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Abstract: A successful encapsulation of Keggin-type polyoxomolybdate (H3[PMo12O40], PMo12)
into metal-organic framework (MOF) materials with an identical framework but distinct metal
centers (ZIF-8 with Zn2+ and ZIF-67 with Co2+) was accomplished by a straightforward room-
temperature procedure. The presence of Zn2+ in the composite material PMo12@ZIF-8 instead of
Co2+ in PMo12@ZIF-67 caused a remarkable increase in the catalytic activity that achieved a total
oxidative desulfurization of a multicomponent model diesel under moderate and friendly conditions
(oxidant: H2O2 and solvent: ionic liquid, IL). Interestingly, the parent ZIF-8-based composite with
the Keggin-type polyoxotungstate (H3[PW12O40], PW12), PW12@ZIF-8, did not show the relevant
catalytic activity. The ZIF-type supports present an appropriate framework to accommodate active
polyoxometalates (POMs) into their cavities without leaching, but the nature of the metallic center
from the POM and the metal present in the ZIF framework were vital for the catalytic performance of
the composite materials.

Keywords: zeolitic imidazolate frameworks; polyoxometalates; nanocomposite material; oxidative
desulfurization; heterogeneous catalysis

1. Introduction

Fossil fuels continue to be the major energy source that is applied for several purposes
on which we are reliant, such as transportation; thus, much attention is now being focused
on fossil fuel consumption as well as its production and processing, answering the calls
for the ever-growing need for sustainable development [1]. One of the most relevant
problems associated with the combustion of oil fuels is the emission of sulfur-derived
products to the atmosphere, such as various sulfur oxides and particulate metal sulfates,
which stem from the different sulfur-containing compounds (SCCs) that make up part
of the original composition of crude oil, including thiophenes, sulfides and disulfides,
mercaptans, dibenzothiophenes, and many other derived species [2]. If these SCCs are
not discarded from the fuel matrix before combustion, their emissions will cause some
environmental issues that are linked to acid rain and associated with several public health
problems [3]. To mitigate these serious problems, the petrochemical industry must abide
by international legislative regulation concerning the sulfur content that is present in
processed fossil fuels, resorting to desulfurization processes [4]. The presence of these
compounds is also undesirable during some stages of the refining process, as they can
promote equipment corrosion and deactivation of the catalysts. Hydrodesulfurization
(HDS) is the main approach that is currently used to remove SCCs from fuels in industrial
plants, as it manages to efficiently convert the sulfur content to hydrogen sulfide and sulfur-
free organic compounds [5]. HDS is dependent on high temperatures and pressures for
hydrogen-consuming catalytic processes, which, knowing its lower efficiency to eliminate
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heterocyclic compounds such as thiophenes, makes it an undesirably costly method to
produce sulfur-free fuels [6].

Oxidative desulfurization (ODS) is an emerging and potentially cost-effective ap-
proach to desulfurize fuel derivatives, since it can accomplish the efficient removal of the
most refractory thiophenes and dibenzothiophenes under sustainable conditions, i.e., low
pressure and temperature, and avoid the consumption of hydrogen [7]. The ODS process
is performed in two main steps: initially, the oxidation of SCCs to their corresponding
sulfones or sulfoxides occurs, in which an oxidizing agent is needed for the contribution
of one or two oxygen atoms, respectively; after, the extraction occurs, for which a suitable
extracting solvent needs to be selected. Naturally, the first stage is enabled by catalytic
systems, for which an adequate catalyst must be appointed, and many different types of
materials can be considered for this task; polyoxometalates (POMs) are credited as one of
the most interesting ones [8].

POMs are polyatomic ions based on transition metal oxyanions that are recognized
for their structural diversity, interesting chemical properties, and potential applicability in
several areas. These are assembled by MOx coordination polyhedra (M: transition metal;
x: 4, 5 or 6), which can result in various topological motifs [9]. Keggin arrangements are
well-known POM structures that share a [Xn+M12O40](8−n)− (X stands for a heteroatom
form block p or d) formula that is built around a central XO4 tetrahedron that is enclosed
in twelve MO6 octahedrons and organized in groups of M3O13 units that are linked by
O vertex atoms to form a spherical structure with tetrahedral symmetry. Usually, POMs
are effective catalysts in a vast number of distinct reactions, and the Keggin POMs have
revealed themselves to be particularly useful as selective catalysts of oxidation reactions,
where ODS reactions can be included [10,11]. Still, these can be associated with the usual
drawbacks that are related to homogeneous catalysts, namely, poor recyclability potential,
which is a very important parameter to consider when looking for an efficient oxidative
desulfurization catalytic system as an alternative for the HDS process. Many strategies
have been proposed to solve this problem, such as their heterogenization by encapsulation
in suitable support materials, such as porous metal–organic frameworks (MOFs) [12]. This
new family of materials includes coordination polymers formed by metal cations or clusters
interconnected by organic linkers (ligands) originating from crystalline and microporous
coordination frameworks. MOFs are very popular due to their structural diversity and their
simply tunable properties, giving them enormous potential for a wide range of applications,
such as gas separation and/or storage, chemical sensors, heterogeneous catalysts, platforms
for drug delivery, and energy storage [13–17].

