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Abstract: Perovskite materials have been one of the most important research objects in materials
science due to their excellent photoelectric properties as well as correspondingly complex structures.
Machine learning (ML) methods have been playing an important role in the design and discovery of
perovskite materials, while feature selection as a dimensionality reduction method has occupied a
crucial position in the ML workflow. In this review, we introduced the recent advances in the applica-
tions of feature selection in perovskite materials. First, the development tendency of publications
about ML in perovskite materials was analyzed, and the ML workflow for materials was summarized.
Then the commonly used feature selection methods were briefly introduced, and the applications of
feature selection in inorganic perovskites, hybrid organic-inorganic perovskites (HOIPs), and double
perovskites (DPs) were reviewed. Finally, we put forward some directions for the future development
of feature selection in machine learning for perovskite material design.

Keywords: perovskites; materials design; machine learning; feature selection

1. Introduction

Machine learning (ML), as an interdisciplinary technique covering multiple fields
of statistics, computer science, and mathematics, has been widely used in the medical,
bioinformatics, financial, and agriculture fields [1–5]. Especially in the materials field, ML
technology has accelerated the design and discovery of new materials by constructing
models for the prediction of their properties [6,7]. In recent years, perovskite materials have
drawn the attention of many scholars due to their excellent properties, such as excellent
electrical conductivity, ferroelectricity, superconductivity, longer carrier diffusion lengths,
a tunable bandgap (Eg), and high light absorption that can be applied in solar cells, light-
emitting diodes, lasers, and photocatalysis materials fields [8–11]. Figure 1a demonstrates
the overall growth pattern in the number of papers searched on the website ‘web of science’
with the key words ‘perovskite’ and ‘machine learning and perovskite’ from 1988 to 2022.
Especially since 2013, after the breakthrough in the applications of perovskite materials in
solar cells, there has been a spurt of research results, indicating that perovskite materials
have always been a research hotspot. Figure 1b shows that ML technology has become
a powerful tool in materials science in recent years, and its applications in the field of
perovskite materials have been increasing year by year since 2013, indicating that ML has
played an increasingly important role in the research of perovskite materials.

Data is the cornerstone of ML, and high-quality data allows ML to capture the hidden
patterns in the data to make the correct predictions about the research objects. The data
of materials are generally divided into target variables reflecting material properties and
features associated with the target variables, which can also be described as variables,
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descriptors, or fingerprints in the material field. For perovskite materials, property data
such as Eg, formability, thermodynamic stability, specific surface area (SSA), and Curie
temperature (Tc) are commonly employed as target variables, and the associated features
usually involve elemental components, atomic parameters, structural parameters, exper-
imental parameters, etc. [12–15], which usually have the characteristics of high feature
dimensionality. The high feature dimensionality would not only lead to limitations due
to overfitting and computational inefficiency but also cause difficulty in exploring the
physical meaning of features [16,17]. Thus, it is crucial to pick an appropriate method for
reducing feature dimensionality. The two commonly used methods for dimensionality
reduction are feature extraction and feature selection [18]. Feature extraction transforms the
feature space by transformation or mapping, thus effectively reducing the dimensionality
of features [19]. Feature selection preserves the original information of features by selecting
a valid subset from the original feature set and removing redundant and irrelevant features.
Feature extraction may generally lack interpretability, while feature selection methods are
numerous. Therefore, it is necessary to select an appropriate feature selection method to
approximate the upper limit of the performance of the trained model as much as possible.
Reviewing the progress of feature selection methods in ML for perovskite materials and
providing an outlook on future work will help further the development of perovskite
material design.
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In this review, we discuss the applications and importance of feature selection in
the ML workflow for perovskite materials. In Section 2, the basic workflow of ML in
the field of materials science is outlined. In Section 3, we present the different types of
perovskite materials and their associated features. Section 4 is an introduction to feature
selection methods, including filter, wrapper, and embedded. In Section 5, the applications
of feature selection methods in the study of inorganic perovskites, hybrid organic-inorganic
perovskites (HOIPs), and double perovskites (DPs) are introduced. In Section 6, some
of the current challenges and opportunities encountered in the applications of feature
selection in ML to perovskite design and discovery are briefly discussed. Our work will
help researchers better deal with the feature selection problems involved when using ML
as a tool to study perovskite materials.

2. Workflow of Materials Machine Learning

As shown in Figure 2, the workflow of ML in materials could be divided into four
steps: data preparation, feature engineering, model evaluation and selection, and model
application [20].
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Data preparation includes data collection and data preprocessing. Materials data could
generally be obtained through publicly available materials databases, published papers,
experimental data of the same standard, data journals, and density functional theory
(DFT) calculations [13,21–24]. The latest data can be obtained by searching the literature,
but it is time-consuming and laborious. Data from data journals and databases can be
obtained in a short time, but the latest data are generally not available in a timely manner.
Scientific Data by Springer Nature and Data in Brief by Elsevier are the more representative
data journals. Table 1 lists the commonly used material databases, including perovskites.
Experimental data may be a good source of data, but it is costly. DFT calculations are
susceptible to material systems, which may lead to the doubling of time and computing
resources. Data preprocessing is essential due to the characteristics of multi-source data
and the high noise of the material data. To ensure the availability of data, common
preprocessing operations include filling in missing values, removing duplicates and outliers,
dimensionless processing, treating data imbalances, and rationally dividing data [25,26].

Feature engineering, including feature construction and feature selection, is an ex-
tremely important part of the ML workflow. In most ML processes, the quality of the data
related to the sample size and feature dimensionality, as well as the validity of the features,
determines the upper limit of the model’s performance. In general, a high ratio of sample
size to feature dimension would lead to better model performance. When the existing
features do not contain enough valid information to cause low model performance, new
features can be either constructed based on domain knowledge or generated by simple
mathematical transformation of existing features through algorithms such as the Sure Inde-
pendence Screening Sparsifying Operator (SISSO) and genetic algorithm (GA) to improve
model performance [27,28]. The properties of materials are influenced by their composition,
structure, experimental conditions, and environmental factors, but there may be weakly
correlated, uncorrelated, or redundant features in the data. For the original set of features
in the data, feature selection can remove the redundant features and keep the key features
that are easily accessible and have a significant impact on the target variable to further
improve the model’s performance while increasing the computational efficiency.
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Table 1. Commonly used materials databases, including perovskites.

Name URL Data Type

The Perovskite Database
Project (PDP)

https://www.
perovskitedatabase.com

(accessed on 19 March 2023)
Exp.

Open Quantum Materials
Database (OQMD)

http://www.oqmd.org/
(accessed on 19 March 2023) Comp.

Materials Project (MP) https://materialsproject.org/
(accessed on 19 March 2023) Comp.

Computational Materials
Repository (CMR)

https://cmr.fysik.dtu.dk/
(accessed on 19 March 2023) Comp.

The Inorganic Crystal
Structure Database (ICSD)

https://icsd.fiz-karlsruhe.de/
index.xhtml (accessed on 19

March 2023)
Exp.

Materials Platform for Data
Science (MPDS)

https:
//mpds.io/#modal/menu
(accessed on 19 March 2023)

Comp. and Exp.

Automatic-FLOW for
Materials Discovery (AFLOW)

http://www.aflowlib.org/
(accessed on 19 March 2023) Comp.

Before building models, it is necessary to confirm the type of models corresponding to
classification and regression models when the target variables are discrete and continuous,
respectively. There are many ML algorithms, but no perfect algorithm exists. Although for
a specific classification or regression task, the researchers could choose linear, nonlinear,
or ensemble algorithms preliminary based on their understanding or guessing of the
potential “structure-property relationship” of the materials. It is still difficult to determine
the most suitable algorithm based on the limited data volume. Even with the same data
and algorithm, the trained model will not be the same with the different hyperparameters.
Therefore, it is necessary to evaluate a series of models to select the relatively optimal
one. Model performance and model complexity are the key factors that determine model
selection. Model performance can be measured by evaluation metrics calculated based
on the true and predicted values of the target variable. Common evaluation metrics for
regression tasks include coefficient of determination (R2), correlation coefficient (R), mean
square error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and
average relative error (MRE), while common evaluation metrics for classification tasks
include accuracy (ACC), area under the curve (AUC), recall, precision, and F1 score. To
ensure the reliability of the results, the hold-out method and cross-validation method are
generally used to evaluate the models after the evaluation metrics are determined. Common
methods of cross validation are 5-fold cross validation (5-fold CV), 10-fold cross validation
(10-fold CV), and leave-one-out cross validation (LOOCV). Furthermore, we tend to choose
the model with better performance and lower model complexity. After selecting a specific
ML algorithm, hyperparameter optimization is usually performed to further improve
the performance of the model, and the final model is determined after the determination
of hyperparameters. Contemporary hyperparametric optimization algorithms can be
mainly classified into various types, including grid-search, Bayesian-based optimization
algorithms, gradient-based optimization, and population-based optimization.

