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Abstract: Hot-stamping steel is a type of high-strength steel that is mainly used in key safety
components such as the front and rear bumpers, A-pillars, and B-pillars of vehicles. There are two
methods of producing hot-stamping steel, i.e., the traditional process and the near net shape of
compact strip production (CSP) process. To assess the potential risks of producing hot-stamping steel
using CSP, the microstructure and mechanical properties, and especially the corrosion behavior were
focused on between the traditional and CSP processes. The original microstructure of hot-stamping
steel produced by the traditional process and the CSP process is different. After quenching, the
microstructures transform into full martensite, and their mechanical properties meet the 1500 MPa
grade. Corrosion tests showed that the faster the quenching speeds, the smaller the corrosion rate of
the steel. The corrosion current density changes from 15 to 8.6 µA·cm−2. The corrosion resistance of
hot-stamping steel produced by the CSP process is slightly better than that of traditional processes,
mainly since the inclusion size and distribution density of CSP-produced steel were both smaller
than those of the traditional process. The reduction of inclusions reduces the number of corrosion
sites and improves the corrosion resistance of steel.

Keywords: compact strip production; hot-stamping steel; martensite; corrosion; inclusion

1. Introduction

Hot-stamping steel is a type of ultrahigh-strength steel that is specially designed
for the production of high-strength and high-plasticity components, and it possesses
excellent thermal plasticity, workability, and formability [1–6]. Due to its exceptional
forming performance, hot-stamping steel can be plastically deformed at high temperatures,
resulting in precise product shapes and sizes. In addition, it has good mechanical properties,
wear resistance, strength, toughness, and corrosion resistance, making it a suitable material
for use in various fields such as automobiles, machinery, aviation, and aerospace. One
of the most commonly used hot-stamping steels is 22MnB5 (1500 MPa grade), which is
used for automotive safety components such as front and rear bumpers, A-pillars, and
B-pillars [7–15].

The traditional production methods of ultrahigh-strength steel usually include hot
rolling, pickling, cold rolling, and annealing. Such a process has long product lines, high
energy consumption, a long production cycle, and high production cost. In recent years,
new production methods have been developed for short processes, such as the compact
strip-production (CSP) process, which belongs to the method of near-net shape [16–23].
Thin slabs are hot rolled and coiled directly, and cold rolling and annealing processes
are canceled in the CSP process. The CSP process has great potential in terms of energy
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saving and economic benefits, which can greatly reduce the production cost of materials
and parts [16,18,24]. However, the CSP process has several potential disadvantages or
challenges that need to be addressed. For example, it may not be as suitable for the products
of thicker plates or more complex shapes. The high production speed of CSP can make
it challenging to maintain the consistency of the microstructure and product quality, and
there may be a higher risk of defects or surface imperfections compared to traditional
production methods such as the changes in the type and distribution of inclusions and
precipitations due to the difference in the process [16,19,20,25–27].

To assess the potential risks of producing hot-stamping steel using CSP, multiple stud-
ies have been performed to investigate the microstructure, mechanical properties, forming
behavior, and hydrogen embrittleness, as well as the optimization of the CSP process
parameters for producing hot-stamping steel with desired properties. Jin et al. [24] reported
a more competitive press-hardening steel design based on C-Mn steel addition with Cr and
B elements produced by the CSP process, which can induce good comprehensive perfor-
mance and economy. Zhou et al. [28] found that the original microstructure has an effect
on the microstructure and mechanical properties of the press-hardening steel produced by
the CSP process. The austenite grains after austenitization are fine and uniform when the
original structure is ferrite and pearlite, while the austenite grains after austenitization are
coarse when the original structure is martensite. In addition, the strength after quenching
is inverse to the strength of the original steel. Chen et al. [29,30] showed that the inclusions
of hot-stamping steels produced by CSP are mainly spherical Al-Ca-O and CaS, while
the inclusions in the traditional hot-stamping steels are TiN + Al2O3 + MnS with sharp
edges and corners. The hydrogen embrittlement resistance of hot-stamping steels produced
by CSP is superior to that of the traditional hot-stamping steels due to the influence of
composition, shape, and distribution of inclusions.

