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Abstract: The treatment of inoculation of white cast iron with carbide precipitations that consist of
increasing the number of primary austenite grains is not as well-known as the treatment of inoculation
of gray cast iron in which the number of eutectic grains increases. In the studies included in the
publication, experiments were carried out using the addition of ferrotitanium as an inoculant for
chromium cast iron. The Cellular Automaton Finite Elements (CAFE) module of ProCAST software
was used in order to analyze the formation of the primary structure of hypoeutectic chromium
cast iron in a casting of various thicknesses. The modeling results were verified using Electron
Back-Scattered Diffraction (EBSD) imaging. The obtained results confirmed obtaining a variable
number of primary austenite grains in the cross-section of the tested casting, which significantly
affects the strength properties of the obtained chrome cast iron casting.

Keywords: chromium cast iron; primary austenite grains; chromium carbides; inoculation; EBSD
imaging; mathematical structure prediction; cellular automaton (CAFE)

1. Introduction

The microstructure of white high-chromium cast iron largely depends on the chemical
composition of the liquid phase and the direction of change in the chemical composition
of the liquid during the crystallization process. The data contained in [1] show that the
structure of high-chromium cast iron may have the following phase composition:

1. dendrites α + peritectic (γ—M7C3) + eutectic (α—M7C3) + eutectic (γ—M7C3);
2. primary carbides M7C3 + peritectic (γ—M3C) + eutectic: (γ—M3C) + eutectic (γ—M7C3);
3. primary carbides M7C3 + peritectic (γ—M7C3) + eutectic (γ—M7C3);
4. dendrites γ eutectic (γ—M7C3);
5. dendrites γ peritectic (γ—M7C3) + eutectic (γ—M7C3) + eutectic (γ—M3C);
6. primary carbides M3C + eutectic (γ—M3C);
7. dendrites α + peritectic phase γ peritectic (γ—M7C3) + eutectic (γ—M7C3);
8. dendrites γ + eutectic (γ—M3C);
9. primary carbides M7C3 + eutectic (γ—M7C3);
10. M7C3 primary carbides + M3C primary carbides + eutectic (γ—M3C);
11. eutectic (γ—M7C3).

The described phase composition of chromium cast iron results from the theoretical
analysis of cross-sections of the polythermal triple phase equilibrium system of Fe-C-Cr
alloys determined for the designed chemical composition. The eutectic structure of white
high-chromium cast iron is related to the crystallization of the M7C3 complex carbide [2].

As a pre-eutectic phase and as a phase included in the eutectic grain, there is M7C3
carbide, which crystallizes in the form of rods with a hexagonal cross-section. Undoubtedly,
the leading phase during the crystallization of the eutectic α + M7C3 is carbide and it
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should be expected that eutectic grains will nucleate and grow on its surface. In addition,
high-chromium cast iron is a material sensitive to the cooling rate, as well as other types of
cast iron. Thus, the morphology of the eutectic crystallization and the phase composition
of the microstructure in high-chromium cast iron also depend on the crystallization and
cooling conditions of the casting. When a high-chromium cast iron casting is provided with
a high cooling rate, the share of the eutectic type γ(α) + (Fe,Cr)7C will increase, while the
share of the eutectic type γ(α) + (Cr,Fe)3C will decrease. Therefore, the microstructure of
the casting walls of various dimensions will differ not only in the size of a given phase but
also in the phase composition. In general, the structure of white chromium cast iron can be
classified according to the range of alloy chemistry, phase growth rate and temperature
gradient. These parameters allow hypoeutectic, eutectic and hypereutectic structures to be
obtained in cast iron.

Table 1 presents the chemical composition and hardness of abrasion-resistant high-
chromium cast iron according to the PN-EN 12513 standard (https://www.en-standard.
eu/din-en-12513-founding-abrasion-resistant-cast-irons/ accessed on 5 March 2023 or
https://sklep.pkn.pl/pn-en-12513-2011e.html accessed on 5 March 2023). Based on the
data presented in Table 1, white high-chromium cast iron covers four ranges of chromium
content: the first is 11 wt% < Cr≤ 14 wt%; the second is 14 wt% < Cr ≤ 18 wt%; the third is
18 wt% < Cr ≤ 23 wt%; and the fourth is 23 wt% < Cr ≤ 28 wt%. However, for each range
of chromium content, this standard provides three ranges of carbon content. It should
be remembered that as the carbon content decreases, both the plastic properties and the
resistance to repeated impact loads increase. However, when the carbon content increases,
the hardness of this cast iron also increases. Wear-resistant high-chromium cast iron, on the
other hand, is particularly sensitive to the cooling rate. Therefore, the microstructure of
high-chromium cast iron is particularly dependent on the thickness of the casting wall, i.e.,
on the casting modulus, similarly to nickel-chromium (martensitic) cast iron.