The final aim of ML is to predict the target variables of unknown samples based on
the trained model. The three major scenarios of model application are high-throughput
screening (HTS), inverse design, and the development of online prediction programs.
HTS uses the constructed model to predict the target variables of a huge number of
virtual samples in order to filter out samples with high performance potential and guide
experimental synthesis [29,30]. The inverse design can be used to obtain the features of
designed samples via the inverse projection method, which is an effective way to realize

https://www.perovskitedatabase.com
https://www.perovskitedatabase.com
http://www.oqmd.org/
https://materialsproject.org/
https://cmr.fysik.dtu.dk/
https://icsd.fiz-karlsruhe.de/index.xhtml
https://icsd.fiz-karlsruhe.de/index.xhtml
https://mpds.io/#modal/menu
https://mpds.io/#modal/menu
http://www.aflowlib.org/


Materials 2023, 16, 3134 5 of 25

the material from properties to composition [31,32]. The prediction of designed samples
helps screen out candidates with breakthrough performance and improves computational
efficiency. The development of an online prediction program makes it possible to quickly
achieve the prediction of target properties by simply inputting the necessary information,
such as a chemical formula, on the input page, which facilitates the extension of model
application and effectively realizes model sharing [33].

3. The Structure and Features of Perovskite

Named after Russian geologist Perovski, perovskite can be divided into narrow sense
perovskite, referring to the specific compound CaTiO3, and broad sense perovskite, refer-
ring to the ABX3-type compound with the same structure as the compound CaTiO3 [34].
The cations at A-site and B-site can be replaced by ions with approximate radii or certain
groups due to the tunable ionic structure of perovskite materials, leading to the emergence
of a lot of perovskite derivatives. The common perovskites generally can be subdivided
into inorganic perovskites, HOIPs, and DPs [8]. The ABX3 inorganic perovskites have been
widely used in solar cells, solid oxide fuel cells, magnetic refrigeration, and photocatalysis
for their multiple properties such as catalytic activity, strong flexibility, outstanding stability,
and low cost [8,35]. The HOIPs have been widely applied in the fields of solar cells, light-
emitting diodes, X-ray or γ-ray detectors, lasers, and photodetectors due to their longer
charge diffusion lengths, high absorption coefficients, high defect tolerance, high carrier
mobility, and tunable Eg [36–38]. Because of the adjustable photoelectric performance and
good stability, the DPs have demonstrated promising applications in photocatalysis as
well as in functional devices including solar cells, light-emitting diodes, scintillators, and
photodetectors [39,40].

3.1. Inorganic Perovskites

For ABX3-type inorganic perovskites, A-site and B-site are cations of alkaline earth or
rare earth metal with a larger radius and transition metal with a smaller radius, respectively,
and X is usually an anion of oxygen or halogen [41]. As shown in Figure 3a, the ideal struc-
ture of ABX3 perovskites has cubic symmetry with space group Pm3m, and the cations at
the A-site and B-site are coordinated to the X-site anion via 12 and 6, respectively [42]. ABX3
inorganic perovskites can be further divided into oxide perovskites and halide perovskites
when X refers to oxygen ions and halide ions, respectively. The ABO3 perovskite oxides
are one of the most common and widely studied structures in materials. Given that not
all compounds with ABX3 stoichiometry are necessarily perovskite materials, geometric
structural features such as the octahedral factor (µ), Goldschmidt’s tolerance factor (t), and a
modified tolerance factor (τ) (Equations (1)–(3)) are used in the study of perovskite materials
by ML for the determination of perovskite formability and stability [43–45]. In addition,
the structural features of A-X and B-X bond lengths based on bond valence have also been
used to indicate the formability and stability of inorganic perovskites [46]. For ABX3-type
inorganic perovskites, the features are generally dominated by atomic parameters indicating
the properties of the elements in the A/B sites, such as atomic radius, electronegativity,
ionization energy, highest occupied molecular orbital (HOMO) energy, and lowest unoccu-
pied molecular orbital (LUMO) energy, etc. It is worth noting that when the elements at the
A-site or B-site of the ABX3 perovskites are doped, the general formula can be expressed
as A1−xA′xB1−yB′yX3 in which the features of the A/B positions are generally calculated
by taking a weighted average of the properties of the doped elements at the corresponding
positions (Equations (4) and (5)) [47,48]. Commonly used atomic parameters are publicly
available from the Villars database [49], Mendeleev package [50], and RDKit [51] and can
also be obtained by direct populating through online calculation platforms or software [33].
The models based on 21 features including structural and atomic parameters of the materi-
als populated by the OCPMDM platform developed in our laboratory have yielded good
results in the prediction of target variables such as SSA and Eg of ABO3-type perovskite
materials [13]. In addition, the SISSO method can be used to generate new key features
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based on features that are directly accessible. Equation (3) is a new tolerance factor obtained
by Bartel et al. based on the SISSO method of ionic radii, which has an ACC of 92% in
determining the formability and stability of ABX3 perovskites [45].

µ =
rB
rX

. (1)

t =
rA + rX√
2(rB + rX)

. (2)

τ =
rX
rB
− nA

nA −
rA
rB

ln
(

rA
rB

)
. (3)

fA = (1− x) ∗ fA + x ∗ fA′ . (4)

fB = (1− y) ∗ fB + y ∗ fB′ . (5)

where rA, rB, and rX are the ionic radii of ABX3 perovskites, respectively; nA is the oxidation
state of the A-site ion; (1− x) and x are the percentages of A-site doped elements, (1− y)
and y are the percentages of B-site doped elements; fA and fA′ are the respective features
of A-site doped elements, and fA is the weighted average feature of the A-site; fB and fB′
are the respective features of the B-site doped elements, and fB is the weighted average
feature of the B-site.
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3.2. Hybrid Organic-Inorganic Perovskites

As shown in Figure 3b, the A-site of ABX3-type HOIPs could be replaced by an organic
cation such as methylammonium CH3NH3

+ or formamidinium CH(NH2)2
+ compared to

ABX3 inorganic perovskites [52]. The features involved in the inorganic part of the HOIPs
are still dominated by atomic parameters, but the organic molecular features have few parts
in common with the atomic features due to the complexity of the organic cation at the A-site,
which requires additional calculations of the features of the organic structure [53,54]. The
basic properties of an A-site ion, such as its first and second ionization energies, electron
affinity, molecular volume, molecular radius, and chemical potential, can be estimated
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based on theoretical methods, and Multiwfn and Gaussian are commonly used calculation
software [31,53]. In addition to using the radius of organic ions as a feature, the anisotropy
of organic cations can also be considered. Chen et al. improved the ACC of Eg models by
using three geometric parameters, namely length, width, and height, as features [55].

3.3. Double Perovskites

The structural general formula of DPs could be expressed as AA′BB′X6, where A and A′

are more commonly the same or different cations, and B and B′ are different cations that alter-
nate with the X site ions to form the BX6 and B′X6 octahedrons (Figure 3c) [56–58]. Similarly,
not all materials satisfying the chemical formula AA′BB′X6 are perovskite structures. The
tolerance factor t is proposed for single perovskite materials, but the formability of perovskites
is essentially all based on geometric criteria derived from ion radii or bond distances. By using
arithmetic or weighted averages of ion radii or bond lengths, the concept of tolerance factors
can be extended to DPs with more complex compositions [12]. The generalized octahedral
factor has also been introduced as a judgment of perovskite formability [39]. For DPs, the
common features are similar to those of the ABX3 type, which are generally based on atomic
parameters. And similar to single perovskites containing doped elements, the features of the
A/B sites can be treated by common methods including arithmetic averaging and geometric
averaging [59]. It is also noteworthy that AA′BB′X6, A′ABB′X6, and A′AB′BX6 are all unified
systems because the exchange of two A-site cations as well as two B-site cations does not
affect the structure of perovskite. The features are treated symmetrically when considering
the inclusion of structural symmetry into the model [56].

Furthermore, experimental conditions are also quite important features, and the
gradient boosting regression (GBR) model for the crystallite size (CS) of ABO3 perovskite
materials developed by Tao et al. indicates the high importance of two experimental
conditions: the preparation method (PM) and the calcination temperature (CT) [15]. If
possible, it is encouraged to use the experimental conditions as features to build predictive
models for the target properties.

Notably, perovskite materials are widely used in solar cells and photodetectors in the
form of thin films [36]. Especially in the field of solar cells, the power conversion efficiency
(PCE) of perovskite solar cells (PSCs) has surpassed 25% within just 10 years, which is
comparable to crystalline silicon solar cells [60]. Research has revealed that high-quality
thin films are one of the crucial factors influencing the performance of PSCs. The methods
to fabricate perovskite films include several techniques such as solution processing, vacuum
deposition, physical vapor deposition, vapor-assisted solution processing, and scalable
deposition [61–66]. Thin film properties such as grain size, morphology, crystallinity, defect
density, and surface coverage may vary under different preparation methods, leading
to differences in the quality of the thin film [61]. Experiments have shown that various
process parameters such as stoichiometry, thermal treatment, substrate temperature, solvent
engineering, additives, and environmental control have a great influence on the quality of
perovskite thin films [61–66].

4. The Methods of Feature Selection

According to whether the evaluation criteria are independent of the learning algo-
rithm, the feature selection methods could be generally classified into filter, wrapper, and
embedded [67,68]. The filter methods are independent of the ML algorithm, using an
evaluation criterion based on statistical theory or information theory to select a subset of
features after ranking the features [19,69]. In the process of feature selection, the wrapper
methods use the performance of the evaluator as the criterion to select the optimal feature
subset [70]. The embedded methods can be used to realize feature selection in the modeling
by combining the training of the evaluator and the processes of feature selection into a
single optimization process [17]. The filter methods are computationally efficient and
generalize well. However, due to the lack of interaction with the evaluator, the model
performance of feature subsets selected based on the filter methods is generally less effec-
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tive than the wrapper and embedded methods, which are relatively less computationally
efficient [71].