The corrosion resistance of steel can also have an effect on the performance and
lifespan of the automotive components since the parts must endure harsh conditions
involving high temperatures and humidity. However, there is, to the best knowledge of the
authors, no extensive research on the effect of manufacturing processes on the corrosion
resistance of hot-stamping steels. It is well known that the chemical composition of the
steel matrix, the microstructure, the composition, and the size distribution of the inclusions,
the second phase, and the texture will have a great influence on the corrosion resistance,
while the CSP process will change the influencing factors mentioned above compared
to the traditional process. Therefore, the hot-stamping steel produced by the CSP and
the traditional processes were chosen in this study. The mechanical property of steel
sheets before and after heat treatment for the two production methods was tested, and the
microstructures corresponding were analyzed. The corrosion behavior and mechanism of
the steel sheet after heat treatment were investigated comprehensively.

2. Materials and Methods

The starting steel sheets were 1500 MPa grade hot-stamping steel taken from Hunan
Valin Lianyuan Steel and produced by CSP and traditional processes. In the CSP process,
the finisher entry and delivery temperature during hot rolling is controlled at 1080 ◦C and
890 ◦C, and the coiling temperature is controlled at 600 ◦C. In the traditional process, the
slab discharging temperature is controlled at 1230 ◦C, the finisher delivery temperature
is controlled at 890 ◦C, and the coiling temperature is controlled at 625 ◦C. In addition,
the sheets produced by the traditional process were cold rolled and annealed at 680 ◦C
for 10 h. The final thicknesses of steel sheets are 2 mm and 1.8 mm for the CSP and
traditional processes, respectively. All samples were cut near the typical 1/4 width of the
steel sheets. Optical emission spectrometry was used to test the chemical composition of
the experimental steels, and the chemical composition is shown in Table 1.
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Table 1. Chemical composition of 1500 MPa grade hot-stamping steel after traditional and CSP
processes (wt.%).

Steels C Si Mn Al Cr Ti B Fe

CSP 0.23 0.28 1.15 0.029 0.21 0.04 0.0028 Bal.
Traditional 0.26 0.31 1.24 0.029 0.19 0.038 0.0025 Bal.

The Ac1 and Ac3 temperatures for the present steels are about 720 ◦C and 850 ◦C,
respectively, calculated from Andrew’s relationship [31]. The heat treatment temperature
of 920 ◦C was thus selected for the present work based on Ac3 to complete austenitizing.
The heat treatment time (T) of 4 min was selected based on an empirical formula:

T = K × D (1)

where D is the thickness of the sample in millimeters and K is the heating coefficient taken
to be 2 min/mm. After austenitizing, the samples were quenched with different cooling
rates by quenching in oil, water, and 10 wt.% NaCl solution, respectively.

The original microstructure and the microstructure after quenching were observed by
scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). Inclusions
in the steels were analyzed by a backscattered electron (BSE). The sizes of the inclusions
were measured using the software Nano Measurer 1.2.5. The compositions of these inclu-
sions were identified by energy disperse spectroscopy (EDS). There are five regions, each
with a field size of approximately 0.62 mm2 (950 µm × 650 µm), for a total area greater
than 3 mm2, that were analyzed using statistical methods. The inclusions sized less than
0.5 um were not included. The microstructural analysis was performed on the longitudinal
section, which encompasses both the rolling direction (RD) and the normal direction (ND).

The MTS Exceed E45 electronic universal test system was used to conduct the tensile
test, and a mechanical extensometer with a 50 mm gauge length was used to collect real-
time strain during the test. Dog-bone-shaped tensile samples were cut from the sheets,
with a gauge length of 50 mm, width of 12.5 mm, and thickness equal to that of the original
sheets. Prior to the test, the gauge section’s thickness and width were measured using a
vernier caliper. The test was conducted at a constant strain rate of 1 mm/min. To ensure
accurate results, at least three samples were prepared for the tensile test. If the stress-strain
curve exhibited a yield point, the stress corresponding to the lower yield point was taken
as the yield strength. Otherwise, the stress corresponding to a plastic strain of 0.2% was
used as the yield strength [32].