Table 1. Chemical composition and hardness of high-chromium cast iron resistant to abrasive wear.

Grade
C Si Mn P S Cr Ni Mo Cu

Max Max Max Max Max Max

EN-GJN-HB555 (XCr11)

1.8 ÷ 3.6 1.0 0.5 ÷ 1.5 0.08 0.08

11.0 ÷ 14.0

2.0 3.0 1.2
EN-GJN-HB555 (XCr14) 14.0 ÷ 18.0

EN-GJN-HB555 (XCr18) 18.0 ÷ 23.0

EN-GJN-HB555 (XCr23) 23.0 ÷ 28.0

To obtain the required hardness given in Table 1, it becomes necessary to optimize the
chemical composition, that is, the appropriate selection of alloying elements depending
on the thickness of the casting wall. For castings supplied in the unfinished state of
high chrome cast iron with a low content of alloying elements, may be difficult to obtain
the hardness required by the standard. A similar situation should be expected in the
case of castings of this type of cast iron with a high wall thickness. The requirements
for such castings should be separately agreed upon between the ordering party and the
manufacturer. In addition, it should be noted that the shrinkage of white chrome cast iron
of all types during crystallization is significant (about 2%), similarly to the shrinkage of
cast steel which requires the use of risers of appropriate dimensions. Castings are usually
left in the molds until they reach an ambient temperature. However, it is also allowed
to remove castings from the mold at a sufficiently high temperature for the purpose of
heat treatment. The addition of additives (recommended by the PN-EN-12513 standard),
such as molybdenum and vanadium, to the white high-chromium cast iron can lead to
the formation of additional carbides in the discussed structure, or if such carbides do not
precipitate, to replace some of the chromium in the M7C3 type carbides, thereby increasing
its share in the metal matrix. Molybdenum is introduced into high-chromium cast iron

https://www.en-standard.eu/din-en-12513-founding-abrasion-resistant-cast-irons/
https://www.en-standard.eu/din-en-12513-founding-abrasion-resistant-cast-irons/
https://sklep.pkn.pl/pn-en-12513-2011e.html
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to prevent the separation of pearlite in the metal matrix of high-chromium cast iron. If
pearlite appears in the metal matrix of this cast iron, it will mean a significant decrease in
the abrasion resistance of the cast iron.

In the group of high-chromium cast iron resistant to abrasive wear, there is a widespread
type 15-3 chromium-molybdenum cast iron (known as Climax Alloy) containing 14 ÷ 16 wt%
chromium and 2.4÷ 3 wt% molybdenum. Grades of this type of cast iron are included in the
US standard ASTM A532 as Class II Types B and D and designated as 15% Cr-Mo-LC (low
carbon) and 15% Cr-Mo-HC (high carbon). In fact, it is a grade of white martensitic cast iron
and its equivalent, according to the PN-EN 12513 standard, is a grade classified in the group
of high-chromium white cast iron as EN-GJN-HV600(XCr14) with some modifications in
the composition of alloying elements such as wt% Ni + wt% Mo + wt% Cu. It must be
noted that this cast iron shows very good resistance to abrasive wear while maintaining
good plastic properties and good corrosion resistance. The molybdenum in this alloy is
bound in the form of carbides of the Mo2C and (Cr, Fe, Mo)7C3 types and is partially
dissolved in a solid solution. Type 15-3 cast iron can be used in the unfinished state when
the wall thickness of the casting is small, with the possible use of stress relief annealing
at a temperature of 200–250 ◦C. To obtain a high hardness value, this type of cast iron is
hardened in air and then possibly tempered. In general, it must be said that the PN-EN
12513 standard for high-chromium cast iron castings allows the following types of heat
treatment: tempering, hardening, hardening and tempering, soft annealing, soft annealing
and hardening, soft annealing, hardening and tempering. However, in the case of the need
for mechanical treatment of castings made of high chromium cast iron, soft annealing is
recommended. If the order concerns castings after soft annealing, it is the client who is
responsible for the correct course of the subsequent treatments: hardening and tempering.

Chromium cast iron is used in the production of castings that must be characterized
by very good wear resistance and good corrosion resistance.