4.1. Filter

The filter feature selection methods include the chi-square test (χ2), analysis of variance
(ANOVA), Pearson correlation coefficient (PCC), distance correlation coefficient (DCC),
max-relevance and min-redundancy (mRMR), maximal information coefficient (MIC), and
Relief, etc.

The χ2 and ANOVA are correlation measure methods based on hypothesis testing,
with the former for testing the independence between discrete variables and the latter for
testing the independence between discrete and continuous variables [72,73]. Hypothesis
testing generally includes four steps: (1) proposing the null hypothesis and alternative
hypothesis; (2) designing the hypothesis testing statistic according to the hypothesis;
(3) getting the p-value according to the distribution after calculating the current value of the
statistic; and (4) considering the acceptance or overturning of the null hypothesis according
to the p-value and drawing the final conclusion. The smaller the p-value of the output, the
smaller the probability that the null hypothesis holds, and the more likely it is that the two
features are not independent. Features with significant associations can be screened out
when the p-value is less than α referring to the significance level. It is worth noting that,
generally, the smaller the p-value usually means the larger the value of the statistic, which
can be equated to the feature score. In specific usage scenarios, the user can select features
based on the ranking of features according to the value of the statistic [74].

PCC generally measures the linear correlation between continuous variable pairs (x, y)
by Equation (6), where n is the number of samples in the dataset, xi and yi are the ith
sample point, and x and y are the means of the samples [75,76]. The range of PCC values
from −1 to 1 indicates that the relationship between variables changes from a completely
negative correlation to a completely positive correlation. Additionally, the closer the PCC
is to zero, the weaker the linear correlation will be. In a practical ML process, PCC can
indicate the linear correlation between the target variable and features to represent the
degree of association and a linear correlation between any feature pairs to represent the
redundancy among feature pairs:

PCC =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

. (6)

The accuracy of PCC may not be guaranteed when there is a nonlinear correlation
between the variables. The DCC is an alternate correlation coefficient that does not have
this weakness, which defines the independence between variables: dCor(x, y) = 0 if
and only if x and y are independent, where dCov(x, y) is the sample distance covariance
(Equation (7)) [77]. The DCC takes a value in the range [0, 1]; the larger the value, the
stronger the correlation:

dCor(x, y) =

{ dCov(x,y)√
dCov(x)dCov(y)

, dCov(x)dCov(y) > 0

0, dCov(x)dCov(y) = 0
. (7)

The measure of correlation based on mutual information is a non-parametric approach,
and the essence of mutual information is the extent to which two variables explain each
other, which can be understood in terms of the consistency of the distribution and the
amount of information contained in each other. Meanwhile, mutual information can
identify arbitrary relationships between any type of variable.
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mRMR based on mutual information theory attempts to select the features with the
maximum relevance to the target variable and the minimum redundancy among the
features [78]. It is supposed that there are a total of F features in the dataset, and Sm denotes
the set of m features that have been selected; the importance of the (m + 1)th feature is
defined in Equation (8), where I

(
xj, y

)
is the mutual information between variables xj and

y. Additionally, the mutual information of any variable pair (x, y) could be calculated by
Equation (9), where p(x), p(y), and p(x, y) are their probabilistic density functions. Then

the scoring function
max

xjε(F− Sm)

[
f mRMR(xj

)]
can be used to select the (m + 1)th feature

from the remaining set of features (F− Sm) to join Sm. Therefore, mRMR is actually a
stepwise method where, at each step of the feature selection process, the feature with the
highest feature importance will be added to the subset until the number of features in the
subset reaches the user requirement:

f mRMR(xj
)
= I
(
xj, y

)
− 1

m ∑xiεSm
I
(
xj, xi

)
, (8)

I(x, y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy. (9)

The solution of joint probabilities is often difficult, and MIC overcomes this shortcom-
ing of mutual information. The MIC belonging to the nonparametric method can provide
an effective measure of linear and nonlinear relationships between the variables, as well as
nonfunctional dependencies [79]. The values of MIC between the features and the target
variable are regarded as the scores of each feature in the feature selection process. The
features can be ranked based on the sizes of the MIC values, and the features are then
chosen based on the threshold value or the predetermined number of features.

Relief is a feature weighting method used to handle binary classification, where
features are given different weights according to the relevance of each feature to the category,
which is based on the ability of the feature to discriminate between nearby samples,
and features with weights less than a certain threshold are removed [69]. According to
regression and classification tasks, the ReliefF and RReliefF methods were proposed, which
support multi-class classification and regression problems, respectively [69].

4.2. Wrapper

Wrapper methods for feature selection include greedy sequential searches such as
sequential feature selection (SFS) and sequential backward selection (SBS), as well as
more complex ones like recursive feature elimination (RFE) and evolutionary and swarm
intelligence algorithms such as GA [80–82].

The SFS method takes the empty set as the starting point of the search and selects
one feature at a time that makes the objective function generally optimal, referring to the
cross-validation score of an estimator to join the feature set S. The SFS selection method is
an iterative selection process that involves only adding features. In contrast to SFS, the SBS
method starts with the full set of features and then continuously discards features from the
feature set to optimize the objective function value. Both methods stop searching when a
set number of features is reached.

RFE is a feature selection method based on model performance that continuously
removes the least important features through recursion. The basic execution steps of RFE
are: (1) training on the current feature set S1 and calculating the importance of each feature
according to the given evaluator; (2) eliminating the least important feature to obtain
the feature subset S2, and then training the model again to calculate the importance of
the remaining features; and (3) repeating step two until the number of features is equal
to the value manually set. The recursive feature addition (RFA), the opposite method,
iteratively adds features [83]. RFE and RFA are often used in conjunction with the RF
algorithm [83,84].
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GA as one of the representatives of intelligent algorithms is proposed based on the core
idea of biological evolutionary theory, where each solution is encoded as a ‘chromosome’
or an individual to constitute a population (a subset of all possible solutions) when solving
a problem [85]. The general steps of GA include: (1) generating an initial population
representing potential solutions to the problem randomly; (2) selecting an appropriate
fitness function to evaluate individuals; (3) then applying genetic operations such as
selection, crossover, and mutation to generate new populations; and (4) repeating steps 2–3
until the termination condition of the iterative calculation is met [86,87]. Binary coding is
adopted when using GA to solve the problem of feature selection, where a binary value
of ‘1’ indicates that a feature at the corresponding position is selected, so that a genetic
individual consisting of a fixed-length binary string represents a subset of features [87]. In
other words, the realization of feature selection based on GA is to find an optimal binary
code which represents the optimal feature subset.

4.3. Embedded

Embedded methods can be broadly classified into those based on regularized models
and those based on tree models. Many ML models introduce regularization terms such as
L1-penalty or L2-penalty in their loss functions to prevent overfitting problems. Regulariza-
tion terms such as least absolute shrinkage and selection operator (LASSO), ridge regression
(RR), and support vector machine (SVM) can effectively shrink the coefficients of certain
features to zero, thus enabling feature selection [88–90]. A major branch of ML is tree-based
ML models such as random forest (RF), GBR, and extreme gradient boosting (XGBoost),
etc. [91–93]. These tree models record how each feature progressively reduces the model
error in the bifurcation of the tree nodes during the process of modeling and generally use
feature importance to indicate the degree of feature contribution to the current model.

In addition, SHapley Additive exPlanations (SHAP) method, which can be used in
nesting with different ML algorithms, serves as a unifying framework for interpreting black
box models, and the SHAP value also indicates how much the feature contributes to the
model’s prediction. Since global importance is required, the average of the absolute Shapley
values for each feature is used as the SHAP feature importance. Then feature selection can
be performed after ranking the features according to SHAP feature importance [94].

5. Feature Selection in Machine Learning for Perovskite Materials
5.1. Feature Selection for Inorganic Perovskites

In the research of inorganic perovskite materials, a single feature selection method
was sometimes employed. Priyanga G et al. [95] used ML methods to predict the nature of
Eg of ABO3 perovskite oxides. Datasets were obtained from various databases and experi-
mental research papers, with the features generated using Matminer. After preprocessing,
5276 samples consisting of ‘direct Eg’ and ‘indirect Eg’ were obtained to construct the classi-
fication model for predicting the nature of Eg in perovskite materials. The highly correlated
features were removed based on the PCC matrix, retaining the six features, including the
ionic radius of the A-site (RA), the ionic radius of the B-site (RB), the electronegativity of
element A (ENA), the electronegativity of element B (ENB), the electronegativity difference
with radius (ENR), and the average ionic character of A and B (avg ionic char [95]. Logistic
regression (LR), decision tree (DT), RF, k-nearest neighbors (KNN), light gradient boosting
machine (Light GBM), XGBoost, and support vector clustering were used to build the classi-
fication models, and the RF model was optimal with an ACC of 91%. A feature importance
analysis of the RF model revealed that the most important features in the Eg classification
of perovskite materials are avg ionic char ENA, ENB, and ENR. Additionally, the tendency
to obtain direct Eg is higher as the average ionic character increases, while the tendency
to obtain indirect Eg increases as the average ionic character decreases. Zhang et al. [96]
developed a model for the automatic identification of perovskite crystal structures. Firstly,
1647 ABX3-type perovskites data containing seven crystal systems, 40 space groups, and
lattice parameters were extracted from the MP database, and the initial features include
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24 elemental and structural descriptors. The recursive feature descriptor method was used
in the feature engineering process to eliminate weakly and unreliably correlated atomic
parameters while maintaining the same level of model accuracy. Ten features, including
the number of atoms, bond-valence vector sum (BVVS), and atomic number (Z), were
ultimately kept. The SVM, RF, gradient boosting trees (GBDT), and XGBoost algorithms
were used in combination with the selected features to build classification and regression
models, respectively. The RF model did the best when the models were first built using a
subset of features without BVVS. Subsequently, the RF was used to build classification and
regression models based on a subset of features containing BVVS. Additionally, the ACC
of the crystal systems classification model increased from 0.915 to 0.974, and the R2 of the
lattice constant model increased from 0.710 to 0.887, indicating that the addition of BVVS
can more accurately reflect the structural properties of crystals.

