni0.25O3−δ and BaF1−xGdxO3−δ provided high ORR activity [13,14].
Yin et al. and Lu et al. improved the electrochemical property of Pr0.5Sr0.5Fe0.8Cu0.2O3−δ
and Nd0.5Sr0.5Fe0.8Cu0.2O3−δ by doping Cu into the Fe site [15,16]. In addition, studies
on doping Cu with Ni sites have been conducted to improve electrochemical properties.
Niemczyk et al. synthesized LaNi1−xCuxO3−δ series, and LaNi0.5Cu0.5O3−δ showed a low
polarization resistance of 0.056 Ω cm2 at 800 ◦C and a relatively high power density output
of 870 mW cm−2 at 900 ◦C [17]. Jakub et al. studied La1−xSrxNi1−yCuyO3−δ and achieved
the maximum power value of 450 mW cm−2 at 650 ◦C [18]. Considering that Cu is present
in multiple oxidation states (Cu+, Cu2+, Cu3+), similar to Co, Fe, and Mn, it is reasonable to
use perovskite materials containing Cu as the SOFC cathode [19].

The mechanism of ORR at the SOFC cathode surface involves four steps, including
diffusion and adsorption of oxygen molecules, dissociation of the oxygen molecules to form
oxygen atoms, lattice mixing of oxygen ions, and movement of the oxygen ions to the elec-
trode/electrolyte interface [20]. However, the rate-determining step is not well understood
because of the complex characteristics of the cathode materials, such as electronic structure
and defect structure. Previous studies have suggested descriptors that can predict the ORR
activity. Hardin et al. explained that the total number of valence electrons is a descriptor for
ORR activity, and Jung et al. predicted the ORR activity by comparing d-band centers with
the surface composition and morphology of PtCux@Pt/C catalysts [21,22]. Additionally,
Zhu et al. investigated the relationship between the polarization resistance and the valence
band of LSCO thin film consisting of Co 3d and O 2p bands [23].

In this study, Ba0.5Sr0.5Fe1−xCuxO3−δ perovskite cathode materials were investigated
to confirm the relationship between the change in the valence band structure according
to Cu doping and ORR activity. The change in oxygen vacancy concentration of BSFCux
according to Cu doping was confirmed through thermogravimetric analysis (TGA) and
X-ray photoelectron analysis (XPS). In addition, the oxidation state and the valence band
structure were analyzed using XPS and the polarization resistance of BSFCux was calculated
as an indication for change in ORR activity via the impedance spectrum.

2. Experimental Procedures
2.1. Synthesis

Ba0.5Sr0.5Fe1−xCuxO3−δ (BSFCux, x = 0, 0.05, 0.10, 0.15) powders were synthesized
by a solid-state reaction using BaCO3 (99.0% purity, Sigma-Aldrich, St. Louis, MO, USA),
SrCO3 (99.9% purity, Sigma-Aldrich), Fe2O3 (99.0% purity, Sigma-Aldrich), and CuO (99.0%
purity, Sigma-Aldrich) as starting materials. After mixing each material according to the
stoichiometric ratio, it was ball milled together in a polyethylene container with ethanol
and zirconia balls for 24 h and dried at 100 ◦C for 12 h. The green bodies were prepared
using dried powder by uniaxial compression under hydraulic pressure of 20 MPa; the green
body of BSF was calcined at 1100 ◦C for 10 h, and the green bodies of BSFCux (x = 0.05,
0.10, 0.15) were calcined at 950 ◦C for 10 h. These calcined green bodies were ground using
a mortar and sieved using a mesh of 250 µm. Finally, BSFCux powder was synthesized by
repeating the calcining, grounding, and sieving process twice.

2.2. Characterization

The crystal structure of the synthesized powders was analyzed using powder X-ray
diffraction (PXRD, X’pert PRO-MPD, λ = 1.54 Å) in the 2θ range of 20–80◦ with a step scan
procedure (0.02◦/2θ step, 1◦ min−1) at room temperature. The structure parameters were
obtained by analyzing XRD data with Rietveld refinement (PANalytical X’Pert HighScore
Plus software, version 3.0c(3.0.3)). The line shapes of the diffraction peaks were generated
by a pseudo-Voigt function and the background refined to a 4th degree polynomial.