The casts produced may be several millimeters thick, for example, the cast wall of
a defibrating machine used for the production of wood pulp for the production of MDF
plates, which can be up to several dozen millimeters, or the cast of slurry pump bodies
used in mines. In articles [3,4], the authors presented the results of research related to the
inoculation of cast iron. The study was concerned with the effect of changing the content
of the FeTi inoculant on the primary structure of hypoeutectic chromium cast iron. These
studies show that this inoculant affects the primary structure of cast iron, that is, the faster
nucleation of the primary austenite grains results in an increase in their number. This leads
to a reduction in the hot cracking of cast components and reduces the level of porosity in
the casting. These unfavorable properties can be eliminated by FeTi inoculation as a result
of fragmentation of the primary structure of the casting [3,4]. According to the authors of
the article, this is how the effect of using the inoculation procedure on the structure and
properties of such alloys should be understood.

The phase composition of chromium cast iron described above results from the the-
oretical analysis of cross-sections of the polythermal triple phase equilibrium system of
Fe-C-Cr alloys determined for the designed chemical composition.

In the literature, another important approach to the inoculation procedure can be
found, which consists of the production of other types of carbides in the structure of
chrome cast iron, for example, TiC, NbC and others [5–18]. Determining the number of
primary phase in hypoeutectic cast iron with austenite-carbide eutectic is problematic.
In the case of graphite eutectic, there are simple methods based on counting nodular
graphite precipitates (ductile iron) or areas limited by phosphorus eutectic precipitates
(flake graphite cast iron). In the case of carbide eutectics, the above-mentioned methods
cannot be used. A separate issue is the measurement number and size of primary austenite
grains. In order to perform reliable metallographic tests, the use of the Electron Back-
Scattered Diagram (EBSD) method is proposed [3]. This method requires the use of a
scanning microscope with an appropriate detector and very careful sample preparation.
These factors make the analysis of alloys with high abrasion resistance difficult and time-



Materials 2023, 16, 3217 4 of 15

consuming. The solution may be the use of metal crystallization simulation software
such as ProCAST by the ESI Group. With the selection of appropriate parameters, the
structure [19–27] can be simulated, which will be formed throughout the casting volume,
allowing the testing time by reducing the number of samples tested.

2. Methodology
2.1. Simulation Domain

In the Laboratory of Computer Modelling of Crystallization Processes, modeling of
the primary structure was carried out for the thickness of 20 mm, 30 mm and 40 mm. The
model was carried out for a fragment of an infinite plate with the thickness mentioned
above, located between the two layers of bentonite mass, 50 mm thick each, as in Figure 1a.
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Figure 1. (a) An example of a model of a 20 mm thick plate (green) between two layers of 50 mm thick
bentonite molding composition; (b) typical microstructure in the analyzed area with cross-section
10 × 10 mm; (c) 2.5 mm thick outer buffer layer.

The length of the sample in the direction of heat dissipation (L) is 20, 30 and 40 mm,
respectively. The cross-section of the area for which the results of the microstructure simu-
lation with the CAFE method were presented has dimensions of 10 × 10 mm (Figure 1b).
In the direction perpendicular to the discharge direction, the heated sample is surrounded
on all sides by a 2.5 mm thick buffer layer (Figure 1c), in which the CAFE simulation was
also carried out. The total area in which nucleation and grain growth are simulated using
the CAFE method is 15 × 15 × L mm.

Few examples are known of the application of the CAFE method to simulate the mi-
crostructure of hypoeutectic alloys [28–30]. The CAFE module of the ProCAST 2022.0/Visual-
Environmemt 18.0 software is designed to predict the structure formed during primary
single-phase solidification and does not provide for the possibility of considering eutectic
solidification. Due to the relatively small fraction of carbide eutectics, the growth of eutec-



Materials 2023, 16, 3217 5 of 15

tic colonies in the analyzed alloy begins at the final stage of crystallization, and eutectic
structure components are mostly localized at the grain boundaries of the primary solid
solution grains. Therefore, in this study, it was decided to apply the above software to
evaluate the sizes, distribution and shape of austenite primary grains formed in the alloyed
iron castings studied.

The model does not take into account the possibility of nucleation and grain growth
processes in the area beyond the outer boundaries of the buffer layers. For this reason, the
microstructure of the outer zone of the buffer zone obtained in the simulation is not a good
representation of the microstructure of the primary grains. The purpose of using such a
buffer area was to eliminate the impact on the microstructure of the analyzed area of the
inability to account for the influence of nucleation and grain growth in the area located
beyond the outer lateral surface of these buffer areas. When analyzing the simulation
results, the microstructure of the buffer zone was not taken into account. All simulation
results shown below were obtained in the analysis area with a 10 × 10 mm cross-section.

