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Abstract: In this study, the tendency of having different grain structures depending on the impurity
levels in AZ91 alloys was investigated. Two types of AZ91 alloys were analyzed: commercial-purity
AZ91 and high-purity AZ91. The average grain size of the commercial-purity AZ91 alloy and high-
purity AZ91 is 320 µm and 90 µm, respectively. Thermal analysis revealed negligible undercooling in
the high-purity AZ91 alloy, while undercooling of 1.3 ◦C was observed in the commercial-purity AZ91
alloy. A CS analyzer was employed to precisely analyze the carbon composition of both alloys. The
carbon content of the high-purity AZ91 alloy was found to be 197 ppm, while the commercial-purity
AZ91 alloy contained 104 ppm, indicating a difference of approximately 2 times. The higher carbon
content in the high-purity AZ91 alloy is believed to be due to the use of high-purity pure Mg in
its production (the carbon content of high-purity pure Mg is 251 ppm). To simulate the vacuum
distillation process commonly used in the production of high-purity Mg ingots, experiments were
conducted to investigate the reaction of carbon with oxygen to produce CO and CO2. XPS analysis
and simulation results for activities confirmed the formation of CO and CO2 during the vacuum
distillation process. It could be speculated that the carbon sources in the high-purity Mg ingot provide
Al-C particles, which act as nucleants for Mg grains in the high-purity AZ91 alloy. Thus, it can be
considered the main reason that high-purity AZ91 alloys have a finer grain structure than that of
commercial-purity AZ91 alloys.

Keywords: AZ91 alloys; high-purity; grain refinement; carbon source; Al-C particle

1. Introduction

Magnesium alloys have been attracting significant attention due to their advantageous
properties such as low density, good castability, and specific strength. Among various
magnesium alloys, aluminum-containing magnesium alloys, such as AM and AZ series,
are mainly used in the industry due to their good castability and outstanding mechanical
properties compared with other magnesium alloys [1,2]. However, due to their low ten-
sile/yield strength and ductility compared with other competitive alloys such as aluminum
alloys, it is essential to improve their mechanical properties [3].

Grain refinement is a typical approach for improving the mechanical properties of
metallic materials. Moreover, it is an attractive approach for the simultaneous improvement
of strength and ductility [4]. A representative grain refinement mechanism of magnesium
alloys is the addition of zirconium [5]. However, since zirconium reacts with aluminum to
form stable intermetallic compounds, the grain refinement effect of adding zirconium disap-
pears in aluminum-bearing magnesium alloys. Thus, various studies have been conducted
to find effective grain refinement methods for aluminum-bearing magnesium alloys. Sev-
eral methods, such as the Elfinal process, carbon inoculation, RE addition, and melt super-
heating, have been reported to achieve effective grain refinement for aluminum-containing
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magnesium alloys [6,7]. However, among these methods, a peculiar phenomenon that
contradicts the general nucleation theory of solidification has been reported [8]. This phe-
nomenon is that the high-purity Mg-Al alloys manufactured using high-purity magnesium
ingots have a finer grain size than the commercial-purity Mg-Al alloys manufactured
using pure magnesium ingots, which are commercially available in the industry fields.
This phenomenon was first reported by Nelson [9–12], and it is contrary to the theories of
constitutional undercooling and heterogeneous nucleation. Tamura et al. [9,10] and Cao
et al. [11,12] also observed that the grain size of high-purity Mg-Al alloys is generally finer
than that of commercial Mg-Al-based alloys. Moreover, they reported that Al-C or Al-C-O
intermetallics can act as nucleants for α-Mg grains and poisoning of the nucelants occurred
due to impurities, such as Mn and Fe in commercial purity Mg-Al alloys. Despite extensive
studies, a clear explanation has not been given on the phenomena that high-purity Mg-Al
alloys have a finer grain size than commercial-purity Mg-Al alloys. Although the formation
of Al-C or Al-C-O intermetallic particles, which are known to be powerful nucleants, is
closely related to the carbon composition of Mg-Al alloys, a precise analysis of the carbon
content in Mg-Al alloys has not been reported. In addition, there is also a lack of investiga-
tions on how carbon sources forming Al-C or Al-C-O intermetallic particles are introduced
into high-purity Mg-Al alloys, as carbon is not an additive element in Mg-Al alloys.