Following our research endeavors on functional crystalline materials and the oxida-
tive desulfurization process [18–24], also including zeolitic imidazolate framework (ZIF)
materials [25,26], an innovative study that compares the catalytic efficiency of different
combinations of polyoxometalates encapsulated in ZIF supports with distinct metallic
centers is reported. ZIFs are a well-known subclass of crystalline and porous MOFs that
have frameworks analogous to those found in zeolites. The encapsulation of active Keggin
POMs as H3[PMo12O40] (PMo12) and H3[PW12O40] (PW12) was performed in situ with
MOF assembling (Figure 1). ZIF-8 and ZIF-67 are highly stable isostructural M(2-mim)2
frameworks (M: respectively Zn2+ and Co2+; 2-mim: 2-methylimidazole) with sodalite-
type topology and cavities built upon MN4 tetrahedral units [27]. The key reason for the
selection of these two structures as hosts for guest POMs was the match between their
dimension (10 Å) and the MOFs pore size (11.6 Å), which was related to the smaller pore
window (3.4 Å) and could prevent leaching [28]. Therefore, probably only one POM unit
can fit into a cage of ZIF materials. The small pore window will guarantee the absence
of POM leaching but can simultaneously hinder the diffusion of the reactants to meet the
active center that is entrapped in the ZIF cage. This is probably the reason for the scarce
amount of work reported in the literature that uses ZIF materials as heterogeneous catalysts
in the liquid phase [25,26,29,30].
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(C8H15F6N2P > 97%, bmImPF6, Sigma-Aldrich), tetradecane (C14H30 > 99,0%, Sig-
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dibenzothiophene (C12H8S, 98%, DBT, Sigma-Aldrich), and 4-methyldibenzothiophene 
(C13H10S, MDBT, 96%, Sigma-Aldrich) 4,6-dimethyldibenzothiophene (C14H12S, DMDBT, 
95%, Acros Organic) were acquired from commercial sources and used as received. 
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configuration (45 kV, 40 mA). Intensity data were collected by a step-counting method 
(step 0.026°) in continuous mode in the 3 ≤ 2θ ≤ 50° range, and all the representations are 
shown in arbitrary units of intensity. Scanning electron microscopy (SEM) and electron 
dispersive X-ray spectroscopy (EDS) analysis were performed in a FEI (Lausanne, Swit-
zerland) Quanta 400 FEG ESEM high-resolution scanning electron microscope equipped 
with an EDAX Genesis X4M spectrometer working at 15 kV. Samples were coated with 
an Au/Pd thin film by sputtering using a SPI Module Sputter Coater equipment. Solid 
state 31P nuclear magnetic resonance (NMR) spectra were acquired with an 11 T (500 
MHz) AVANCE II+ Bruker spectrometer operating at 202.45 MHz, equipped with a BBO 
probe head. The samples were spun at the magic angle (MAS) at a frequency of 5 kHz in 4 
mm-diameter rotors at room temperature and the spectra were obtained with proton 
cross-polarization (CPMAS) with a contact time of 5.0 ms and the recycle delay was 5.0 s. 
Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to quan-
tify Mo concentrations in various samples, resorting to a PerkinElmer Otima 4300 DV. N2 
adsorption–desorption isotherms were collected at −196 °C with a gas porosimeter Mi-
cromeritics ASAP 2010. Pre-outgassing of the analyzed samples was carried out at 150 °C 
for 2 h. Catalytic reactions were periodically monitored by GC-FID analysis carried out in 

Figure 1. Schematic representation of the in situ sustainable preparation of the PMo12@ZIF compos-
ite materials.