PCC as the ‘star method’ for feature selection is also often used as a feature primary
screen or mixed with other feature selection methods such as mRMR, RFE, and embedded
methods. In addition, there are other different feature selection methods that are mixed
or used step by step. Zhao et al. [46] used the ML method to screen formable and stable
perovskite oxides from unexplored ABO3 combinations. The input data for the ML model
consisted of 343 known ABO3-type perovskites and 21 initial features. Feature selection
was performed based on feature correlation and importance to remove redundant and less
important features. Feature correlation was measured by the PCC method, and paired Pear-
son correlation coefficients (PCCs) were calculated for the 21 features. Feature importance
was obtained from the results of 100 RF models for formability and stability prediction.
The importance of the features demonstrates that the formability of perovskites depends
mainly on the structural features of the A- and B-site elements, while the properties of the
B-site element are the key factor to predict the stability of perovskites. Finally, 16 features
were retained for training the formability and stability prediction models of perovskites by
analyzing their correlation and importance. For comparison, the RFE method was also used
to evaluate the importance of 21 features, and 17 features were retained. The prediction
models for formability based on 21, 16, and 17 features, respectively, were denoted as
models 1–3, and model two had the highest ACC, precision, F1 score, and AUC with 0.988,
0.983, 0.992, and 0.999, respectively. Additionally, 21, 16, and 17 features were combined
with E-hull to train the stability prediction models, which were denoted as models 4–6,
and model five had the best overall results with an AUC as high as 0.983. Li et al. [59]
also studied the formability of perovskites based on ML. First, 576 ABX3-type compounds,
including 314 perovskites and 262 non-perovskites, were collected from publications. The
initial features were 53 physicochemical parameters. In the step of feature engineering,
the initial screening of features was first performed based on the PCC method, and the
number of feature dimensions was reduced to 29 by using 0.9 as the selecting threshold.
For further feature selection, the RFE method was applied to the 29 features, and finally six
features (τ, µ, t), the ratio of A ion radius to B ion radius (RA/RB), Pauling electronegativity
(EP_A), and dipole polarizability of the B-site (DP_B), were retained. Subsequently, five ML
algorithms, including RF, DT, SVM, KNN, and LR, were used to construct the classification
models, of which the RF model was optimal and the ACC of the model after hyperparame-
ter optimization reached 94.85%. Moreover, it was found that the RF model also correctly
predicted whether the compounds could form DPs after testing. The importance of the
features of the model shows that τ plays a decisive role in the classification model to distin-
guish between perovskites and non-perovskites. Tao et al. [30] accelerated the discovery of
new high-performance and low-cost perovskite photocatalysts in the field of photocatalytic
hydrolysis (PWS) by building ML models for hydrogen production rate (RH2 ) and Eg. First,
160 ABO3 perovskite photocatalyst data were collected from the experimental literature, of
which the RH2 and Eg datasets contain 77 and 124 samples, respectively. For the Eg model,
the initial features are 17 atomic parameters and three experimental conditions, while
there are 18 atomic parameters and six experimental conditions for the RH2 model. Four
algorithms, including GBR, support vector regression (SVR), backpropagation artificial
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neural network (BPANN), and RF, were used to construct the regression models. The
mRMR method was used to select the best subset of features for the SVR and BPANN
models, while the embedded method was used for the GBR and RF models. The BPANN
and GBR models performed optimally for RH2 and Eg prediction, which correspond to
feature subset dimensions of 9 (Figure 4b) and 7, respectively, while the R of LOOCV
reached 0.9869 and 0.9217. Subsequently, Tao et al. [15] proposed a stepwise design strategy
for multi-objective optimizations to accelerate the design of potential ABO3 perovskites
with high photocatalytic activity. Data were obtained from the published experimental
literature, where the sample sizes used to build models for Eg, SSA, and CS were 170, 172,
and 117, respectively, and the features included 20 atomic parameters and three experimen-
tal conditions. Preliminary feature selection was performed by combining PCC and mRMR
methods to remove highly correlated features. Firstly, the features of Eg, SSA, and CS were
ranked using the mRMR method. Then the PCCs of any feature pairs were calculated, and
if the value of the PCC was greater than 0.9, the features with a lower ranking of mRMR
were removed. After the initial selection, Eg model retained 19 features, while the SSA and
CS models both retained 20 features. GBR, SVR, BPANN, and multiple linear regression
(MLR) were used to construct the models. The results of LOOCV indicated that GBR was
the optimal model with an R of 0.8869 and 0.8733 for predicting Eg and CS, while SVR was
the optimal model with an R of 0.8461 for predicting SSA. In further feature selection, the
embedded and mRMR methods were used to select the best features for the GBR and SVR
models, respectively, and the final number of retained features was 6, 10, and 9 for Eg, SSA,
and CS, respectively. The SHAP analysis of the retained features showed that the boiling
point of the B site showed a significant positive correlation with Eg and contributed the
most to the GBR model; the CT and electron affinity of the B site were key features for the
SVR model of SSA; and for the CS model, the CT showed a significant positive correlation
with CS, which is consistent with the actual experimental conclusion that the higher the CT,
the larger the CS formed.

Some researchers had used a particular feature selection method as a tool to determine
whether the initial feature subset was valid and then taken other measures to construct
other, more useful features. Liu et al. [28] collected 3430 samples to predict the formation
of the oxygen vacancy defect in perovskites. The target variable is the oxygen vacancy
formation energy, which is defined as a dichotomous problem of whether an oxygen va-
cancy defect is likely to form or not by using 0.5 eV as the cutoff, and the initial features are
16 structural parameters containing ionic radius, ionic chemical valence, electronegativity,
lattice parameters, tolerance factor, and octahedral factor. In the feature engineering, after
drawing the correlation coefficient heat map of the features and the target variable, it was
found that no feature was significantly correlated with the target variable; therefore, sym-
bolic classification is used to discover the hidden underlying physical relationships. Since
the parsimony coefficient can change the complexity of the corresponding formulas of the
generated new structural features, a parsimony coefficient of 0.01 was chosen after weigh-
ing, and a simple and effective new structural descriptor, na(ra/Ena − rb), was obtained,
with the na, ra, and Ena meaning the valence, radius, and electronegativity of the a-site ion,
respectively, and rb being the b-site ion radius. After modeling with the newly constructed
descriptor, the AUC of the interpretable model could reach 0.797. Talapatra et al. [12]
constructed their ML model to predict the formability and thermodynamic stability of
perovskites. Firstly, a database DF of formability and a database DS of thermodynamic
stability of perovskite were established. DF consists of experimentally known ABO3 and
AA′BB′O6 types of perovskites collected from the literature, including 1187 perovskites
and 318 non-perovskites. DS contains 3469 samples from their own, independently con-
structed, basic chemically compatible dataset DC. It was found that 1501 perovskites are
thermodynamically stable, while the remaining 1955 are thermodynamically unstable af-
ter being calculated by DFT. Structural and chemical features were initially used. These
features are associated with the A- and B-site atoms of single perovskites, the A-, A′-, B-,
and B′-site atoms, and the symmetric and antisymmetric compound features of DPs. The
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RFE method was used for feature selection. It was found that atomic features, electron
affinity, and geometric features had significant effects on formability and stability. 24 con-
structed symmetric and antisymmetric compound features based on the first six features
and 4 geometric features, including t, µ, and mismatch factors (µB and µA) were finally
retained. For the formation and thermal stability of perovskites, RF classification models
were constructed based on these 28 features, respectively, and the average classification
ACC reached 94.01% and 94.09%, respectively. The analysis of feature importance reveals
that not only the traditional t and µ contribute very highly to formability, but also many
elemental features at the B-site, such as the Zunger pseudopotential radius, electronega-
tivity, and LUMO, are important features to distinguish perovskites from non-perovskites.
For the stability classification model, the symmetry features of B-site, such as HOMO,
LUMO, ionization energy, and pseudopotential radius, are key features, and the t is the
most important among the geometric features. There is an interesting phenomenon that
RFE is the most common feature selection method in the ML workflow for predicting
formability and stability. In some application scenarios, GA is also a more effective feature
selection method. Xu et al. [13] proposed a multi-properties ML strategy to accelerate the
discovery and design of ABO3-type ferroelectric perovskites. The data were obtained from
publications, including classification data containing 86 ferroelectric perovskites and 61
non-ferroelectric perovskites and regression data containing 95 SSA, 185 Eg, 110 Tc, and
29 dielectric loss (tanδ) samples. A total of 21 atomic parameters were selected as initial
features, and seven features were retained using GA combined with the support vector
classification (SVC) model for feature selection. The prediction ACC of LOOCV of the SVC
model after hyperparameter optimization was increased from 85.59% to 87.29%. Regression
models for SSA, Eg, Tc, and tanδ were built based on the ML workflow and SISSO method,
respectively. The SSA, Eg, Tc, and tanδ models by ML workflow all used GA and SVR to
select features, and the number of retained features were 13, 16, 16, and 2, respectively.
The LASSO models are constructed by using new features selected by the SISSO method.
The analysis results indicated that SSA, Eg, and Tc tended to be built as regression models
by the ML workflow, which had higher R values of 0.935, 0.891, and 0.971, respectively,
while a better tanδ model was obtained when using the SISSO method with an R value
of 0.931. It could be speculated that the SISSO method may perform better in the case of
small datasets. SHAP analysis of the retained features revealed that the three models for
SSA, Eg, and Tc contained nine common features, including six features associated with the
A-position, two features associated with the B-position, and molecular mass. The A-site
atomic density showed a strong negative association with SSA and Eg, and the B-site atomic
density demonstrated a negative correlation with all three target variables, according to the
Pearson correlation analysis based on the nine features and target variables.
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Copyright 2021 Elsevier.