The sample is located between the two layers of molding sand of the same cross-
section and 50 mm thickness in the direction of heat dissipation on each side. The adiabatic
condition was assumed on the side surfaces of the entire temperature field modeling area.
On the front walls of the molding sand area (15 × 15 mm), the condition of air cooling
was adopted.

2.2. Café Simulation

For the prediction of the primary grains structure, the Cellular Automata technique
is used in the ProCAST software. The processes of the nucleation and growth of the solid
phase grains from the liquid are analyzed based on a simulated temperature field. Detailed
information on the simulation method using the cellular automaton technique can be found
in the publications [31–35].

For the prediction of the temperature field, the Fourier equation is solved numerically
by using the Finite Elements Method as follows:

ρc
dT
dτ

= div(λ · gradT) + q (1)

where:

ρ—density, kg/m3; c—heat capacity, J/(kg × K);
T—temperature, K; τ—time, s;
λ—thermal conductivity coefficient, W/(m × K);
q—rate of heat of crystallization release (source function), W/m3;
div and grad—mathematical operators of divergence and gradient.

In the model, 3D approach is used for the estimation of the primary austenite grain
number and shape with an account of the local undercooling at the solid-liquid interface ∆T.
The model assumes that the dependence of the fraction of substrates for the heterogeneous
nucleation of primary austenite grains on the undercooling at which their activation and
nucleation occur follows the Gaussian statistical law. The parameters of this normal
distribution are the mean value of undercooling (∆Tm), at which the rate of increase in the
number of growing grains with increasing undercooling increases more rapidly, and the
standard deviation (∆Tσ).

With undercooling increasing, the number of activated nucleation substrates n, on
which the primary austenite grains nucleate and grow, increases until maximum undercool-
ing is reached before recalescence. The rate of nucleation with increasing undercooling is
calculated based on the probability density function of the normal distribution as follows:

dn
d(∆T)

=
nmax

∆Tσ

√
2π
· exp

[
−
(

∆T − ∆Tm√
2∆Tσ

)2
]

(2)
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where nmax is the maximum number of heterogeneous nucleation substrates generated in
the alloy as a result of the inoculation treatment.

The number of grains is calculated by integrating Equation (2) during the period of
increasing undercooling to a maximum value. Increasing the temperature during recales-
cence, which causes a decrease in undercooling, terminates the nucleation.

The velocity of the interface migration at the dendrite grain tip (v) is calculated by the
Kurz–Giovanola–Trivedi relation [36] as follows:

v(∆T) = a2 · ∆T2 + a3 · ∆T3 (3)

where a2 and a3 are growth kinetics coefficients.
The parameters of the nucleation equations that describe the kinetics and grain growth

used in the simulation are summarized in Table 2.

Table 2. Parameters of nucleation and growth kinetics law.

nmax 10−9, 10−10, 10−11 m−3

∆Tm 10 K

∆Tσ 1 K

a2 5.042 × 10−7 m·s−1 × K−2

The parameter nmax, which determines the maximum number of substrates for hetero-
genic nucleation in alloys with technical purity levels, depends on the method of smelting
and the subsequent ladle metallurgy processing of the liquid alloy. The goal of inoculation
processing is to create more such substrates by introducing master alloys containing sub-
stances that form such substrates in greater quantities into the melt. Details of the applied
treatment analyzed in this text will be presented below.

To evaluate the effect of the inoculation treatment on the number and size of primary
austenite grains in the simulation, three different values of the nmax parameter were used.

The thermal solution using Finite Elements (FE) and a Cellular Automata (CA) tech-
nique for primary microstructure prediction is coupled by the source function term of
Equation (1).

The initial alloy temperature was assumed to be 1400 ◦C, while the initial molding sand
temperature was 20 ◦C. The density of the analyzed alloy used to simulate the temperature
field by means of Equation (1) in the temperature range of 1200 to 1400 ◦C varies from
7180 kg/m3 to 6840 kg/m3. The corresponding changes in the thermal conductivity
coefficient in the same range of temperature changes were 23,000 to 25,100 W/(m·K), and
the changes in specific heat were 905 J/(kg·K) to 810 J/(kg·K).

2.3. Experimental Verification of Simulation Results

To verify the results of the simulation, chromium cast iron was melted. Melts were
carried out at Odlewnie Polskie S.A. in Starachowice. A medium-frequency induction fur-
nace with a capacity of 120 kg located in the Research and Development Centre of Foundry
Components “OBRKO” was used for the tests. Plates with dimensions of 100 × 100 mm
and thicknesses of 10, 20, 30 and 40 mm were cast. The appearance of the research casting
is shown in Figure 2.