2. Experimental Section
2.1. Materials and Characterization Methods

Phosphomolybdic acid (H3PMo12O40.xH2O, PMo12, microscopy grade; Sigma-Aldrich,
Waltham, MA, USA), acid phosphotungstic (H3PW12O40.xH2O, PW12, microscopy grade,
Sigma-Aldrich), cobalt(II) nitrate (Co(NO3)2.6H2O, > 99.8%, Sigma-Aldrich), Zinc(II) nitrate
(Zn(NO3)2.4H2O > 98.5%, Merck, Rahway, NJ, USA), 2-methylimidazole (C4H6N2, 99.0%, 2-
mIm, Sigma-Aldrich), 1-butyl-3-methylimidazole hexafluorophosphate (C8H15F6N2P > 97%,
bmImPF6, Sigma-Aldrich), tetradecane (C14H30 > 99,0%, Sigma-Aldrich), hydrogen per-
oxide (H2O2, aqueous 30%, Sigma-Aldrich), N,N-dimethylformamide (C3H7NO, DMF,
99,99%, Fisher, Waltham, MA, USA), ethanol (C2H5OH, EtOH > 99.8%, Fisher), methanol
(CH3OH, MeOH, analytical reagent grade, Fisher), acetonitrile (CH3CN, MeCN > 99.5%, Fluka,
Buchs, Switzerland), benzothiophene (C8H6S, BT, > 95%, Fluka), N-octane (C8H18 > 99.0%,
Acros Organic, Geel, Belgium), dibenzothiophene (C12H8S, 98%, DBT, Sigma-Aldrich), and
4-methyldibenzothiophene (C13H10S, MDBT, 96%, Sigma-Aldrich) 4,6-dimethyldibenzothi-
ophene (C14H12S, DMDBT, 95%, Acros Organic) were acquired from commercial sources
and used as received.

Fourier-transformed infrared (FTIR) spectra were acquired in the attenuated total
reflectance (ATR) operation mode of a PerkinElmer (Waltham, MA, USA) FTIR System
Spectrum BX spectrometer, and all the representations are shown in arbitrary units of
transmittance. Powder X-ray diffraction (XRD) patterns were obtained at room temperature
on a Rigaku (Tokyo, Japan) Geigerflex diffractometer operating with a Cu radiation source
(λ1 = 1.540598 Å; λ2 = 1.544426 Å; λ1/λ2 = 0.500) and in a Bragg–Brentano θ/2θ configuration
(45 kV, 40 mA). Intensity data were collected by a step-counting method (step 0.026◦) in
continuous mode in the 3 ≤ 2θ ≤ 50◦ range, and all the representations are shown in
arbitrary units of intensity. Scanning electron microscopy (SEM) and electron dispersive X-
ray spectroscopy (EDS) analysis were performed in a FEI (Lausanne, Switzerland) Quanta
400 FEG ESEM high-resolution scanning electron microscope equipped with an EDAX
Genesis X4M spectrometer working at 15 kV. Samples were coated with an Au/Pd thin
film by sputtering using a SPI Module Sputter Coater equipment. Solid state 31P nuclear
magnetic resonance (NMR) spectra were acquired with an 11 T (500 MHz) AVANCE II+
Bruker spectrometer operating at 202.45 MHz, equipped with a BBO probe head. The
samples were spun at the magic angle (MAS) at a frequency of 5 kHz in 4 mm-diameter
rotors at room temperature and the spectra were obtained with proton cross-polarization
(CPMAS) with a contact time of 5.0 ms and the recycle delay was 5.0 s. Inductively coupled
plasma optical emission spectroscopy (ICP-OES) was used to quantify Mo concentrations
in various samples, resorting to a PerkinElmer Otima 4300 DV. N2 adsorption–desorption
isotherms were collected at −196 ◦C with a gas porosimeter Micromeritics ASAP 2010. Pre-
outgassing of the analyzed samples was carried out at 150 ◦C for 2 h. Catalytic reactions
were periodically monitored by GC-FID analysis carried out in a Bruker 430-GC-FID
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chromatograph. Hydrogen was used as carrier gas (55 cm.s−1) and fused silica Supelco
(St. Louis, MO, USA) capillary columns SPB-5 (30 m × 0.25 mm i. d.; 25 µm film thickness)
were used.

2.2. Materials Preparation

Supports ZIF-8 and ZIF-67
The support materials were prepared by an adaptation of the experimental procedure

previously reported [28]. Briefly, primary solutions of Zn(NO3)2.4H2O or Co(NO3)2.6H2O
(2.5 mmol) in MeOH (25 mL) were stirred magnetically for 15 min to prepare the Zn-
based MOF (ZIF-8) and Co-based MOF (ZIF-67), respectively. After, solutions of 2-mIm
(19.8 mmol) in MeOH (25 mL) were prepared and slowly added to the respective metal-
containing solutions. The Zn- and Co-based resulting reactional mixtures were stirred
(magnetically) for 150 min, at room temperature and ambient pressure. Lastly, the obtained
solid materials were isolated by centrifugation, washed with MeOH (five times), and dried
under vacuum at 60 ◦C for 12 h.