Therefore, this study was conducted to delve deeper into the fine grain structure and
its causes observed in high-purity Mg-Al alloys. The carbon contents in high-purity and
commercial-purity Mg-Al alloys were precisely analyzed and intensive investigations were
conducted on how the carbon sources were introduced into the high-purity Mg-Al alloy. In
addition, how these carbon sources form Al-C or Al-C-O particles and how these particles
affect grain refinement were identified. We aimed to propose new possibilities for grain
refinement on high-purity Mg-Al alloys that have not been reported in previous studies.

2. Materials and Experiments
2.1. Materials and Casting Process

Two different AZ91 alloy types were prepared for this study. The high-purity AZ91
alloys used in this study were manufactured from 99.99% pure magnesium, 99.99% pure
aluminum, and 99.99% pure zinc. Commercially available AZ91 alloys were used for the
analysis of commercial-purity AZ91 alloys. First, 1 kg of each alloy was melted in an
Al2O3 alumina crucible using a resistance furnace. Melting was conducted at 670 ◦C under
protective gas of 1.0% SF6 and 99.0% N2. The melts were poured into a cylindrical steel
mold preheated to 250 ◦C. The chemical composition of the samples was analyzed by an
optical emission spectrometer (Spectro MAXx, SPECTRO, Germany). Table 1 shows the
chemical composition of the alloy samples used in this study.

Table 1. Chemical compositions of the commercial-purity and high-purity AZ91 alloys.

Alloy Al Zn Mn Si Fe Cu Ni Mg

Commercial Purity
AZ91 8.93 0.57 0.250 0.015 0.0022 0.0016 0.0012 Bal.

High Purity AZ91 8.97 0.69 0.006 0.0015 0.0010 0.0006 0.0012 Bal.

2.2. Measurement of Grain Size

The metallographic specimens were polished and etched using an acetic-picral etchant
for clear color contrast of grain structure. The microstructure was observed using an optical
microscope (Leica MC 170, LEICA, USA). The measurement of average grain size was
conducted according to ASTM E112-10 on the central region of a transverse section of
each sample.
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2.3. Thermal Analysis

Thermal analysis experiments were conducted using cylindrical graphite crucibles in
order to measure the undercooling during the solidification of alloys. The graphite crucible
was immersed in the melt until the temperature of the graphite crucible reached the melting
temperature of the molten metal. The crucible filled with the molten metal was transferred
to the ceramic board and a K-type thermocouple, calibrated by measuring the equilibrium
melting temperature of high-purity (99.99%) pure aluminum, was immersed into the center
of the melt to record the temperature during the solidification process. The cooling curves
were recorded by a data logger (NI cDAQ-9174, NATIONAL INSTRUMENTS, USA) at the
frequency of 20 Hz.

2.4. Manufacturing of Rapidly Solidified Ribbon Samples and Particle Analysis

Rapidly solidified samples were prepared by melting 2 g of each alloy sample in a ceramic
tube. Samples were melted using an induction coil and then injected into a copper wheel
rotating at the speed of 1500 rpm. The temperature of each casting condition was precisely
controlled by attaching a thermocouple to the ceramic tube. The microstructures and particles
were investigated using a scanning electron microscope (Merlin compact, ZEISS, Germany).