5.2. Feature Selection for Hybrid Organic-Inorganic Perovskites

In the study of HOIPs and double HOIPs using ML methods, feature selection by a
combination of PCC and embedded methods seems to be common. Chen et al. [55] achieved
the accelerated discovery of double HOIPs (DHOIPs) by combining ML techniques, HTS,
and DFT calculations. The two input datasets consist of 11,161 DHOIPs or HOIPs with
Eg as the target property and 26 initial features, considering the anisotropy of the organic
cations at the A-site as well as the HOMO-LUMO gaps and the rotational temperatures.
Feature selection was performed based on PCC and feature importance from the GBR
model, which measured permutation importance and the mean decrease in impurity (MDI).
The correlations show that the RA and length (La) of the A-site cations are highly correlated,
and the HOMO-LUMO gap is negatively correlated with the cation size. The GBR model
was based on 26 initial features, where both the MDI and permutation importance of the
Eg model with the total dataset as input indicate that the features of B-site play a key role
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in predicting Eg. Additionally, the accuracy of the model fitted using only the second
dataset was very high, with a MAE of only 0.09 eV. Taking PCC and feature importance
into consideration together, the length La of the A site and the number of f electrons in
the B site were finally removed, and 24 features were retained. Lu et al. [26] predicted
the experimental formability of HOIPs via imbalanced learning. A total of 539 HOIPs
and 24 non-HOIPs were obtained from reported literature as a dataset, while 129 features
were created based on the Python package for fast-machine-learning. A total of 43 features
were kept after the initial feature selection process, which eliminated constant and strongly
correlated features. Nine sampling methods and 10 algorithms were used to handle the
imbalanced problem and build the classification models, respectively, and it was found
that both combinations of SMOTEENN-CAT and SMOTEENN-SVC achieved 100% ACC
and precision of LOOCV after a comparative analysis. The CAT model was nested with
the SHAP method to achieve further feature selection, and the highest ACC was achieved
for both LOOCV and the test set with 100% and 95.5%, respectively, when the number
of features was 28. After analyzing the SHAP feature importance and the relationship
between the feature values and the corresponding SHAP values, it is found that perovskite
is more likely to be formed when the values of the A site atomic radii (ARA) are in the range
of 2.30–2.72 Å, which can be confirmed by the existing perovskites (Figure 5a). It is also
found that both larger RA and t contribute negatively to the formability of HOIPs.
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Figure 5. (a) Feature importance extracted via the SHAP method, the scatter plot of ARA, and its
SHAP value. Reprinted with permission from ref. [26]. Copyright 2022 American Chemical Society.
(b) The workflow of ‘last-place elimination’, R2 of the GBR model, in each selection process. Reprinted
with permission from ref. [97]. Copyright 2018 Springer Nature.

Moreover, the combination of PCC and recursive methods is also very popular among
researchers. Zhang et al. [54] predicted the formability of HOIPs using an interpretable
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ML strategy. A total of 44 HOIPs and 58 non-HOIPs were collected from publications, and
raw features consisted of the three structural parameters t, τ, and µ as well as features
obtained from the Mendeleev library and Villars database. A two-step method was used
to perform the feature engineering, and the first step used the filter method. The number
of features was reduced from 339 to 45 after the removal of features with missing values
and relatively unimportant features in feature pairs where the PCC values exceeded 0.95.
Recursive feature addition (RFA) is used in the second stage of the feature selection process
to screen out the key features by evaluating the performance of models constructed by the
top 2–20 features, which are in the specified feature importance order. For the different
algorithms, the specified feature importance is obtained based on the SHAP and mRMR
methods, respectively, where the former corresponds to the XGBoost and gradient boosting
classifier (GBC) and the latter corresponds to the SVC and the KNN. The optimal prediction
ACC under LOOCV was 0.94, 0.91, 0.90, and 0.83 for XGBoost, GBC, SVC, and KNN models
with six, four, four, and three features, respectively. SHAP analysis revealed that the RB was
most important for the formability of HIOP. Wu et al. [98] combined ML techniques and
first-principles calculations to achieve rapid screening of mixed double HIOPs (MDHOIPs)
for solar cells. Structure-formability classification, Eg classification, and Eg regression
models were trained based on the reported data of 2274 DHOIPs, with the initial feature
set consisting of 87 features related to ion radius, electronegativity, and ion polarizability.
Last-place elimination was used to perform feature selection, based on which the relative
importance ranking of features can be obtained. For the structure-formability of perovskites,
the performance of the classification model was no longer improved when the number of
features was greater than 16. The GBC model with an AUC value of 94.3% was trained
using the best 16 features, where the ion radius significantly influences the formability of
DHOIPs. For the classification and regression models of Eg, the seventh and eighth most
important features were selected, respectively. The Eg classification model had an AUC
value of 97.8%, and the GBR model had an R2 of 0.974. Both types of models together
revealed the importance of the B/B′ site ion, and the GBR model demonstrated that the Eg
value was also influenced by the interaction between the B/B′ site ion and the X site ion.
Cai et al. [99] hastened the discovery of novel lead-free hybrid organic-inorganic DPs with
excellent stability, a high Debye temperature, and a suitable Eg for high-performance PSCs
based on DFT and ML techniques. The dataset includes 4456 hybrid organic-inorganic
DPs obtained by DFT calculation and 95 features that can be obtained from the periodic
table. Among them, 425 compounds with direct Eg validated by PBE-DFT calculations
were extracted to construct the Eg model. The features were chosen by combining the
feature importance of the GBR model with the last-place elimination method, and the R2,
MSE, and MAE tended to be stable and reached the relative optimal value at 32 features.
Analysis of the top 10 features revealed that B/B′ and X sites play a key role in Eg formation.
The PCCs of the 32 retained features were then calculated, and the features with lower
feature importance were deleted when the correlation coefficients between any two features
were greater than 0.8. Eventually, 14 features were retained. As a side note, the last-place
elimination method (Figure 5b) is found to be RFE in essence, and it seems that researchers
tend to use it in conjunction with the GBR model.

5.3. Feature Selection for Double Perovskites

The feature selection methods used in the study of DPs also include a single method
and a combination of different methods. Wang et al. [40] collected 1747 known DP structures
with calculated Eg values obtained from the MP database to predict the Eg for rapid
screening out suitable DPs. Additionally, based on Eg values, the target variable was
classified into three categories: Eg less than 1.0 eV, between 1.0 and 2.0 eV, and greater than
2.0 eV. A total of 14 descriptors, including isolated elemental properties and differences
between properties, were used as initial features to build the GBDT classification model,
and the last-place elimination method was used for feature selection. The top (N − 1)
features were selected to perform the next training at the end of each modeling. After
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visualization of the relationship between the ACC of the model and the number of features,
it was found that the ACC of the model reached its optimal value when nine features
were selected, with an ACC of ~92%. The important analysis of the features leads to the
inference that the design of the B- and B′-site cation combinations has a significant impact
on the value of Eg for DPs. Liang et al. [39] developed ML models based on the energy
above the convex hull (Ehull) to screen thermodynamically stable lead-free halide DPs. The
dataset was assembled from 469 A2B′BX6-type halide DPs with known labels and Ehull
values, containing 112 stable compounds with Ehull ≤ 0 and 357 unstable compounds
with Ehull > 0.24 elemental features combined with six algorithms were used to build
classification models for stable/unstable perovskites as well as the regression model of
Ehull. Based on the SHAP method for feature selection, the XGBoost classification model
was optimal when the top 13 features of the SHAP importance ranking were selected for
modeling, with an AUC of 0.9551 under a 10-fold CV. For the regression model, the R2 of
the XGBoost regression model constructed based on the top 13 features was 0.83, which
was only 0.01 lower than when all features were used for modeling. After analysis of
the importance of the retained features, it can be inferred from the SHAP summary plot
that perovskites with lower Shannon’s ionic radii of X and B′-site atoms as well as higher
Shannon’s ionic radii of A and B-site atoms tend to have higher stability. The conclusions
of the classification and regression models are consistent.