Electrochemical samples were cut into circular pieces with a diameter of 10 mm. The
circular shape was designed to avoid the additional accelerated corrosion effect caused
by the sharp corners of a square sample. The circular pieces were connected to copper
wires using a soldering iron and encapsulated with epoxy resin and a curing agent in a
5:1 ratio, leaving a working surface of 0.785 cm2. During electrochemical corrosion testing,
specimens were exposed to a 3.5% NaCl solution at room temperature. To conduct the
electrochemical measurements, a conventional three-electrode cell system was used in a
CS350 electrochemical workstation, with the sample as the working electrode, a saturated
calomel electrode (SCE) as the reference electrode, and a 1 cm2 Pt electrode as the counter
electrode. The potentiodynamic polarization curve was tested at a scan rate of 1 mV/s with
a scan ranging from −1.0 V (SCE) to 0.5 V (SCE), and the data were fitted using Cview
2.6 software [33]. The EIS tests were carried out when samples are stabilized in the test
solution within a frequency range of 100 kHz to 10 mHz and a sinusoidal perturbation with
10 mV amplitude, and then the data were analyzed by the software Zview 3.0a.

3. Results and Discussion

The original microstructures of hot-stamping steel produced by the traditional and
CSP processes are shown in Figure 1. In the traditional process, equiaxed polygonal ferrite
grains were observed, with spheroidized carbides/pearlites dispersed within the grain
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boundaries and interiors. The carbides/pearlites and ferrite grains are alternatively dis-
tributed in lamellar structures along the deformation direction. During cold rolling, the
carbides/pearlites in the traditional process are fractured, followed by a long isothermal
annealing process, during which the cold-deformed ferrite grains undergo recrystallization
to form equiaxed polygonal grains, while the fragmented carbides undergo spheroidization.
In the CSP process, where there are no cold rolling and annealing processes, the microstruc-
ture is a typical room-temperature structure of hypoeutectoid steel, consisting of ferrite
and pearlite. The pearlite lamellar spacing is about 0.1–0.15 µm. The typical band structure
formed by hot rolling is retained in the matrix. The original grain size of the hot-stamping
steel produced by the traditional process is 5.6 µm, while that of the hot-stamping steel
produced by the CSP process is 3.9 µm.
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Figure 1. The original microstructure of hot-stamping steel for two processes: SEM images of the
(a) traditional process and (a’) CSP process, EBSD inverse pole figure (IPF) maps of the (b) traditional
process and (b’) CSP process, and corresponding band contrast of the (c) traditional process and
(c’) CSP process.
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The mechanical properties of hot-stamping steel before and after quenching by tradi-
tional and CSP processes are shown in Figure 2. The tensile strength of steel produced by
the traditional process is the lowest, at 473 MPa, with an elongation of 26%. This is mainly
due to the traditional process steel undergoing an annealing process at 680 ◦C for 10 h. The
CSP process samples have a higher tensile strength of 630 MPa and a lower elongation of
23%. The strength and plasticity of the original sheets are inversely related. The mechan-
ical properties of the samples after quenching are greatly improved, and the steel plates
produced by both the traditional process and the CSP process meet the requirements of
1500 MPa tensile strength, 1000 MPa yield strength, and 5% elongation after heat treatment.
In addition, the strength of the sheets increases with the increase of the quenching cooling
rate. The mechanical property parameters after quenching are tabulated in Table 2.
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Figure 2. Mechanical properties of traditional and CSP processes produced steels: (a) engineering
stress–strain curve of the original samples and (b) engineering stress–strain curve after quenching by
a different quenching medium.

Table 2. Mechanical property parameters of hot-stamping steel produced by traditional and CSP processes
after quenching include yield strength (σs), tensile strength (σb), and total elongation (Etotal).

Steel σy/MPa σUTS/MPa Elongation/%

Quenching oil Traditional 1016 ± 13 1469 ± 3 7.0 ± 0.6
CSP 986 ± 17 1423 ± 13 7.8 ± 0.8

Water
Traditional 1203 ± 29 1674 ± 17 6.8 ± 0.8

CSP 1194 ± 31 1592 ± 25 6.8 ± 0.7

10 wt.% NaCl
Traditional 1187 ± 13 1738 ± 21 5.9 ± 0.3

CSP 1234 ± 48 1693 ± 16 7.7 ± 0.9

SEM microstructure images for traditional and CSP processes following quenching are
presented in Figure 3. Lath martensite can be obtained through quenching after the samples
are treated at 920 ◦C for 4 min. The microstructure of steel quenched in the three quenching
media is fully martensite. However, the martensitic lath size varies slightly depending on
the cooling rate. In general, the faster the cooling rate, the finer the martensite lath after the
phase transition. The martensite lath quenched in a 10 wt.% NaCl solution is the thinnest,
while the martensite lath quenched in quenching oil is the thickest.
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Figure 3. SEM images of marstenite quenching structure after heat treatment by the quenching oil of
(a) traditional process and (a’) CSP process, the water of (b) traditional process and (b’) CSP process,
and the 10 wt.% NaCl solution of (c) traditional process and (c’) CSP process.

