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Abstract: This paper is focused on the utilization of hybrid catalysts obtained from layered double
hydroxides containing molybdate as the compensation anion (Mo-LDH) and graphene oxide (GO) in
advanced oxidation using environmentally friendly H2O2 as the oxidation agent for the removal of
indigo carmine dye (IC) from wastewaters at 25 ◦C using 1 wt.% catalyst in the reaction mixture. Five
samples of Mo-LDH-GO composites containing 5, 10, 15, 20, and 25 wt% GO labeled as HTMo-xGO
(where HT is the abbreviation used for Mg/Al in the brucite type layer of the LDH and x stands for
the concentration of GO) have been synthesized by coprecipitation at pH 10 and characterized by
XRD, SEM, Raman, and ATR-FTIR spectroscopy, determination of the acid and base sites, and textural
analysis by nitrogen adsorption/desorption. The XRD analysis confirmed the layered structure of the
HTMo-xGO composites and GO incorporation in all samples has been proved by Raman spectroscopy.
The most efficient catalyst was found to be the catalyst that contained 20%wt. GO, which allowed the
removal of IC to reach 96.6%. The results of the catalytic tests indicated a strong correlation between
catalytic activity and textural properties as well as the basicity of the catalysts.

Keywords: advanced oxidation process; wastewater treatment; hybrid catalysts; Mo-modified LDH;
graphene oxide; indigo carmine

1. Introduction

In the last decade, interest in obtaining new hybrid materials containing layered
double hydroxides (LDH) and graphene oxide (GO) has constantly increased [1]. LDH are
anionic clays with a 2D lamellar structure composed of positively charged layers containing
bivalent and trivalent cations hexacoordinated with hydroxyl groups as in the brucite
(Mg(OH)2) structure and negatively charged layers containing compensation anions and
water molecules. The general formula of LDH is [MII

1−xMIII
x(OH)2]x+[An−]x/n·zH2O,

where MII is a bivalent metal cation such as Mg, Zn, Ni, Co, etc., MIII is a trivalent metal
cation, (e.g., Al, Ga, Fe, Cr), An− is a charge compensation anion, which may be either
inorganic or organic, and x has a value between 0.2 and 0.4 [2,3]. Meanwhile, GO can be
obtained by the oxidation of graphite [4] or by shredding and oxidizing graphene. It has a
hexagonal carbon structure and contains different oxygen-based functional groups, such
as: hydroxyl (–OH), alkoxy (C–O–C), carbonyl (C=O), and carboxyl (–COOH) [1,5]. GO
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has a large surface area and a high oxygen content (the carbon/oxygen ratio of GO is in the
range 2:1–3:1). In hybrid LDH-GO materials, the positively charged brucite-type layers of
the LDH are electrostatically attracted by negatively charged oxygen-containing functional
groups from the GO surface. As a result, the surface of the hybrid is larger than that of the
LDH alone, the stability of the LDH is increased, and the anionic exchangeability of the
LDH is preserved [5].

The first mention of LDH-GO hybrids described the obtaining of bidimensional (2D)
nanostructured materials by immobilization of ZnCr-LDH positively charged nanoplates on
the surface of negatively charged graphene nanolayers using the self-assembly method. The
resulting hybrids, ZnCr-LDH-GO and ZnCr-LDH-RGO (RGO-reduced graphene oxide) were
used as active photocatalysts to generate O2 under visible light radiation [6]. Since then, many
other publications have referred to the use of LDH-GO hybrids containing transition metals
(Zn/Fe or Ni/Cr) as photocatalysts for advanced oxidation processes in water treatment for
the removal of pharmaceuticals [7–9], while the removal of dye pollutants was attempted
only for the case of methylene blue [10] using Co/Al. Recently, a ternary LDH structure
TiMgAl-LDH combined with GO was used for the photocatalytic reduction of CO2 [11]. Due
to their exceptional electronic and conduction properties, LDH-GO hybrids have been used
as sensors to determine guanine, adenine, papaverine, non-enzymatic sugars, or hydrogen
peroxide [12–14] as well as energy storage systems [15]. LDH-GO hybrids containing Ni, Fe,
Co, and Cu in the LDH structure have also been used as electrocatalysts for different types of
processes involved in fuel and energy production [16–20].