PMo12@ZIF-8
This procedure is adaptation of the previously mentioned methods using a one-pot

procedure for the preparation of POM composites. An aqueous solution (10 mL) of PMo12
(125 mg) was joined to the primary Zn2+ solution: 2.5 mmol of Zn(NO3)2.4H2O in 25 mL of
MeOH. This resulting mixture was stirred (magnetically) for 30 min, after which 2-mIm
methanolic solution (19.8 mmol in 25 mL of MeOH) was likewise added. The resulting
reactional mixtures were stirred (magnetically) for 150 min at room temperature and
ambient pressure. Lastly, the obtained solid materials were isolated by centrifugation,
washed with MeOH (five times), and dried at under vacuum at 60 ◦C for 12 h. Atomic ratio
of Zn/Mo = 1.86.

PW12@ZIF-8
An aqueous solution (10 mL) of PW12 (125 mg) was joined to a Zn2+ solution: 2.5 mmol

of Zn(NO3)2.4H2O in 25 mL of MeOH. This resulting mixture was stirred (magnetically)
for 30 min, after which 2-mIm methanolic solution (19.8 mmol in 25 mL of MeOH) was
likewise added. The resulting reactional mixtures were stirred (magnetically) for 150 min at
room temperature and ambient pressure. Lastly, the obtained solid materials were isolated
by centrifugation, washed with MeOH (five times), and dried at under vacuum at 60 ◦C for
12 h. Atomic ratio of Zn/W = 1.41.

PMo12@ZIF-67
An aqueous solution (10 mL) of PMo12 (125 mg) was joined to the initial Co2+ solution:

2.5 mmol of Co(NO3)2.6H2O in 25 mL of MeOH. This resulting mixture was stirred for
30 min, after which 2-mIm methanolic solution (19.8 mmol in 25 mL of MeOH) was
added. The resulting reactional mixtures were stirred for 150 min at room temperature
and ambient pressure. Lastly, the obtained solid materials were isolated by centrifugation,
washed with MeOH (five times), and dried at under vacuum at 60 ◦C for 12 h. Atomic ratio
of Co/Mo = 0.67.

2.3. Oxidative Desulfurization Studies

The prepared ZIF supports and the POM@ZIF composites were evaluated as heteroge-
neous catalysts for ODS systems in a multicomponent model diesel comprising the SCCs,
BT (500 ppm od S), DBT (500 ppm of S), MDBT (500 ppm of S), and DMDBT (500 ppm
of S) in n-octane. The reactions were performed in a closed vessel, under air in a closed
borosilicate vessel with a magnetic stirrer and immersed in a thermostatically controlled
liquid paraffin bath at 70 ◦C. Oxidative catalytic desulfurization experiments were per-
formed in a biphasic system composed by the model diesel and [BMIM]PF6 as extraction
solvent. In a representative experiment, a certain amount of the catalyst material containing
an equivalent of 3 mmol of active center POM was added to 0.75 mL of [BMIM]PF6 and
0.75 mL of model diesel, and this mixture was stirred for 10 min at 70 ◦C. The oxidative
catalytic step was initiated with the addition of aqueous H2O2 30% (75 µL) to system.
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Tetradecane was used as a standard in the periodical monitorization of the sulfur content
by GC analysis. At the end of each reaction, catalysts were recovered by centrifugation,
washed carefully, and for three times with MeCN and EtOH, they were dried at 60 ◦C
overnight under vacuum and reused in the subsequent catalytic cycle, which had identical
reaction conditions. The desulfurization was quantified by analyzing the model diesel
phase, which was withdrawn from upper phase (20 µL) and analyzed with addition of
tetradecane as standard by gas chromatography to quantify the total sulfur content. Finally,
the desulfurization efficiency (%) was calculated according to the following formula: Desul-
furization efficiency (%) = (initial sulfur content-residual sulfur content)/(initial sulfur
content) ×100 %.