In order to determine the temperature of oxygen vacancy formation and weight
reduction of BSFCux, thermogravimetric analysis (TGA) was carried out on a thermal
analyzer (NETSCH STA 409 PC/PG) with about 100 mg of BSFCux powders measured
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in a nitrogen atmosphere at a heating rate of 5 ◦C min−1. According to the TGA data, the
changes in oxygen non-stoichiometry (δ) for the powder samples were calculated using the
following equation [24]:

δ = δ0 +
M0

15.99

(
1− m

m0

)
(1)

where δ0 is the oxygen non-stoichiometry at room temperature, M0 is the molar mass of
the samples with non-stoichiometry δ0, 15.99 is the atomic weight of oxygen atoms, m is
the final weight of the samples under various temperatures, and m0 is the initial weight of
the samples. The δ0 was calculated by electroneutrality condition with X-ray photoelectron
spectroscopy (XPS, Thermo Fisher Scientific, Waltham, MA, USA) data [25–28]. XPS was
used to analyze changes in oxidation state, oxygen non-stoichiometry, and valence band
structure. The spectra were calibrated using the C1s line (BE = 284.6 eV).

The electrical conductivity of BSFCux was evaluated using the 4-probe DC technique
in the range of 300–900 ◦C, and Pt wires were wrapped around the sintered bars with
dimensions of 5 × 3 × 30 mm3. A direct current of 50 mA was supplied from a current
source (Keithley 2400, Solon, OH, USA), and the corresponding voltage drop was collected
using a multimeter (Agilent, 34401A, Santa Clara, CA, USA).

The microstructure of the BSFCu0.15|SDC|BSFCu0.15 symmetric cell was observed
using a scanning electron microscope (SEM, MIRA3, TESCAN). The area-specific resistance
(ASR) of symmetrical cells of BSFCux electrodes was measured by AC impedance spec-
troscopy. For an impedance analysis, a dense disk of SDC (20 mol% Samarium doped ceria,
Fuelcell materials, 20 mm diameter and 600 µm thick) was used as an electrolyte. BSFCux
powder was mixed with a vehicle (Fuel Cell Materials) to prepare BSFCux pastes using a
three-roll mill, and these pastes were screen-printed on both sides of the SDC pellets with
an area of 0.2826 cm2. After drying, the symmetric cells were calcined at 900 ◦C for 2 h
in air to improve the adhesion between the electrolyte and the electrode. Electrochemical
impedance spectra (EIS) were obtained using Iviumstat (Ivium, Netherlands) equipment,
and a 10 mV excitation voltage was applied in the frequency range of 106–10−2 Hz at
700 ◦C. The obtained EIS data were fitted using Zview software version 3.0.

3. Results and Discussion

Figure 1a shows the room temperature XRD patterns of the BSFCux (x = 0, 0.05, 0.10, 0.15)
powder, and no secondary phases appeared in the patterns, which confirmed that 0–15 mol%
of Cu was stably dissolved in the BSF lattice. As shown in Figure 1b, the 2θ value of (110)
peak shifted to a smaller angle as the Cu doping increased, which indicated an expansion of
the lattice volume due to the larger ionic radii of Cu+ (0.77 Å) and Cu2+ (0.73 Å) than those
of Fe3+ (0.645 Å) and Fe4+ (0.585 Å). The XRD patterns show that BSFCux crystallizes into a
cubic perovskite structure with a space group Pm3m (Figure 2). The structural parameters
calculated by Rietveld refinement are listed in Table 1, and the lattice volume increased from
61.0699 Å3 (x = 0) to 61.4428 Å3 (x = 0.15) with the Cu content.