EBSD characterization is shown in Figure 4. From the IPF images, the martensite blocks
with low-angle boundaries can be clearly detected, and the martensite lath with similar
orientations are distributed within the blocks. The martensite lath has straight boundaries,
which are approximately parallel to the {111} plane of prior austenite, namely the habit
plane. The four-level structure of martensite consists of prior austenite, martensite packet,
martensite block, and martensite lath. A prior austenite grain is divided into three to five
packets, which are collections of blocks with the same habit plane. Each block is composed
of several laths with similar orientations. These laths are separated by retained austenite
with a thickness of about 20 nm (unmeasurable by EBSD). These residual austenites contain
a higher carbon content and are stable at room temperature.
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Figure 5 shows the potentiodynamic polarization curves of all quenched samples by a
different quenching medium. The cathodic branches of the potentiodynamic polarization
curves indicate the process of cathodic oxygen reduction, and the anodic branches suggest
the dissolution of anodic iron [34]. For hot-stamping steel produced by the traditional
process, as seen in Figure 5a, the anodic branches reveal that all samples exhibit an anal-
ogous behavior with an active solution zone due to the nonpassivation of the electrode
in a 3.5% NaCl solution. The anode current density of the oil-quenched sample is higher
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than that of the water-quenched sample, and higher than that of the 10% NaCl solution-
quenched sample. In addition, a sudden change in the anodic branches means that there is
a pitting breakdown occurring on the sample surface. For hot-stamping steel produced by
the CSP process, as seen in Figure 5b, similar rules were found to the traditional process.
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Figure 5. Potentiodynamic polarization curves for the samples quenched in the different quenching
mediums in 3.5% NaCl solution: (a) traditional process, (b) CSP process.

Tafel slope fitting was employed to obtain the corrosion current density and the results
are shown in Figure 6. As the quenching cooling rate increases, the corrosion current
density is 15 µA·cm−2, 13.4 µA·cm−2, and 9.1 µA·cm−2 for the traditional process, and
is 13.4 µA·cm−2, 11 µA·cm−2, and 8.6 µA·cm−2 for CSP process. It can be seen that the
quenching cooling rate will significantly affect the corrosion rate. The faster the cooling
rate, the lower the corrosion rate. Furthermore, the corrosion current density of samples
produced by the traditional process is higher than that of the CSP process at the same
quenching cooling rate.
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Further electrochemical tests using EIS are shown in Figure 7. As the quenching cooling
rate increases, the polarization resistance is 789 Ω·cm2, 1344 Ω·cm2, and 2537 Ω·cm2 for the
traditional process, and is 1186 Ω·cm2, 1473 Ω·cm2, and 2887 Ω·cm2 for the CSP process. These
results are in good agreement with the potentiodynamic polarization curves.
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and CSP processes quenched in the different quenching mediums.

The corrosion rate is affected by the type of quenching medium used, primarily based
on the fact that quenching speeds lead to a finer microstructure and smaller equivalent
grain size. While one study [35] has indicated that grain boundaries, as crystal defects,
can promote corrosion in metallic materials, others [36–38] have demonstrated that a finer
grain size can improve corrosion resistance, and the grain boundaries can act as corrosion
barriers to retard corrosion kinetics [39,40]. In this study, an increase in quenching speed
resulted in finer martensite-equivalent grain size and lower corrosion rates, which would
be consistent with the hypothesis that grain boundaries act as corrosion barriers.