3. Results and Discussion
3.1. Materials Characterization

The supporting materials ZIF-8 and ZIF-67 and the composites PMo12@ZIF-8, PW12@ZIF-
8, and PMo12@ZIF-67 were prepared through a straightforward room-temperature exper-
imental procedure based on the previously reported synthesis methods [31,32]. All the
isolated materials were characterized by powder XRD, FTIR spectroscopy, SEM/EDS, and
N2 adsorption–desorption isotherms. The vibrational spectra of the materials depict that
the main absorption bands are predictable from the MOF structures (Figure 2a): a very
strong band observed around 420 cm−1 assigned to metal-nitrogen coordination, strong
and weak bands from 600 up to 1500 cm−1 can be attributed to C–N ring bonds, and a
weak vibration band seen at 1580 cm−1 is assigned to the C=N bond [33,34]. Additionally,
in the composite materials (PMo12@ZIF-8, PW12@ZIF-8, and PMo12@ZIF-67) spectra, a
group of medium intensity bands are evident in the interval from 770 to 975 cm−1. These
absorption bands can be assigned to Mo=O and Mo–O, or W=O and W–O, bond vibration
bands from PMo12 or PW12 incorporated in the ZIFs vacancies, respectively [35]. Weak
protuberances between 1000 and 1100 cm−1 can be associated with P–O bond vibrations
and further support these results.
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Figure 2. FTIR spectra (a) and Powder XRD patterns (b) obtained for ZIF-8, ZIF-67, and POM@ZIF
composite materials (PMo12@ZIF-8, PW12@ZIF-8, and PMo12@ZIF-67).

The powder XRD patterns registered for the pristine MOF samples ZIF-8 and ZIF-
67 (Figure 2b) are consonant with the previously reported diffraction patterns for these
crystalline structures, revealing the expected characteristic peaks with the correct relative
intensities [36]. Furthermore, the PMo12@ZIF-8, PW12@ZIF-8, and PMo12@ZIF-67 samples
revealed comparable unique-phase diffraction patterns, suggesting the effective formation
of ZIF structures as composite frameworks. The absence of characteristic reflections of



Materials 2023, 16, 3133 6 of 13

the POMs points to the random distribution of POMs in the framework of the ZIFs, most
probably as a consequence of an effective and nonregular impregnation of the POMs in the
cavities of the ZIFs.

SEM micrographs obtained for ZIF-8 and ZIF-67 samples reveal an aggregation of
uniform particles with a rhombic dodecahedron morphology and regular sizes distributed
around 100 nm and between 600 and 800 nm, respectively (Figure 3). Interestingly, the
PMo12@ZIF-8 micrography shows particles with an identical size but with a lower degree
of morphological uniformity (Figure 3 above, right). In these, the regular distribution
of Mo and P revealed by the EDS analysis suggests a uniform distribution of the PMo12
on ZIF-8. Particles with an irregular size distribution are evidenced for PMo12@ZIF-67
(Figure 3 below, right). The EDS spectrum recorded for this sample shows Mo and P peaks,
although distributed in an irregular fashion through the sample, as smaller particles that
are associated with a higher Mo content (Figure 3 below, right).
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PMo12@ZIF-8 (above, right), PW12@ZIF-8 (middle), ZIF-67 (below, left), and PMo12@ZIF-67
(below, right).

N2 sorption isotherms of both MOFs and derived POM@MOF composite materials
were acquired (Figure 4), and the estimated BET parameters are systematized in Table 1.
All analyzed samples show type-I isotherms that are related to their expected microp-
orosity. The specific surface areas calculated for ZIF-8 and ZIF-67 are in accordance with
previously reported values for these structures [31,37]. An introduction of the POM units
inside the MOFs cavities should result in a lower available surface area for N2 absorption.
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The consistently lower surface areas calculated for POM@MOFs are evidence of the suc-
cessful preparation of these materials. PMo12@ZIF-8 and PW12@ZIF-8 were studied by
ICP-OES to determine Mo or W concentrations and quantify PMo12 (0.15 mmol/g) or PW12
(1.6 mmol/g) inserted in the cavities of MOFs, in order to calculate the catalyst quantities
that correspond to 3 µmol of an active POM to be used in ODS.
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Figure 4. N2 adsorption–desorption isotherms at −196 ◦C of both MOFs and POM@MOF composite
materials: (a) ZIF-8 and ZIF-8 based materials; (b) ZIF-67 and ZIF-67 based materials. Filled and
unfilled symbols relate to adsorption and desorption processes, respectively.

Table 1. BET optimized parameters calculated for of both ZIF structures and POM@ZIF compos-
ite materials.

Sample SBET (m2/g) VP (cm3/g)

ZIF-8 1743 0.61
ZIF-67 1712 0.58

PMo12@ZIF-8 1044 0.37
PW12@ZIF-8 490 0.18

PMo12@ZIF-67 711 0.24
(SBET): BET specific surface area; (Vp): total pore volume determined at P/Po = 0.99.