Gao et al. [100] proposed a search strategy combining ML and DFT calculations to
screen lead-free inorganic DPs with suitable Eg and high stability. The dataset consists
of 481 A2B(I)B(III)X6 DPs and 264 A2B(II)B(II)X6 DPs with a target property of Eg and
28 chemical properties associated with the Eg as initial features. The PCC method and the
feature importance from the XGBoost algorithm were used together to select features. If
the absolute value of PCC for a feature pair is greater than 0.8, a feature with lower feature
importance will be deleted. A total of 13 features were finally retained for constructing the
models, among which the XGBoost model had the best R2 of 0.956. The number of valence
electrons at the B-site ranks first, and the B′-site polarizability and the B′-X bond energy are
relatively important features. The importance ranking of the top 3 features is reliable, which
has been confirmed by published papers or could be reasonably explained based on existing
theories. Yang et al. [14] discovered potential oxide DPs with narrow Eg based on the ML
method. Firstly, 79 A2B′B′′O6-type oxide DPs and 75 non-perovskites with Eg values were
collected from the experimental literature. A total of 64 atomic parameters and two process
conditions were applied as initial features to the classification model of DPs and the Eg
regression model. To perform feature selection, first the mRMR and PCC methods were
used to rank the initial features and measure the correlation between features, respectively.
The lower-ranking features were eliminated if the PCC of a feature pair scored higher than
0.95, and finally 49 and 46 features were retained for building classification and regression
models, respectively. Further feature selection was then performed for the retained features
in combination with classification and regression algorithms to visualize the relationship
between the number of features and the evaluation metrics of models including ACC and
R. It was found that the highest prediction ACC under LOOCV for the SVC model was
0.959 when the top six features were selected, and when the top 11 features were selected,
R under LOOCV for the SVR model reached a peak of 0.916. Further calculations of the
PCC between the 11 features and Eg revealed the same conclusion, in agreement with the
results of existing studies, that the Eg of the oxide DPs is mainly influenced by the ions at
the B′ and B′′ sites.

An interesting case is combining different initial feature sets with different feature
selection methods. Liu et al. [101] collected 236 perovskite oxides containing experimental
Eg values from peer-reviewed publications to predict and screen out double perovskite
oxides with suitable Eg. There were two feature sets, including the set of initial features,
which consists of 42 component features, and the set of merge features, which consists
of 20 new features produced from the weighted average of A- or B-site doped element
features. The classical nonlinear regression algorithm RF was chosen considering that
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the PCCs between each feature and the Eg less than 0.5. The univariate feature selection
(UFS) and RFE method based on the RF model (RF-RFE) were used for feature selection.
Additionally, the feature set and feature selection methods were combined in two ways,
i.e., for both the initial feature set and the merge feature set, different numbers of features
were selected for modeling using the UFS and RF-RFE methods, respectively, and the
optimal models obtained from different combinations were noted as M1, M2, M3, and
M4, respectively. When using the RFE method, the prediction performance of the model
improves rapidly to the optimal level for both feature sets in the ranges of 1–6 and 1–3,
respectively, with an R2 of 0.932 and a RMSE of 0.196 eV for a merge feature number of
three (Figure 6). Unlike the RFE, when using the UTS method, the prediction performance
of the model improves slowly as the number of features increases, with the RMSE for both
feature sets achieving the minimum value when the feature dimension was 20. It was
found that the A-site ions contribute particularly significantly to the model based on the
importance scores of the features in the M1, M2, M3, and M4 models, and the effect of
the A-site ions on the Eg has been confirmed in studies. According to the PCCs between
features, it was also found that a feature with a small importance score may not mean
including less information because the other selected features contain similar information.
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A point worth pondering is that in the above cases, the feature selection methods
chosen for predicting the Eg of DPs were different, which may be due to the difference
in sample size and feature dimensions that led to the different choices finally made after
trying different methods.

Here are a few cases of PSCs. Liu et al. [102] used a ML approach to intelligently
screen passivation materials that help improve the PCE of PSCs. The dataset had a total of
105 samples, each of which included the interface materials used for the perovskite/hole
transport layer (HTL) and the corresponding values of PCE. Feature sets are three types of
features extracted from interface materials, perovskites, and the performance of standard
devices, including electrotopological-state indexes and cheminformatics, ion ratios in
precursor solutions, ion types, and control device performance (C_PCE). The prediction
performance of RF models constructed based on different combinations of features showed
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that the above three types of features played a key role in model performance. Considering
that the feature dimension exceeds 300, the 15 most critical features were selected using
SHAP and PCC methods. The PCE of the modified device and the C_PCE have a high
positive correlation with a PCC value of 0.84. Additionally, based on the correlation matrix,
it can be inferred that excess Pb2+ ions in the precursor solution could lead to the high PCE.
Four ML algorithms, including linear regression, RF, XGBoost, and neural networks (NN),
were used for modeling to map the relationships between the PCE and the 15 selected
features. The RF model with the best performance was used for feature importance analysis,
and the results showed that C_PCE was the most essential feature for determining PCE,
in agreement with the analysis of PCC. She et al. [103] used a two-step ML method to
predict high-efficiency PSCs with doped electron transport layers (ETLs). The 2006 samples
of PSCs were collected from the published literature, and two datasets, which include
1820 and 186 samples, respectively, were constructed for the two-step ML. Additionally,
the first dataset was the PCE data of PSCs with undoped ETL, while the second dataset
was the efficiency improvement rate (EIR) of PSCs with doped ETL, of which 90 PSCs
are doped-SnO2-based and 96 are doped-TiO2-based. Initial features include the doping
element and concentration, the physicochemical properties of dopant elements, and the
optoelectronic properties of ETL after doping. The feature engineering of the second dataset
was performed based on PSCs of doped-SnO2-based and doped-TiO2-based, respectively.
The RF regression model was first built using all features, and the 16 features were ordered
by feature importance. Then, the PCC of any feature pairs was calculated, and if the
absolute value of the PCC was higher than 0.8, the one feature with lower importance in
the feature pair was deleted, and the features of doped-SnO2-based and doped-TiO2-based
were finally reduced to 10 and 11. Among the top five features, the Fermi level, CBM, Eg,
and conductivity are common features to both SnO2 and TiO2, as well as the generally
accepted factors for ETLs to achieve high PCE of PSCs. Since the PCCs between any two
retained features are mostly below 0.5, it can be inferred that the redundant features have
been successfully removed. Modeling based on the retained features, the RMSE values for
SnO2 in the training and test sets are 0.05 and 0.04, respectively, while the values of R2 are
0.90 and 0.92, which are better than the performance of TiO2.

In addition, it should be noted that all the perovskites in the above literature review
section are 3D perovskites. The low-dimensional perovskite materials include 0D, 1D, and
2D perovskites, which are classified depending on the spatial arrangement of octahedra
in the form of 0D dots, 1D chains, and 2D layers, respectively [104]. Low-dimensional
perovskites have also been widely used in solar cells, light-emitting diodes, and pho-
todetectors due to their flexible structures, excellent photovoltaic properties, and higher
stability [105,106]. Among them, 2D perovskites have attracted a lot of attention due to
the wide tunability of their photovoltaic properties and excellent stability [107,108]. The
(100)-oriented 2D perovskites are the most common, especially the Ruddlesden–Popper
(RP) and Dion–Jacobson (DJ) phases [109]. Therefore, a few cases of applications of feature
selection in 2D perovskite materials are also briefly described below.

Lyu et al. [110] reported an ML-assisted method to investigate how the dimensionality
of lead iodide perovskites was impacted by the structure of organic cations. The dataset
is derived from 86 amines reported in the literature for low-dimensional lead iodide
perovskites, which were classified according to the dimensionality of the perovskites as
“2D” and “non-2D”. A total of 40 initial features were generated by descriptor functions,
and 21 features were finally retained after using 0.95 as the threshold for PCCs to remove
highly correlated features. LR, SVM, KNN, and DT were used to build the classification
models, and the LR model with a prediction ACC of 0.82 ± 0.08 on the test set was used
in the follow-up study. Feature selection was performed based on the feature coefficients
with the L1 penalty in the LR model, and four features were finally selected to construct
the prediction model. Additionally, it was found that the topological and geometric
properties of ammonium cations played a key role in determining the dimensionality.
The primary amine with a smaller steric effect index (STEI) is more likely to form 2D
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perovskites. Due to the eccentricity (Ec) having a feature coefficient of 1.922, it is possible
to determine that octylammonium is predicted to form 2D perovskite more readily than
cyclooctylammonium. According to the largest ring size (LRS) with a negative feature
coefficient, molecules with a bigger ring are likely to produce lower-dimensional perovskite.
Hu et al. [111] obtained the adsorption energy of 640 ion/perovskites by first-principles
calculations to assess the interaction between 2D A2BX4 halide perovskites and ions in
energy storage applications. The PCC method was used for feature selection, and only
appropriate features were retained when the PCCs of the feature pairs were greater than
0.8 or less than −0.8. A total of 13 features were finally selected from 73 original features.
After calculating and ranking the PCCs of these 13 features with the adsorption energy,
it was found that ion density, melting point, and shell layer had higher rankings, which
emphasized the major contributions made by the types of ion adsorbates. A total of six ML
algorithms—KNN, Kriging, RF, Rpart, SVM, and XGBoost—were used to build the models,
and the XGBoost model had the highest R and R2 of 0.968 and 0.93, respectively. Meanwhile,
to avoid the bias caused by the PCC method, 14 feature ranking methods were selected to
comprehensively assess the importance of ion density, ion radius, and first ionization of
B-site elements. The different ranking methods consistently show the importance of ion
density on the adsorption energy, but the PCC method is slightly biased in assessing the
importance of atomic radii. Zhang et al. [109] applied the ML method to accelerate the
synthetic development of (100)-oriented 2D lead halide perovskites (LHPs). The dataset was
derived from 264 crystal structures containing PR and DJ phases in the existing literature,
and the feature pool consists of nine features, including the number of protonated nitrogen
atoms (q), the radius of the halide ion (r(X)), the distortion of the PbX6 octahedral bond
length (λ), etc. The Spearman correlation coefficient (SCC) was used to perform univariate
feature selection, and the linear correlation coefficient between λ and r(X) was found to
exceed 0.8, up to 0.91. r(X) was removed because λ contained more information, and eight
features were finally retained. A total of 26 ML classification models were selected, of
which the XGBoost model had the best ACC at 84.4%. The importance of features in the
XGBoost model showed that q is the dominant feature. Overall, the electronic, topologic,
and geometric properties of the organic amine cations have a significant impact on the
crystal structures of 2D LHPs. Using the SHAP method for further feature analysis, it was
found that low octahedral bond angle distortion, small inorganic layer spacing, and high
octahedral bond length distortion have a significant negative contribution on forming the
RP/nRP-phase. It is easy to see that the PCC method is still the preferred method, but the
comparison results with other ranking methods also show that the PCC method sometimes
has bias while the SCC method is less common.