2.5. Analysis of Carbon Composition and Experiment on Carbon Sources Generation

Figure 1 shows the schematic for the carbon distillation experiment apparatus for
simulating the distillation process of Mg ingots. Milled carbon powders were filled at the
bottom of the chamber and SiO2/Si wafers were installed on the top of the chamber. The
chamber pressure was maintained at 10−3 torr and the bottom of the chamber was placed
inside the furnace, which was maintained at 600 ◦C. A water jacket was installed on the top
of the chamber in order to facilitate condensation of any gaseous materials. The surfaces
of the SiO2/Si wafers were observed by AR XPS (Angle-Resolved X-ray Photoelectron
Spectrometer, SPECTRO, Germany) to closely analyze any changes in the intensity of
carbon picks before and after the experiment.
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3. Results & Discussion
3.1. Grain Structure and Degree of Undercooling

Figure 2 shows the microstructures of as-cast commercial-purity and high-purity
AZ91 alloys. The average grain size of the commercial-purity AZ91 alloys and high-purity
AZ91 alloys is 320 µm and 90 µm, respectively. Although both samples showed similar
dendritic microstructures with equiaxed grains, the grain size of the high-purity AZ91



Materials 2023, 16, 3069 4 of 12

alloy is approximately four times finer than that of the commercial-purity AZ91 alloy. In
addition, the microstructure of the high-purity AZ91 alloy is more uniform, with similar
grains in size and shape. However, the microstructure of the commercial-purity AZ91 alloy
showed high non-uniformity in terms of its grain shapes and sizes. The grain refinement
effect caused by the constitutional undercooling of both alloys could be excluded because
the compositions of Al and Zn, which are the main additives of both alloys, are similar.
Additionally, the grain refinement effect due to the changes in the cooling rates can also be
excluded, since both samples were manufactured under the same casting conditions. The
composition analysis of both alloys shown in Table 1 indicates significant differences in
the composition of Mn, Si, and Fe. Previous studies [13] have reported that the Si element
forms a Mg2Si phase in AZ91 alloys, which affects the grain refinement of AZ91 alloys.
However, the Si content of at least 0.2 wt.% is considered the minimum amount required
to observe any distinguished grain refinement effect, thus the grain refinement effect of Si
could be ignored in this study. Generally, Mn is added to AZ91 alloys to eliminate Fe, which
deteriorates the corrosion resistance of the alloy. The studies of Cao [11] and Han [14] have
reported that Al-Mn-(Fe) compounds formed by Mn addition affect the grain refining of
AZ91 alloys. However, Mn and Fe elements were also reported to poison the nucleations in
AZ91 alloys [9,15], and the effect of Mn and Fe on the grain refinement of AZ91 alloys is
still a subject of debate among many researchers. This study was conducted with a focus
on the nucleants of both alloys, which is different from previous studies that focused on
the compositional differences between high-purity and commercial AZ91 alloys.
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Figure 3 shows the cooling curves of the commercial-purity and high-purity AZ91
alloys. The presence of nucleants in the melt could be determined by observing the
undercooling degree of the alloys during solidification. When powerful nucleants existed
in the melts, the thermodynamic driving force required to form a solid phase from the
liquid phase was lowered so that the nuclei of the solid phase could be easily formed with
a small degree of undercooling [7,16]. During solidification, an undercooling of 1.3 ◦C
was observed in the commercial-purity AZ91 alloy, and a negligible undercooling was
observed in the high-purity AZ91 alloy. Thus, it can be concluded that the high-purity AZ91
alloy had powerful nucleants that could be activated for nucleation with little activation
energy. A quantitative analysis of the nucleants was not performed in this study. However,
the undercooling degree of the alloys can be the basis for the qualitative interpretation
that the high-purity AZ91 alloy had more nucleants that affected grain refinement than
the commercial-purity AZ91 alloy. The cooling rate was a major factor influencing the
undercooling degree, and the measured cooling rates of both samples were 1.1 ◦C and
0.9 ◦C, respectively. From this result, it was concluded that the effect of the cooling rates on
the undercooling changes shown in this study is negligible [16].
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3.2. Carbon Contents