3.2. Catalytic Desulfurization Studies

Oxidative desulfurization studies were carried out at 70 ◦C in a biphasic system based
on equal volumes of the model diesel and extraction solvent. The ionic liquid 1-butyl-3-
methylimidazole hexafluorophosphate ([BMIM]PF6) was utilized as an extraction solvent
and the oxidizing agent used was the aqueous hydrogen peroxide. The model diesel was
prepared with various SCCs representative of the most refractory sulfur content present in
diesel fuels, namely BT, DBT, MDBT, and DMDBT. Initially, an extractive desulfurization
occurred every 10 min by mixing both liquid phases (1:1) [BMIM]PF6/model diesel. After
this, the equilibrium of sulfur components extracted from diesel in the ionic liquid phase
was reached, and to increase the desulfurization efficiency, the oxidant H2O2 is added to
the system to cause the oxidative desulfurization. When the sulfur components that are
present in the extraction phase are oxidized to sulfones and/or sulfoxides, more sulfur
compounds are extracted from the diesel phase (ECODS, extraction, and catalytic oxidative
desulfurization system).

Preliminary ECODS tests were performed using the homogeneous catalytic active
centers PMo12 and PW12, and also the support materials ZIF-8 and ZIF-67, to assess their in-
herent catalytic behavior (Figure 5a). PMo12 and PW12 promoted near total desulfurization
of the model diesel (99.8%) after 1 h of reaction time, while both ZIF-8 and ZIF-67 did not
exhibit any catalytic activity toward ODS. Further, the composite materials PMo12@ZIF-8,
PMo12@ZIF-67, and PW12@ZIF-8 were evaluated as heterogeneous catalysts for ECODS
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processes (Figure 5b), with the POMs as the active center since the ZIF supports did not
show any catalytic activity. As the parent MOF, PMo12@ZIF-67 does not show any catalytic
activity, which suggests that the active PMo12 incorporated in the ZIF-67 framework cannot
achieve its role as a catalyst. On the other hand, PMo12@ZIF-8 displays heterogeneous
catalytic behavior toward ECODS, as it promotes high desulfurization of the model diesel
(90.7%) after 2 h. At the end of this first catalytic cycle, the material was recovered, washed
repeatedly, and dried. After this, the PMo12@ZIF-8 was used in nine consecutive ECODS
cycles for 2 h. The guaranteed, consistent catalytic results confirm a great recycling potential
(Figure 5b). Additionally, comparing the catalytic performances of PW12 and PMo12 incor-
porated into the ZIF-8 framework, it is possible to observe that the composite PW12@ZIF-8
presents much lower oxidative desulfurization efficiency, since the desulfurization only
increased by 20% after the initial extraction step, instead of the 50% increase obtained
using the PMo12@ZIF-8 catalyst. This low activity of PW12@ZIF-8 must be due to the low
accessibility of the PW12 active center for interaction with sulfur compounds and oxidants,
which is probably caused by its higher POM loading (approximately ten times more) than
the PMo12@ZIF-8 composite. On the other hand, the PMo12@ZIF-67 composite presents a
PMo12 loading that is only slightly higher than the PMo12@ZIF-8 composite; however, an
absence of oxidative catalytic activity was found when using the ZIF-67 composite.
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Figure 5. (a) Catalytic behavior of homogeneous POMs, PMo12 and PW12, and supporting MOFs,
ZIF-8 and ZIF-67. Assays were performed at 70 ◦C in a model fuel/[BMIM]PF6 biphasic system
with 3 µmol of POM or 15 mg of MOF. ODS reaction starts at 0 min with the addition of aq. H2O2,
after a 10 min extraction step. (b) Desulfurization profile of a multicomponent model fuel using
PMo12@ZIF-8, PW12@ZIF-8, and PMo12@ZIF-67 catalysts, [BMIM]PF6 extraction solvent, H2O2

oxidant, at 70 ◦C. (c) Recycling desulfurization process for ten consecutive cycles (2 h each reaction)
using PMo12@ZIF-8 catalyst.