Thermogravimetric analysis was carried out to confirm the effect of Cu doping on
oxygen vacancy formation. Figure 3a shows the TG curve of the BSFCux samples from
25 to 950 ◦C and Figure 3b shows the oxygen content of the BSFCux samples using room-
temperature oxygen non-stoichiometry (δ0) from the XPS analysis. In order to more clearly
observe the oxygen vacancy formation according to the Cu content, it was measured in
an inert atmosphere using nitrogen gas. There were weight losses of less than 1% during
heating before the slope changing point, which is due to the desorption of physically and
chemically adsorbed water and other gases [29]. The slope changing temperature decreased
from 500 ◦C (x = 0) to 450 ◦C (x = 0.15) and the lower slope changing temperature indicated
the easier loss of oxygen in the BSFCu0.15 lattice with increasing temperature. The weight
loss after the slope changing temperature increased from 1.72% (x = 0) to 2.09% (x = 0.15).
The weight loss observed within this temperature range is due to the loss of lattice oxygen,
indicating that the amount of oxygen vacancy in the lattice increases with Cu doping [28].
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The X-ray photoelectron spectroscopy (XPS) analysis was performed to characterize the
surface chemical bonding state of the BSFCux samples. Figure 4a–c show the Cu 2p3/2, Fe 2p3/2,
and O 1s XPS spectra for each BSFCux composition and the area ratios of peaks are summarized
in Table 2. The Cu 2p3/2 peak was deconvoluted into two peaks at approximately 932.3 eV (Cu+)
and 934.1 eV (Cu2+), as shown in Figure 4a [30]. The Fe 2p3/2 peak was deconvoluted into 709.1
eV (Fe3+) and 710.8 eV (Fe4+) peaks, and a weak satellite shake-up peak was observed in the
range of 715 eV to 720 eV, as shown in Figure 4b [31]. The average oxidation states of the B-site
ions (Fe and Cu) are 3.583 (x = 0), 3.464 (x = 0.05), 3.332 (x = 0.10), and 3.210 (x = 0.15). Assuming
an oxidation state of 2+ for Ba and Sr, the room-temperature oxygen non-stoichiometry (δ0)
was calculated according to the electroneutrality condition, and the oxygen non-stoichiometry
increased from 0.21 (x = 0) to 0.39 (x = 0.15) as the Cu doping increased (Table 2). It is thought
that the BSFCu0.15 cathode will enhance the catalytic activity of the ORR because the value of
δ0 indicates the amount of oxygen vacancies in the lattice.
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Table 1. Structural parameters of the Ba0.5Sr0.5Fe1−xCuxO3−δ (x = 0, 0.05, 0.10, 0.15) calculated by
Rietveld refinement of the room-temperature XRD data.

Parameters Composition

BSF BSFCu0.05 BSFCu0.10 BSFCu0.15

a = b = c [Å] 3.938(6) 3.940(4) 3.943(7) 3.946(5)

Volume [Å3] 61.0699(9) 61.1630(1) 61.3028(6) 61.4428(3)

Space group Pm3m Pm3m Pm3m Pm3m

Rwp [%] 6.285 7.211 7.412 6.568

Rexp [%] 3.792 3.281 3.414 3.364

χ2 2.747 4.832 4.715 3.811
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0.10, 0.15).

In Figure 4c, the O 1s peak was deconvolved into three peaks of 527.9 eV, 530.7 eV, and
533 eV corresponding to lattice oxygen (Olat), adsorbed oxygen (Oads), and surface moisture
(Omoi), respectively [32]. The adsorbed oxygen is released easily from the surface of the
crystal lattice with increasing temperature, which leads to the oxygen vacancy formation.
Therefore, the area ratio of Oasd to Olat (Oads/Olat) can be used as a criterion to evaluate the
relative content of oxygen vacancies in materials [33,34]. The Oads/Olat were 1.54 (x = 0),
1.60 (x = 0.05), 1.62 (x = 0.10), and 1.65 (x = 0.15), which increased with the amount of Cu
doping. It can be interpreted that BSFCu0.15 has the highest oxygen vacancy concentration
among the BSFCux (x = 0, 0.05, 0.10, 0.15) in the intermediate temperature region, which
corresponds with the thermogravimetric results (Figure 3a,b).

The valence band (VB) spectra of BSFCux are shown in Figure 5, and the peak of the
Ba 5p (10.5–15.0 eV) and Sr 4p-O 2s bond (16–21 eV) was confirmed [35]. The range of
0–7.5 eV is made up of Fe 3d (1.8 eV), Cu 3d (3.1 eV), and O 2p orbitals (5.0 eV), which
is closely related to the BO6 structure. The Cu 3d area increased with an increase in Cu
doping, leading to a negative shift in the valence band maximum (VBM) from −0.133 eV
(BSF) to −0.222 eV (BSFCu0.15), as shown in Figure 5b. The negative shift of the VBM
value represents that electron transport to the adsorbed oxygen is improved because of the
increased electron concentration in the VB of BSFCux, which is expected to enable faster
oxygen exchange.
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Table 2. Fitting results of the Fe 2p3/2, Cu 2p3/2, and O 1s XPS spectra of the Ba0.5Sr0.5Fe1−xCuxO3−δ
(x = 0, 0.05, 0.10, 0.15).