Table 1 shows the chemical compositions of the commercial-purity and high-purity
AZ91 alloys. The chemical composition results show that the aluminum and zinc composi-
tions are within the specifications of the AZ91 alloy, as defined by ASTM. Although there is
a slight difference in the compositions of the two elements, the changes in the constitutional
undercooling degree produced by the two alloying elements can be neglected. The compo-
sitions of the Mn, Si, Fe, and Cu elements were found to be higher in the commercial-purity
AZ91 alloy than in the high-purity AZ91 alloy. According to the general heterogeneous
nucleation theory [8], impurity elements or the compounds formed by impurity elements
more likely act as nucleants for α-Mg grains. However, as shown in Figure 2, the grain
size of the high-purity AZ91 alloy with a low level of impurities is finer than that of the
commercial-purity AZ91 alloy. The main reason for this phenomenon, which is contrary to the
general nucleation theory, is the carbon content level in the samples. Previous studies [9–12]
have suggested that Al-C or Al-C-O particles are the main cause of grain refinement in
high-purity AZ91 alloys. Tamura et al. [9] suggested that the composition of carbon is
~20 ppm. However, they did not explain how they measured the carbon content level. It is
very difficult to precisely analyze carbon contents using general analysis methods, such as
OES and ICP.

Figure 4 shows the carbon contents of commercial-purity AZ91, high-purity AZ91
and high-purity pure Mg ingot analyzed by the CS analyzer. Generally, CS analyzer is
used to analyze carbon level in ferrous materials. However, by optimizing the voltage and
material weight of the CS analyzer, we managed to analyze the carbon levels in Mg alloys.
The average carbon composition in the commercial-purity AZ91 alloy was 104 ppm and
197 ppm was detected in the high-purity AZ91 alloy. Several experiments were conducted
repeatedly and the results clearly showed that the carbon composition in the high-purity
AZ91 alloy was higher than that in the commercial-purity AZ91 alloy. In addition, the
carbon composition of those high-purity pure Mg, high-purity pure Al, and high-purity
pure Zn, which were used for manufacturing the high-purity AZ91 alloys, were detected to
be 251 ppm, <16 ppm, and <16 ppm, respectively. From these results, it can be concluded
that the high carbon level of the final high-purity AZ91 alloy was inherited from the
high-purity pure Mg ingot. Through observations of the microstructure and degree of
undercooling, it was predicted that high-purity AZ91 alloys might have nucleants with
high potency for the nucleation of α-Mg grains, and it could be concluded that those
nucleants were likely to contain carbon sources considering the precise analysis results of
the carbon content in the alloys.
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3.3. Particles in the Rapidly Solidified Microstructure

Considering the CS analysis of the alloys, it could be suggested that particles con-
taining carbon would affect the grain structure of high-purity AZ91 alloys. Typically,
precipitated intermetallic compounds and eutectic phases such as Mg17Al12 are observed in
the microstructure of permanent mold castings due to the low cooling rates. This makes it
very difficult to identify the origin of the particles or compounds that exist in the melt, and
to determine their effects on the grain size changes of the alloys. Additionally, it is difficult
to identify nucleants with a size of hundreds of nanometers existing in three-dimensionally
grown dendritic-grains. In this study, we prepared thin-ribbon samples using a rapid
solidification process to clearly identify compounds or particles that might act as nucleants
in AZ91 alloys. The cooling rate of a rapidly solidified alloy ribbon was calculated to be
1 × 106 ◦C/s [17]. This is a typical experimental process to prevent the diffusion of solute
elements and segregation during the solidification process. Using the rapid cooling process,
it is possible to obtain microstructures in which precipitates and eutectic phases are not
fully developed and in which compounds and particles in the liquid phase can be clearly
identified [10].