Generally speaking, feature selection reduces the dimensionality of the features while
maintaining or improving the performance of the model in almost all of the scenarios
mentioned above, fully demonstrating the importance of feature selection. In terms of the
choice of feature selection methods, PCC is the most frequently used method for perovskite
materials, but the threshold value selected for filtering highly correlated features varies
in different usage scenarios. The mixed feature selection methods are also a common
screening strategy. When selecting feature selection methods for one’s own research object,
one can first try to use the method with a relatively high frequency, but it should be clear
that the effectiveness of the feature selection methods is also closely related to the data
quality and the selected algorithm, etc.

6. Conclusions and Outlook

In conclusion, feature selection is an essential part of the materials ML workflow. This
review briefly introduces the common structures of perovskite materials and the generic
descriptor types, as well as the common feature selection methods in the filter, wrapper,
and embedded methods. Some of the applications of feature selection in the discovery and
design process of perovskite materials based on ML methods are reviewed. It is found that
PCC in the filter method, RFE in the wrapped method, and tree modeling in the embedded
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method appear more frequently, whether they are used singly or in combination. From
this review, we found that an appropriate feature selection method can reduce model
complexity and improve model interpretability to a great extent. Although feature selection
has been successfully applied in the materials ML workflow, there is still much room for
progress. Here, we tend to propose the following directions for the subsequent application
of feature selection in the design and discovery of perovskite materials:

(1) The establishment and improvement of the perovskite materials database: Data is
the ‘hardware’ for performing ML, and the quantity and quality of data are the keys
to model performance. Compared with other fields, data in the materials field is
usually characterized by small size and multiple sources. However, a sample size in a
large proportion of materials research articles is less than 1000 or even less than 500.
For perovskite materials, a dedicated perovskite database platform to collect data of
various excellent properties and perovskite device parameters can be established and
made available in a form that adheres to FAIR (findable, accessible, interoperable, and
reusable) data principles;

(2) Descriptor construction and sharing: To maximize the accuracy of the model and to
avoid situations where the ML results contradict the domain expert knowledge, the
descriptors can be constructed manually by combining the material domain knowl-
edge. At the same time, for researchers in non-specialized fields, new descriptors
can be constructed automatically by means of SISSO and symbolic regression meth-
ods. In addition, to break the professional barriers of different fields and further
promote the discovery and design of materials, it is also necessary to establish an
online access platform of descriptors corresponding to the database, which can make
the professional people focus on doing the professional things to provide a greater
possibility for the breakthrough of material properties. Taking perovskite thin film as
an example [62–66], we encourage researchers to record more detailed process param-
eters for preparing high-quality thin films in manuscripts and construct a relevant
database of process parameters. The key parameters affecting film quality could be
selected by employing suitable feature selection methods based on the database. Then
an ML model for quantitative analysis of process parameters and film quality can
be constructed, offering the possibility of accelerating the optimization of process
parameters and guiding the experimental synthesis of high-quality thin films;

(3) Evaluation and development of feature selection methods: In the application of mate-
rials ML workflow, researchers have mostly only objectively stated which methods
were used for feature selection, and then model construction and selection based on
the selected feature subsets were performed. The selection of methods is, in essence,
serving the current data. The input of different feature subsets is the result of different
selection methods, so the evaluation and comparison of feature selection methods in
conjunction with ML algorithms is also quite an important topic. The development
of new feature selection methods for material data can also be considered. Based
on some practical experience, the ensemble idea can be used to develop ensemble
feature selection methods applicable to materials data, which can ensure the stability
of feature subsets and thus have stronger generality.

In summary, with the increase of material requirements and demands as well as the
rapid development of intelligent methods, ML will continue to be an important tool for
other materials. The feature selection, as a key part of the ML workflow, will also receive
more attention in the discovery and design process of perovskite materials via ML.
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66. Swartwout, R.; Hoerantner, M.T.; Bulović, V. Scalable Deposition Methods for Large-area Production of Perovskite Thin Films.

Energy Environ. Mater. 2019, 2, 119–145. [CrossRef]
67. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
68. Remeseiro, B.; Bolon-Canedo, V. A review of feature selection methods in medical applications. Comput. Biol. Med. 2019, 112,

103375. [CrossRef]
69. Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J.

Biomed. Inform. 2018, 85, 189–203. [CrossRef]
70. Zhang, J.; Xiong, Y.; Min, S. A new hybrid filter/wrapper algorithm for feature selection in classification. Anal. Chim. Acta 2019,

1080, 43–54. [CrossRef]
71. Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A.W.; O’Sullivan, J.M. A Review of Feature Selection Methods for Machine

Learning-Based Disease Risk Prediction. Front. Bioinform. 2022, 2, 927312. [CrossRef]
72. Saeys, Y.; Inza, I.; Larranaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517.

[CrossRef]
73. Venkatesh, B.; Anuradha, J. A Review of Feature Selection and Its Methods. Cybern. Inf. Technol. 2019, 19, 3–26. [CrossRef]
74. Wang, Y.H.; Zhang, Y.F.; Zhang, Y.; Gu, Z.F.; Zhang, Z.Y.; Lin, H.; Deng, K.J. Identification of adaptor proteins using the ANOVA

feature selection technique. Methods 2022, 208, 42–47. [CrossRef] [PubMed]
75. Biesiada, J.; Duch, W. Feature Selection for High-Dimensional Data—A Pearson Redundancy Based Filter. In Computer Recognition

Systems 2; Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 242–249.
76. Liu, Y.; Mu, Y.; Chen, K.; Li, Y.; Guo, J. Daily Activity Feature Selection in Smart Homes Based on Pearson Correlation Coefficient.

Neural Process. Lett. 2020, 51, 1771–1787. [CrossRef]
77. Edelmann, D.; Móri, T.F.; Székely, G.J. On relationships between the Pearson and the distance correlation coefficients. Stat. Probab.

Lett. 2021, 169, 108960. [CrossRef]
78. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and

min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]
79. Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti,

P.C. Detecting Novel Associations in Large Data Sets. Science 2011, 334, 1518–1524. [CrossRef]
80. Bommert, A.; Welchowski, T.; Schmid, M.; Rahnenfuhrer, J. Benchmark of filter methods for feature selection in high-dimensional

gene expression survival data. Brief. Bioinform. 2022, 23, bbab354. [CrossRef]
81. Almaghthawi, Y.; Ahmad, I.; Alsaadi, F.E. Performance Analysis of Feature Subset Selection Techniques for Intrusion Detection.

Mathematics 2022, 10, 4745. [CrossRef]
82. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A Survey on Evolutionary Computation Approaches to Feature Selection. IEEE Trans.

Evol. Comput. 2016, 20, 606–626. [CrossRef]
83. Jablonka, K.M.; Ongari, D.; Moosavi, S.M.; Smit, B. Big-Data Science in Porous Materials: Materials Genomics and Machine

Learning. Chem. Rev. 2020, 120, 8066–8129. [CrossRef]
84. Granitto, P.M.; Furlanello, C.; Biasioli, F.; Gasperi, F. Recursive feature elimination with random forest for PTR-MS analysis of

agroindustrial products. Chemom. Intell. Lab. Syst. 2006, 83, 83–90. [CrossRef]
85. Tsai, C.-F.; Eberle, W.; Chu, C.-Y. Genetic algorithms in feature and instance selection. Knowl. Based Syst. 2013, 39, 240–247.