Sample Fe3+

(%)
Fe4+

(%)
Cu+

(%)
Cu2+

(%)
Average

Oxidation State δ0
Olat
(%)

Oads
(%)

Omoi
(%) Oads/Olat

BSF 41.7 58.3 - - +3.583 0.21 38.6 59.5 1.9 1.54
BSFCu0.05 43.7 56.3 42.6 57.4 +3.464 0.27 37.3 59.6 3.1 1.60
BSFCu0.10 46.8 53.2 46.9 53.1 +3.332 0.33 36.7 59.5 3.8 1.62
BSFCu0.15 48.9 51.1 49.5 50.5 +3.210 0.39 36.6 60.3 3.1 1.65
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Fe-based perovskite oxides show mixed ionic-electronic conductivity (MIEC) because
of the simultaneous presence of oxygen vacancies and electron holes as charge carriers.
However, since the electrical conductivity is about two orders of magnitude higher than
the ionic conductivity, the conductivity data of Figure 6 mainly represent the electronic
conductivity [15,36]. The electrical conductivity (σ) of BSFCux was measured in air at
300–950 ◦C using the 4-probe DC technique (Figure 6a). The electrical conductivity of
BSFCux increased with temperature and reached a maximum at 500 ◦C with 64.12 S cm−1

(x = 0.15). This semiconducting behavior can be explained by a thermally activated small
polaron hopping mechanism [37]. The decrease in electrical conductivity is related to the
breakdown of (Fe, Cu)–O–(Fe, Cu) bonds above 500 ◦C because the oxygen vacancies
are formed and the charge carrier concentration is reduced due to the reduction in Fe4+

(Equation (2)), which is in good agreement with the thermogravimetric results [38].

2Fe•Fe + O×O ↔ 2Fe×Fe + V••O +
1
2

O2 ↑ (2)

where Fe•Fe and Fe×Fe represent the Fe4+ and Fe3+, O×O and V••O represent the lattice oxygen
and oxygen vacancy.
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Figure 6b shows the Arrhenius plot for the electrical conductivity of BSFCux, and the
relationship between electrical conductivity (σ) and temperature follows the Arrhenius
equation [39]:

σ = A exp
(
− Ea

kT

)
(3)

where A, Ea, k, and T are the pre-exponential constant, activation energy, Boltzman constant,
and temperature, respectively. According to the slope of linear fit over the temperature
of 300–500 ◦C, the activation energy (Ea) was 0.26 eV (x = 0), 0.24 eV (x = 0.05), 0.23 eV
(x = 0.10), and 0.21 eV (x = 0.15).

The low activation energy value helps to improve the hopping of the charge carrier,
thereby increasing the electrical conductivity.

The cross-section view of the BSFCu0.15|SDC|BSFCu0.15 symmetrical cell shows that
the interface contact is tightly formed between the porous electrode and the dense electrolyte
(Figure 7a). The ORR catalytic activity of BSFCux cathodes was assessed via electrochemical
impedance spectroscopy of the symmetric cell configuration (BSFCux|SDC|BSFCux), and
the EIS plots measured at 700 ◦C in air are shown in Figure 7b, where an ohmic resistance was
subtracted. In order to clarify the ORR mechanism, the impedance spectra were fitted with
the equivalent circuit model (RHF//CPEHF)-(RMF//CPEMF)-(RLF//CPELF), which is inserted
in Figure 7b. R and CPE in the parallel (R//CPE) represent the polarization resistance and
constant phase element, respectively, and the corresponding results are displayed in Table 3.
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Figure 7. (a) Cross-section view of SEM image of the BSFCu0.15|SDC|BSFCu0.15 symmetric cell;
(b) impedance spectra of the BSFCux|SDC|BSFCux symmetric cell measured at 700 ◦C in air.