Figure 5 shows one of the particles in a ribbon sample of a high-purity AZ91 alloy
and the elemental distribution results along the A-B line across the particle. The EDS line
scanning results confirmed that the particle was enriched in aluminum and carbon. The
high magnesium pick can be explained by the particle size and resolution of the beam.
The size of the particle was about 500 nm~1 µm, which is far smaller than the minimum
range of EDS analysis resolution and the high magnesium pick would come from the
matrix around the particle. However, the weight percent of magnesium in the particle was
relatively small compared to the Mg matrix. In addition, it was thought that some part of
the particle surface was oxidized during the manufacturing and pretreatment of the ribbon
samples. This would explain the high level of oxygen detected at the edge of the particle.
From these results, it could be deduced that Al-C particles were present in the Mg molts as
a solid phase.
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Figure 5. Particle observed in high purity AZ91 ribbon sample (a) and the EDS line profile for
this particle (b).

In order to identify the origin of particles more clearly, one of those Al-C particles was
investigated by EBSD and the analysis results are shown in Figure 6 with an SEM image
and IQ map. Since the particle observed in this EBSD analysis was protruded from the Mg
matrix, clear grain orientation data were not obtained from EBSD phase mapping as this
involved tilting the specimen at a high angle. However, based on the line scan results in
this study, it could be suggested that Al-C particles could be present in the high purityAZ91
alloy melt and act as the effective nucleates for α-Mg grains. We intend to carry out a
clear analysis of the crystal structure and composition of the Al-C particles observed in
the rapidly solidified sample through additional research. In this study, we focused on the
reason for the presence of Al-C particles in high-purity AZ91 alloy samples even though
no carbon source or Al-C particles were added to the melt.
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3.4. Carbon Sources

Generally, commercial-purity pure magnesium crowns are manufactured by the Pid-
geon process through the thermal reduction of dolomite ore [18]. The purity of these pure
magnesium crowns is between 99.5 and 99.7% and they are mainly used for the production
of commercial-purity magnesium alloys [19,20]. These commercial-purity pure magne-
sium crowns are used in the manufacture of high-purity pure magnesium crowns through
additional vacuum distillation [21–23]. Figure 7a shows the manufacturing process of
high-purity pure magnesium ingots. It was found that carbon crucibles are generally used
for manufacturing high-purity pure Mg ingots [21,24] and there is a possibility that carbon
sources would be introduced into high-purity pure magnesium crowns. The vacuum
distillation process, which is used to produce high-purity Mg crowns, involves magne-
sium vaporization for a considerably long time at 600 ◦C under a vacuum environment of
10−3 torr [24]. Although carbon is a very stable element, it is considered that some types of
carbon sources can be produced from carbon crucibles through reactions with the elements
in manufacturing environments. Figure 7b shows a schematic illustration of a carbon
vaporization experiment device. Carbon powders were charged into the chamber, which
was maintained at 600 ◦C in a vacuum of 10−3 torr. This condition is similar to the general
vacuum distillation process used in the manufacture of high-purity pure Mg ingots [24].
The qualitative changes in the carbon on the surface of the SiO2/Si wafers with the carbon
vaporization experiment were measured using an X-ray photoelectron spectrometer.
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generation (b).