The EBSD microstructure analysis was performed for three thicknesses: 20, 30 and
40 mm. The chemical composition of the inoculated cast iron is presented in Table 3.
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Table 3. Chemical composition of hypoeutectic chromium cast iron, wt%.

Inoculant Addition C Si Mn P S Cr Ti

+0.17% FeTi 1.78 0.79 0.47 0.017 0.01 21.22 0.0599

From the cast plates, samples were cut for analysis on a scanning microscope with an
EBSD detector as follows:

- from a 40 mm plate, the center of the sample is 0.5 of the thickness of the plate;
- from a 30 mm plate, the center of the sample is 0.18 of the thickness of the plate;
- from a 20 mm plate, the center of the sample is 0.12 of the thickness of the plate.

Primary microstructure analysis was performed using a high-resolution scanning
electron microscope FEI Quanta 3D FEGSEM with the EDAX Trident system (EDAX Genesis
spectrometer, WDS Genesis LambdaSpec spectrometer and EBSD Genesis TSL back-scatter
electron diffraction acquisition system) located in the Institute of Metallurgy and Materials
Engineering, Polish Academy of Sciences in Kraków.

3. Simulation Results

The results of the simulation with a given number of nucleation sites from 109 to 1011

are shown in Figures 3–5.
As can be seen in Figure 3, in the case of a 20 mm thick casting, increasing the number

of substrates for heterogeneous nucleation in the analyzed range in the melt volume results
in a decrease in grain size. However, it does not change the profile of the microstructure of
the primary austenite grains. There are two areas of equiaxial grains and finer grains near
the plate axis. For a 30 mm plate casting (Figure 4), increasing the number of substrates
not only affects grain size but also causes qualitative changes. For the smallest number
(109 m−3), there is no zone of equiaxial fine crystals near the casting surface. In this zone,
columnar grain structure prevails. The depth of the zone of columnar grains is similar for
each analyzed variant. Increasing the number of nucleation substrates results in a marked
increase in the number of fine equiaxial grains near the casting surface (Figure 4b,c). The
changes in the microstructure of the primary austenite grains for the plate castings look
similar: the absence of equiaxial grains near the surface in Figure 5a and an increase in the
number of fine equiaxial grains in Figure 5b,c.
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4. Analysis of the Obtained Microstructures

The FEI Quanta 3D FEGSEM high-resolution scanning electron microscope was used
for the analysis. Figures 6–9 show the microstructure of chromium cast iron using light
microscopy and characterize the structure of primary austenite using the EBSD technique
in individual plates of variable thickness. The drawings show that the number of primary
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austenite grains changes with the change in casting wall thickness. The chromium carbide
content is low and does not exceed 16% vol. During the calculations, the following assump-
tions were made so that spatial grain configurations followed the so-called Poisson–Voronoi
model [19], as shown in Equations (4)–(6). For each sample, the number of primary austen-
ite grains was calculated, and then the surface grain density NA (5) and the volumetric
grain density NV (6) were calculated according to the formula. The calculation results are
presented in Table 4 and Figure 10. However, the number of grains in a given area of the
metallographic microsection N was calculated according to Formula (4) as follows:

N = NW + 0.5NP + 0.25NR (4)

NA =
N
P

,
1

mm2 (5)

NV = 0.568 · (NA)
3
2 ,

1
mm2 (6)

where:

N—number of grains in the area; NW—number of whole grains in the area; NP—number
of grains cut by sides of the area; NR—number of grains in corners of the area; NA—surface
grain density 1/mm2; P—area mm2; NV—volumetric grain density 1/mm3.
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Figure 10. Number of grains of primary austenite NA in the tested samples.

On the basis of the results, pictures of EBSD microstructures and simulation imaging
were matched. The results are shown in Figure 11.
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Figure 11. Superimposed images from a cellular automaton simulation with actual EBSD images of
the structure.

Research has shown that the use of cellular automaton simulation allows analysis of
the number of primary austenite grains produced in the structure of a chrome cast iron
casting. In addition, the images from the simulation clearly show a large influence of the
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casting wall thickness on its structure. The number of primary austenite grains at the edge
of the wall increases significantly in relation to the central part of the casting. Therefore,
the grain measurements made on the central surface of the casting are inadequate for the
number of grains located on the edge of the casting.

5. Conclusions

1. Simulation with a cellular automaton in the ProCAST program allows for predicting
the number of primary austenite grains in chrome cast iron by controlling the number
of nucleation sites on the cross-section of the casting.

2. The number of grains determined by the ProCast simulation, after verifying it at
selected points of the cross-section of the casting using the EBSD method, allows for
faster determination of the number of grains than in the case of using only the EBSD
method over the entire cross-sectional area of the casting.
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