[CrossRef]
86. Tan, F.; Fu, X.; Zhang, Y.; Bourgeois, A.G. A genetic algorithm-based method for feature subset selection. Soft Comput. 2008, 12,

111–120. [CrossRef]

https://doi.org/10.1038/srep19375
https://www.ncbi.nlm.nih.gov/pubmed/26783247
https://doi.org/10.1103/PhysRevMaterials.3.084418
https://doi.org/10.1016/j.ceramint.2022.08.184
https://doi.org/10.1016/j.commatsci.2021.110712
https://doi.org/10.1002/smll.202105783
https://doi.org/10.1039/C4TA05246C
https://doi.org/10.1016/j.tsf.2018.08.026
https://doi.org/10.1039/D1EE02018H
https://doi.org/10.1063/5.0050810
https://doi.org/10.1016/j.rinp.2022.106144
https://doi.org/10.1002/eem2.12043
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compbiomed.2019.103375
https://doi.org/10.1016/j.jbi.2018.07.014
https://doi.org/10.1016/j.aca.2019.06.054
https://doi.org/10.3389/fbinf.2022.927312
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.1016/j.ymeth.2022.10.008
https://www.ncbi.nlm.nih.gov/pubmed/36341922
https://doi.org/10.1007/s11063-019-10185-8
https://doi.org/10.1016/j.spl.2020.108960
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1126/science.1205438
https://doi.org/10.1093/bib/bbab354
https://doi.org/10.3390/math10244745
https://doi.org/10.1109/TEVC.2015.2504420
https://doi.org/10.1021/acs.chemrev.0c00004
https://doi.org/10.1016/j.chemolab.2006.01.007
https://doi.org/10.1016/j.knosys.2012.11.005
https://doi.org/10.1007/s00500-007-0193-8


Materials 2023, 16, 3134 25 of 25

87. Yang, J.W.; Wang, S.L.; Chen, Y.Y.; Lu, S.K.; Yang, W.Z. Feature Subset Selection Based on the Genetic Algorithm. Adv. Mater. Res.
2013, 774, 1532–1537. [CrossRef]

88. Ai, C. A Method for Cancer Genomics Feature Selection Based on LASSO-RFE. Iran. J. Sci. Technol. Trans. A Sci. 2022, 46, 731–738.
[CrossRef]

89. Chen, H.; Shang, Z.; Lu, W.; Li, M.; Tan, F. A Property-Driven Stepwise Design Strategy for Multiple Low-Melting Alloys via
Machine Learning. Adv. Eng. Mater. 2021, 23, 2100612. [CrossRef]

90. Jiménez-Cordero, A.; Morales, J.M.; Pineda, S. A novel embedded min-max approach for feature selection in nonlinear Support
Vector Machine classification. Eur. J. Oper. Res. 2021, 293, 24–35. [CrossRef]

91. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
92. Otchere, D.A.; Ganat, T.O.A.; Ojero, J.O.; Tackie-Otoo, B.N.; Taki, M.Y. Application of gradient boosting regression model for the

evaluation of feature selection techniques in improving reservoir characterisation predictions. J. Pet. Sci. Eng. 2022, 208, 109244.
[CrossRef]

93. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

94. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874.
95. Priyanga, G.S.; Mattur, M.N.; Nagappan, N.; Rath, S.; Thomas, T. Prediction of nature of band gap of perovskite oxides (ABO3)

using a machine learning approach. J. Mater. 2022, 8, 937–948. [CrossRef]
96. Zhang, L.; Zhuang, Z.; Fang, Q.; Wang, X. Study on the Automatic Identification of ABX3 Perovskite Crystal Structure Based on

the Bond-Valence Vector Sum. Materials 2022, 16, 334. [CrossRef]
97. Lu, S.; Zhou, Q.; Ouyang, Y.; Guo, Y.; Li, Q.; Wang, J. Accelerated discovery of stable lead-free hybrid organic-inorganic

perovskites via machine learning. Nat. Commun. 2018, 9, 3405. [CrossRef]
98. Wu, Y.; Lu, S.; Ju, M.G.; Zhou, Q.; Wang, J. Accelerated design of promising mixed lead-free double halide organic-inorganic

perovskites for photovoltaics using machine learning. Nanoscale 2021, 13, 12250–12259. [CrossRef]
99. Cai, X.; Zhang, Y.; Shi, Z.; Chen, Y.; Xia, Y.; Yu, A.; Xu, Y.; Xie, F.; Shao, H.; Zhu, H.; et al. Discovery of Lead-Free Perovskites for

High-Performance Solar Cells via Machine Learning: Ultrabroadband Absorption, Low Radiative Combination, and Enhanced
Thermal Conductivities. Adv. Sci. 2022, 9, 2103648. [CrossRef]

100. Gao, Z.; Zhang, H.; Mao, G.; Ren, J.; Chen, Z.; Wu, C.; Gates, I.D.; Yang, W.; Ding, X.; Yao, J. Screening for lead-free inorganic
double perovskites with suitable band gaps and high stability using combined machine learning and DFT calculation. Appl. Surf.
Sci. 2021, 568, 150916. [CrossRef]

101. Liu, H.; Feng, J.; Dong, L. Quick screening stable double perovskite oxides for photovoltaic applications by machine learning.
Ceram. Int. 2022, 48, 18074–18082. [CrossRef]

102. Liu, W.; Lu, Y.; Wei, D.; Huo, X.; Huang, X.; Li, Y.; Meng, J.; Zhao, S.; Qiao, B.; Liang, Z.; et al. Screening interface passivation
materials intelligently through machine learning for highly efficient perovskite solar cells. J. Mater. Chem. A 2022, 10, 17782–17789.
[CrossRef]

103. She, C.; Huang, Q.; Chen, C.; Jiang, Y.; Fan, Z.; Gao, J. Machine learning-guided search for high-efficiency perovskite solar cells
with doped electron transport layers. J. Mater. Chem. A 2021, 9, 25168–25177. [CrossRef]

104. Zhang, Z.; Wang, S.; Liu, X.; Chen, Y.; Su, C.; Tang, Z.; Li, Y.; Xing, G. Metal Halide Perovskite/2D Material Heterostructures:
Syntheses and Applications. Small Methods 2021, 5, 2000937. [CrossRef]

105. Wang, H.P.; Li, S.; Liu, X.; Shi, Z.; Fang, X.; He, J.H. Low-Dimensional Metal Halide Perovskite Photodetectors. Adv. Mater. 2021,
33, 2003309. [CrossRef]

106. Misra, R.K.; Cohen, B.-E.; Iagher, L.; Etgar, L. Low-Dimensional Organic–Inorganic Halide Perovskite: Structure, Properties, and
Applications. ChemSusChem 2017, 10, 3712–3721. [CrossRef] [PubMed]

107. Li, S.; Zhang, Y.; Yang, W.; Liu, H.; Fang, X. 2D Perovskite Sr2Nb3O10 for High-Performance UV Photodetectors. Adv. Mater.
2020, 32, 1905443. [CrossRef]

108. Li, X.; Hoffman, J.M.; Kanatzidis, M.G. The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the
Structure to Optoelectronic Device Efficiency. Chem. Rev. 2021, 121, 2230–2291. [CrossRef] [PubMed]

109. Zhang, Z.-Z.; Guo, T.-M.; Li, Z.-G.; Gao, F.-F.; Li, W.; Wei, F.; Bu, X.-H. Machine learning assisted synthetic acceleration of
Ruddlesden-Popper and Dion-Jacobson 2D lead halide perovskites. Acta Mater. 2023, 245, 118638. [CrossRef]

110. Lyu, R.; Moore, C.E.; Liu, T.; Yu, Y.; Wu, Y. Predictive Design Model for Low-Dimensional Organic-Inorganic Halide Perovskites
Assisted by Machine Learning. J. Am. Chem. Soc. 2021, 143, 12766–12776. [CrossRef] [PubMed]

111. Hu, W.; Zhang, L.; Pan, Z. Designing Two-Dimensional Halide Perovskites Based on High-Throughput Calculations and Machine
Learning. ACS Appl. Mater. Interfaces 2022, 14, 21596–21604. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4028/www.scientific.net/AMR.774-776.1532
https://doi.org/10.1007/s40995-022-01292-8
https://doi.org/10.1002/adem.202100612
https://doi.org/10.1016/j.ejor.2020.12.009
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.petrol.2021.109244
https://doi.org/10.1016/j.jmat.2022.04.006
https://doi.org/10.3390/ma16010334
https://doi.org/10.1038/s41467-018-05761-w
https://doi.org/10.1039/D1NR01117K
https://doi.org/10.1002/advs.202103648
https://doi.org/10.1016/j.apsusc.2021.150916
https://doi.org/10.1016/j.ceramint.2022.02.258
https://doi.org/10.1039/D2TA04788H
https://doi.org/10.1039/D1TA08194B
https://doi.org/10.1002/smtd.202000937
https://doi.org/10.1002/adma.202003309
https://doi.org/10.1002/cssc.201701026
https://www.ncbi.nlm.nih.gov/pubmed/28703944
https://doi.org/10.1002/adma.201905443
https://doi.org/10.1021/acs.chemrev.0c01006
https://www.ncbi.nlm.nih.gov/pubmed/33476131
https://doi.org/10.1016/j.actamat.2022.118638
https://doi.org/10.1021/jacs.1c05441
https://www.ncbi.nlm.nih.gov/pubmed/34357756
https://doi.org/10.1021/acsami.2c00564

	Introduction 
	Workflow of Materials Machine Learning 
	The Structure and Features of Perovskite 
	Inorganic Perovskites 
	Hybrid Organic-Inorganic Perovskites 
	Double Perovskites 

	The Methods of Feature Selection 
	Filter 
	Wrapper 
	Embedded 

	Feature Selection in Machine Learning for Perovskite Materials 
	Feature Selection for Inorganic Perovskites 
	Feature Selection for Hybrid Organic-Inorganic Perovskites 
	Feature Selection for Double Perovskites 

	Conclusions and Outlook 
	References