Figure 8 shows the XPS results of analyzing the binding energy of carbon and carbon
compounds on the base SiO2 wafer before and after the vacuum carbon vaporization
experiment. More specific XPS results regarding the binding energy of C–O/C=O bonding
are shown in Figure 9. During the XPS analysis, 284.8 eV was used as a reference for the
binding energy of the C-C bonding, which has commonly been used in many previous
studies [25]. Based on the reference bonding energy, 286.4 eV and 288.8 eV were applied as
the binding energies of the C-O bonding and C=O bonding, respectively [25]. Through the
vacuum carbon vaporization experiment, it was observed that the intensities of the C-O
bonding and C=O bonding on the SiO2 wafer increased. It is considered that the carbon
powder reacted with the remaining oxygen in the chamber to form CO and CO2 gases and
that it was then adsorbed on the SiO2 wafer surface. Although the chamber was maintained
in a vacuum state, the degree of 10−3 torr was in the low-vacuum region, and the vacuum
was not sufficient to prevent all the reactions with oxygen. In this case, it can be assumed
that there is a possibility that oxygen molecules remained and reacted with the carbon
sources in the chamber.
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Figure 10a shows the activities of CO2 and CO according to the pressure change in the
chamber at 600 ◦C. These activities were calculated using the Factsage 8.1&FactPS database.
It was assumed that 1 mol of carbon and 1 mol of air were in the chamber. The partial
pressure of O2 in 1 mol of air was changed. The temperature of the chamber was fixed at
600 ◦C, and the activities of CO2 and CO according to the change in the vacuum degree
in the chamber were calculated. From the calculation, a small amount of carbon reacted
with O2 to generate a gas phase, and the activities of CO2 and CO in the gas phase were
constant at 0.75 and 0.25, respectively, regardless of the vacuum degree. The vacuum carbon
vaporization experiment was conducted under conditions similar to those of the vacuum
distillation process used to produce high-purity pure Mg. It is possible that CO and CO2
could have been generated and adsorbed on the Mg crown during the production process
of the high-purity pure magnesium. The very porous Mg crown with a very large surface
area, as shown in Figure 10b, provides a favorable environment for CO and CO2 to be
adsorbed on its surface. From these results, it can be suggested that high-purity Mg crowns
contain a higher level of carbon sources such as CO and CO2 than commercial-purity Mg
crowns. Subramanian et al. [26] conducted a study on the improvement of mechanical
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properties in Mg-Al alloys by introducing CO2 into the melt. They reported that, due to
the interaction between carbon dioxide and aluminum, Al4C3 particles formed in the melt
at 750 ◦C. The in situ-formed Al4C3 particles served as nucleation sites for α-Mg grains,
resulting in grain refinement and enhancement of the mechanical properties of Mg-Al
alloys. Additionally, Yan Liu et al. [27] reported that the addition of gaseous carbon dioxide
(CO2) led to grain refinement in Mg-8 wt.% Al alloys. They found that the grain refinement
efficiency was primarily attributed to CO2 gas, which facilitated the formation of Al4C3 in
the melt at 740 ◦C. The Al4C3 particles were reported to act as the dominant heterogeneous
nucleation substrate for α-Mg grains. Therefore, it can be suggested that the finer grain size
in high-purity AZ91 alloy compared to commercial-purity AZ91 alloy can be attributed to
the higher amount of carbon sources, which promote the in situ formation of Al-C particles
in the high-purity AZ91 alloy than in the commercial-purity AZ91 alloy. Additionally, it is
believed that these carbon sources are introduced into the high-purity AZ91 alloy through
the vacuum distillation process for producing high-purity pure Mg ingots used in the
manufacturing of high-purity AZ91 alloys.
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4. Conclusions

In this study, the factors for the finer grain structure of high-purity AZ91 alloys
compared to commercial-purity AZ91 alloys were investigated. The results showed that
the higher carbon content in high-purity AZ91 alloys was a key factor in the formation of
powerful nucleants that facilitated grain refinement. SEM analysis of rapidly solidified
high-purity AZ91 alloy ribbon samples confirmed the presence of Al-C particles, which
are known to act as nucleants for α-Mg. Vacuum distillation experiments using a SiO2
wafer as a substrate revealed the presence of more carbon sources on the top surface of the
wafer, indicating that more carbon sources were likely transferred to the high-purity Mg
crowns and ingots during the manufacturing process. These carbon sources reacted with
the Al in the Mg melts, forming Al-C compounds that acted as effective nucleants for α-Mg.
Overall, this study presents a new perspective on the mechanisms of grain refinement in
high-purity AZ91 alloys and suggests new possibilities.
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