Table 3. The Rp fitting results of the Ba0.5Sr0.5Fe1−xCuxO3−δ (x = 0, 0.05, 0.10, 0.15) cathode at 700 ◦C.

Sample RHF (Ω) RMF (Ω) RLF (Ω) Rp (Ω) ASR (Ω cm2)

BSF 0.141 0.285 0.529 0.955 0.135
BSFCu0.05 0.081 0.170 0.350 0.602 0.085
BSFCu0.10 0.073 0.100 0.145 0.318 0.045
BSFCu0.15 0.034 0.054 0.173 0.262 0.037

These impedance spectra consist of high-, medium-, and low-frequency arcs. In
general, the high-frequency (HF) arc is related to the process of diffusion of oxygen ions
from the triple-phase boundaries into the electrolyte, the medium-frequency (MF) arc is
associated with the oxygen surface exchange, and the low-frequency (LF) arc is attributed
to the gas diffusion process and oxygen adsorption–dissociation process [40]. In all cases,
the low-frequency arc shows the highest polarization resistance, indicating that it was the
rate-determining step of ORR. Among the three polarization resistances, RMF decreased
the most, by about 81%, from 0.285 Ω (x = 0) to 0.054 Ω (x = 0.15), and it is thought that this
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is because the oxygen surface exchange reaction was accelerated by increasing the electron
concentration of VB with Cu doping.

The area-specific resistance (ASR) can be calculated by measuring the distance between
the intercepts of Z′ or by using the equation as follows:

ASR = Rp
active area o f cathode

2
(4)

where Rp = RHF + RMF + RLF and the active area of the cathode is 0.2826 cm2. The ASR of
the BSFCux was 0.135 Ω cm2 (x = 0), 0.085 Ω cm2 (x = 0.05), 0.045 Ω cm2 (x = 0.10), and 0.037
Ω cm2 (x = 0.15). The BSFCu0.15 showed a 72.6% smaller value compared to that of BSF,
which can be explained by higher oxygen vacancy concentration and electrical conductivity.
A comparison of the ASRs for different iron-based electrodes is listed in Table 4. It can
be concluded that the BSFCu0.15 cathode has high electrocatalytic activity for ORR due
to improved interaction with adsorbed oxygen with an increase in oxygen vacancies at
intermediate temperature.

Table 4. ASRs for different iron-based electrodes.

Cathode Electrolyte Operating Temperature
(◦C)

ASR
(Ω cm2) Ref.

La0.6Ca0.4Fe0.8Ni0.2O3−δ SDC 750 0.14 [41]
Bi0.5Sr0.5FeO3−δ SDC 700 0.12 [42]

Sm0.5Sr0.5Fe0.8Cu0.2O3−δ SDC 700 0.084 [43]
Ba0.5Sr0.5Fe0.9Nb0.1O3−δ SDC 700 0.082 [44]

BSFCu0.15 SDC 700 0.037 This work

4. Conclusions

The oxygen reduction reaction (ORR) activity of a Ba0.5Sr0.5Fe1−xCuxO3−δ (BSFCux,
x = 0, 0.05, 0.10, 0.15) perovskite cathode was investigated. BSFCux was crystallized into a
cubic perovskite structure with a Pm3m space group, and it was confirmed that the lattice
volume of the BSFCux increased with Cu doping. For thermogravimetric and XPS analysis,
the concentration of oxygen vacancies in the lattice increased with increasing Cu doping.
The valence band maximum shifted from −0.133 eV (x = 0) to −0.222 eV (x = 0.15), which
promoted the electron transfer from the cathode surface to adsorbed oxygen molecules. The
electrical conductivity of BSFCux increased with temperature by the thermally activated
small polaron hopping mechanism, showing a maximum value of 64.12 S cm−1 (x = 0.15)
at 500 ◦C. The ASR of BSFCu0.15 was 72.6% smaller compared to that of BSF, which can
be explained by higher oxygen vacancy concentration and electrical conductivity. The
ORR activity of BSFCux increased with Cu doping due to an increase in oxygen vacancy
concentration and electron concentration in the valence band, which promotes electron
exchange between the cathode surface and adsorbed oxygen.
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