The presence of the second phase in the microstructure (mainly inclusions) would
also affect the corrosion behavior due to their different structures from the matrix. Figure 8
shows the BSE images and the distribution of inclusions in steel produced by traditional
and CSP processes, assisted by EDS analysis to classify the types of inclusions. In this study,
Al2O3/Al inclusions and TiN inclusions were mainly considered. The results indicate that
Al2O3/Al inclusions exhibit a spherical morphology and are generally larger in size, while
the size of TiN inclusions is relatively small, and their morphology appears to be irregular.
The detailed observations reveal that the Al2O3/Al inclusions can significantly accelerate
the corrosion of the surrounding matrix, as indicated by the insets in Figure 8a,b. This is
due to the difference in corrosion potentials between the inclusions and the matrix, which
can lead to galvanic corrosion [41,42]. The more inclusions there are, the more severe the
corrosion will be, theoretically. A wider view of the inclusions in the CSP process is shown
in Figure 8c,d, where they are sparsely distributed and smaller in size.
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(c) traditional process (d) CSP process.

The statistical analysis of inclusions in hot-stamping steel produced by the two pro-
cesses is plotted in Figures 9 and 10. The Al2O3/Al inclusions distribution in the two
processes exhibits significant differences, while no significant difference is observed for
TiN inclusions in this statistical method. For the traditional process, the average size of
Al2O3/Al inclusions is 6.2 µm, while for the CSP process, it is 4.6 µm. The average size of
TiN inclusions, on the other hand, was the same for both processes, at 3.1 µm. The average
and maximum sizes of Al2O3/Al inclusions are both larger than those of TiN inclusions.
Therefore, it is reasonable to believe that the difference in corrosion resistance between
traditional and CSP processes is closely related to Al2O3/Al inclusions. The higher corro-
sion rate in the traditional process can be attributed to the presence of a large proportion
of large-sized Al2O3/Al inclusions. Additionally, it can be observed from Figures 9c and
10c that the total number of both Al2O3/Al and TiN inclusions in the traditional process is
higher than that in the CSP process.
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Due to the thin thickness of the billet (approximately 50–130 mm), the crystallizer in
the CSP process is thin from the inlet to the outlet, and the casting nozzle is also thinner
than in the conventional process. To prevent clogging and improve continuous casting,
moderate calcium treatment is usually carried out after refining. The type of Al2O3/Al
inclusions have some differences compared with traditional billets. The solidification
time of the steel is shorter (1 min) and the cooling rate is faster (101–102 k/s) during CSP
continuous casting [43,44]. The faster the solidification speed, the smaller the size of the
inclusions. The larger cooling rate causes inclusions to have not enough time to generate
and grow from the high-temperature phase, resulting in fewer large-sized inclusions in the
CSP casting billet.

Inclusions in steel are unwanted impurities that are inevitably produced during the
steelmaking process. Among the various types of inclusions, Al2O3 is the most common.
Researchers have studied the impact of Al2O3 inclusions on the localized corrosion of steel.
It has been observed that the presence of Al2O3-enriched inclusions in the steel can lead
to the preferential dissolution of the surrounding steel through galvanic coupling [45].
Furthermore, the interface between the Al2O3 inclusions and the steel matrix has been
found to be a site of pitting corrosion [46,47]. Therefore, it is clear that Al2O3 inclusions
play a crucial role in the localized corrosion of steel. The CSP process, which produces steel
with fewer and smaller inclusions, results in steel with better corrosion resistance compared
to the traditional process. This is due to a reduced number of inclusions and their smaller
size, resulting in fewer galvanic couples and, therefore, less localized corrosion occurring.

4. Conclusions

The microstructure and mechanical properties, and especially the corrosion behavior,
were investigated between the traditional and CSP processes. The following conclusions
were drawn.

(1) The original microstructure of hot-stamping steel produced by the traditional process
and the CSP process is different. After quenching, the microstructures transform into
full martensite, and their mechanical properties meet the 1500 MPa grade. The faster
the quenching speed, the higher the strength;

(2) Corrosion tests showed that different quenching speeds can affect the corrosion rate,
i.e., the faster the quenching rate, the finer the microstructure, and the smaller the
corrosion rate of the steels. The corrosion resistance of hot-stamping steel produced
by the CSP process is slightly better than that of traditional processes;

(3) The effect of quenching speeds on the corrosion rate is based on the hypothesis that a
finer grain size can improve corrosion resistance, and the grain boundaries can act
as corrosion barriers to retard corrosion kinetics. The CSP process, which produces
fewer and smaller inclusions, results in better corrosion resistance due to the reduced
number of inclusions and their smaller size with fewer galvanic couples.
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