A comparative study was performed between the active PMo12@ZIF-8 and the other
reported PMo12-based MOF catalysts used for the oxidative desulfurization of refractory
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model fuels. The results are summarized in Table 2. It is possible to observe that the active
PMo12 active center was immobilized in several MOF structures, including UiO-66, UiO-67,
and ZIF-6; however, most of these PMo12@MOFs catalysts were tested in single model
fuels mainly containing the refractory sulfur compounds that are the easiest to oxidize
and remove from model and real fuels, the DBT [38–43]. An identical multicomponent
model diesel was used by Granadeiro et al. by incorporating PMo12 into porous NH2-MIL-
101(Cr) [21]. Using this composite, near-complete desulfurization was achieved after 2 h;
however, the recycling capacity was only verified up to three consecutive cycles. Last year,
Zhou et al. used the PMo12@MOF-199 catalyst to desulfurize a 4,6-DMDBT single model
fuel under aerobic reaction conditions [44]. Using molecular oxygen as an oxidant, a higher
reaction temperature of 120 ◦C was needed to achieve 90% desulfurization after a short
reaction time [44]. This was a successful result since 4,6-DMDBT is one of the most stubborn
sulfides in fuel oil. Further, the PMo12@MOF-199 catalyst showed itself to be recyclable and
stable under aerobic conditions. Yang et al. presented a porous ionic liquid catalyst using
ZIF-8 support [42]. The intention to use the PIL functional group promoted the contact
between the oxidant H2O2 and the active center PMo12. However, only single model DBT
fuel was used, and even if complete desulfurization was achieved, a longer period of time
(2 h) was needed without information concerning the stability and recycling capacity of this
catalyst [42]. In 2021, Fernandes et al. used a model diesel containing three different sulfur
compounds (1-BT, DBT, and 4-MDBT) that were completely desulfurized after 1 h of using
the PMo12@MOF-808 catalyst. Stability and recycle capacity were confirmed [45]. This
last composite is a promising one with a high efficiency and stability; however, its activity
to desulfurize the hardest sulfur compound to be oxidized and extracted (4,6-DMDBT)
is unknown.

Table 2. Comparison of catalytic efficiency of reported PMo12@MOFs composites for desulfurization
of model fuels.

Catalyst Sulfur Temperature (◦C) Time (h) Oxidant Efficiency (%) Reference

PMo12@NH2-MIL-101
1-BT, DBT,

4-MDBT, and
4,6-DMDBT

50 3 H2O2 95 [44]

PMo12@UiO-66 c DBT 60 1 TBHP 100 [38]
PMo12@UiO-66 DBT 60 1 H2O2 100 [39]

PMo12@MOF-199 4,6-DMDBT 120 1.5 O2 90 [44]
PMo12@UiO-67 T d and DBT 60 0.5 H2O2 100 [11]
PMo12@ZIF-67 DBT 70 3 TBHP 98 [40]

PMo12@MOF-808 1-BT, DBT, and
4-MDBT 70 1 H2O2 100 [45]

PMo12@MOF-808 DBT 50 1.5 H2O2 100 [41]
PMo12@ZIF-8-PIL a DBT r.t. b 2 H2O2 100 [42]

PMo12@DUT-67 DBT 50 1.5 H2O2 98 [43]

PMo12@ZIF-8
1-BT, DBT,

4-MDBT, and
4,6-DMDBT

70 2 H2O2 91 This
work

a PIL: porous ionic liquids. b r.t.: room temperature. c calcinated composite. d T: thiophene.

The pristine support and the composite materials were recovered, washed, and dried
after catalytic experiments (AC), and characterized to assess the distinguishing struc-
tural features after catalytic use. The powder XRD patterns obtained for ZIF-67(AC) and
PMo12@ZIF-67(AC) (Figure 6a) correspond to the original diffractograms and show struc-
tural maintenance for both samples. The same is found for ZIF-8(AC) and for PW12@ZIF-
8(AC) (Figure 6b): even though the registered relative peak intensity slightly varies, the
crystalline structure of ZIF-8 seems stable under catalytic conditions. Active PMo12@ZIF-8
apparently undergoes structural transformations that are manifested after the third catalytic
reaction, based on inconsistencies between the obtained diffractogram and the one recorded
for ZIF-8 and PMo12@ZIF-8 without catalytic use (Figure 6c). These structural changes
may explain the distinct catalytic behavior observed for PMo12@ZIF-8 and PMo12@ZIF-
67 composites, since immobilized PMo12 was expected to be comparably accessible for
catalysis in both structures. To further investigate the stability of the active center Pmo12,
an analysis of the 31P MAS NMR spectroscopy of PMo12@ZIF-8 and PMo12@ZIF-8-AC
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was further performed (Figure 6d). For PMo12@ZIF-8, PMo12 is mainly expressed by a
sharp peak registered at −1.8 ppm, which may represent the isolated PMo12 incorporated
into the MOF framework [46], and a slightly broad protuberance can also be observed
at a higher chemical shift (around 7 ppm). This may be attributed to the interaction be-
tween PMo12 and the ZIF-8 framework [22]. The analysis of the catalyst after catalytic
use (PMo12@ZIF-8-AC) presents the same sharp peak; however, the broad peak is now
clearly observed around 7.4 ppm. This may indicate a higher interaction of the active center
PMo12 with the ZIF-8 framework promoted by the oxidative catalytic reaction, i.e., further
variations on the interaction between PMo12 and its environment linked to the framework’s
transformation after catalytic use. This interaction may guarantee the superior catalytic
activity of PMo12@ZIF-8 compared to the PMo12@ZIF-67, which probably promoted the
alteration of ZIF-8 structure in consecutive ECODS cycles without the occurrence of PMo12
leaching (confirmed by 31P NMR analysis of the reaction solution medium at the end of
catalytic experiments). On the other hand, the ability of the ZIF-67 to decompose H2O2 is
well reported [47]; however, the quantification of H2O2 after PMo12@ZIF-67 catalytic use
indicates the presence of at least half of the initial amount of the used oxidant. A similar
H2O2 quantification after catalytic use was found for the ECODS system catalyzed by
PW12@ZIF-8, indicating the absence of H2O2 consumption, which was probably caused
by an absence of reactant diffusion into pore cavities and the non-occurrence of PW12
interaction. Therefore, the weakness (using PW12@ZIF-8) or absence (using PMo12@ZIF-67)
of the catalytic activity of ZIF-based composites must be associated with a lower diffusion
of reactants to their cavities, promoted by the higher POM loadings, or due to the absence
of an interaction of the active POM with the MOF framework during the oxidative reaction.
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Figure 6. Powder XRD patterns obtained for recovered materials after catalysis (AC): (a) ZIF-67(AC)
and PMo12@ZIF-67(AC); (b) ZIF-8(AC) and PW12@ZIF-8(AC); (c) PMo12@ZIF-8, PMo12@ZIF-8(AC)
and PMo12@ZIF-8(AC3) (AC3 meaning after the 3rd catalytic cycle). (d) 31P MAS NMR spectra
obtained for PMo12@ZIF-8 and PMo12@ZIF-8-AC.
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4. Concluding Remarks

ZIF-based composites encapsulating phosphomolybdic acid (PMo12) and phospho-
tungstic acid (PW12) were successfully prepared, characterized, and further investigated
as heterogeneous catalysts for extraction and catalytic oxidative desulfurization systems
(ECODS): PMo12@ZIF-8, PMo12@ZIF-67, and PW12@ZIF-8. The catalytic efficiency of these
composites was further compared with the pristine supports ZIF-8 and ZIF-67, and with
the homogeneous active centers PMo12 and PW12. The supports revealed an absence of cat-
alytic activity for the desulfurization of a multicomponent model diesel. The PMo12@ZIF-8
composite showed a much higher catalytic efficiency to oxidatively desulfurize various
benzothiophene derivatives (BT, DBT, MDBT, and DMDBT) than the analogues PW12@ZIF-
8. The most prominent difference between the composites is in fact their polyoxometalate
loading abilities, since the homogeneous catalytic activity of PMo12 and PW12 is similar
under the studied conditions. The PW12@ZIF-8 presents a higher loading (ten times) than
the PMo12@ZIF-8. This high loading may promote a blockage of ZIF-8 cavities and a low
diffusion of reactants, which results in a low catalytic activity of the composite. On the
other hand, the PMo12@ZIF-67 did not present any catalytic activity, i.e., the incorporation
of the highly active PMo12 into ZIF-67 resulted in an inactive material where the active
center PMo12 cannot fulfill its role as the catalytic active center. In this last composite, a
high loading of the guest compounds cannot be the reason for the absence of activity. The
nature of the metallic center Co instead of Zn in the ZIF-8 framework, seems to play an
important role in the catalytic performance of the catalyst. In fact, an interaction between
the PMo12 and the ZIF-8 supporting structure was found, which is probably the reason for
the high catalytic efficiency of the PMo12@ZIF-8 composite. This catalyst was recycled for
nine consecutive desulfurization cycles, maintaining its activity without the occurrence of
PMo12 leaching.

The work reported in the present manuscript corresponds to a “kick-off” study of this
family of composite materials based on Keggin POMs incorporated into porous ZIFs
(both ZIF-8 and ZIF-67) to be applied in the desulfurization of model fuels. In fact,
the optimization of this type of material composition as well as their thermal modifi-
cation is now being investigated to improve the catalytic oxidation performance of sulfur-
containing compounds.
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