In addition to their utilization in photocatalysis and electrocatalysis, LDH-GO hybrids
acted as classical catalysts for various processes starting with NOx reduction on Pt-doped
MgAl-LDH-GO in 2015 [21], followed by the Ullmann carbon-carbon coupling reaction on
CuAl-LDH-GO and CoAl-LDH-GO [22], the one-pot oxidation-Knoevenagel condensation
reaction on Ru-MgAl-LDH-GO [23] or CeMgAl-LDH-GO [24] and the degradation of
gatifloxacin on CoFeNi-LDH-GO [25].

Before being used in wastewater treatment by advanced oxidation processes, LDH-
GO hybrid materials were also utilized as adsorbents for different pollutants. Thus, the
first reference related to the use of LDH-GO composites in water treatment published
in 2014 describes the removal of cadmium ions and methylene blue dye by adsorption
on 3D hybrid aerogels made by cross-linking MgAl-LDH and GO [26]. Recently, the
removal of organic dyes with LDH-GO adsorbents was realized using CoZnAl-LDH-GO
for methylene blue adsorption [27] and ZnAl-LDH-GO as adsorbent of methyl orange [28].
Hybrid composites MgAl-LDH-GO with polysulfone [29] or polyvinylidene fluoride [30]
were used as membranes to remove Cu2+ and methylene blue from wastewater by osmosis.

Most of the research on LDH-GO hybrids conducted to date has been limited to the
incorporation in the GO matrix of LDH structures with inorganic compensation anions
such as Cl−, NO3

−, CO3
2−, SO4

2− and only one mention of a hybrid composite, used as
a corrosion inhibitor for carbon steel, related to the incorporation of a molybdate interca-
lated LDH combined with GO [31]. Mo-modified layered double hydroxides (Mo-LDH)
are synthetic anionic clays, which may contain molybdenum either as molybdate (MoO4

2−)
or heptamolybdate (Mo7O24

6−) compensation anions, depending on the pH value during
the synthesis [32–35]. It has been proved that molybdate-containing LDH are selective cata-
lysts for the oxyfunctionalization of organic substrates due to their ability to generate single
molecular oxygen from hydrogen peroxide [32,36,37] following a sequential mechanism
involving in the first step the formation of monoperoxomolybdate MoO3(O2)2−, which is fur-
ther transformed into diperoxomolybdate MoO2(O2)2

2−, triperoxomolybdate MoO(O2)3
2−

and tetraperoxodimolybdate Mo2O3(O2)4
2− species on the surface of the catalyst [32,38].

Hence, it may be considered that Mo-LDH could also be active in the advanced oxidation
process for water treatment when using H2O2 as a green oxidation agent.

The textile industry is considered one of the most significant pollutant sources of water
bodies since around 15% of the dyes are discarded and released in emerging effluents after
the dyeing process [39,40]. One of the issues posed by dye effluents is that even when these
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are found in low concentration, they affect water transparency hindering the evolution of
aquatic species and having harmful and sickening effects. Another issue is their intricate
degradation when classical water treatments are applied. Advanced oxidation processes are
important in wastewater treatment because the scarcity of potable water in some parts of the
world requires the treatment of wastewater to make it potable [41–44]. These procedures
can also be used to improve the odor and taste of some drinking water sources whose
geological origin causes them to have less desirable features for these parameters [45].

Disodium (2E)-3-oxo-2-(3-oxo-5-sulfonato-2,3-dihydro-1H-indol-2-ylidene)-2,3-dihydro-
1H-indole-5-sulfonate also known as indigo carmine (IC), indigotin, or Acid Blue 74 is an
indigoid water-soluble dye (Figure 1) that is frequently used in concentrations ranging
between 0.21 to 4.5 mmol L−1 in the textile industry related to blue-denim fabrics [46]. The
dye is also used in small amounts as an additive in some pharmaceutical formulations, or as
a staining agent for medical diagnostic purposes [47,48]. It can have toxic effects on humans
leading to reproductive, cardiovascular, respiratory, developmental, and neuronal disorders,
as well as carcinogenic effects by provoking tumors at the site of application [47,48] or when
the doses are higher than 500 mg/kg body weight/day [49].
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Figure 1. The chemical structure of indigo carmine (IC).

Until now, IC removal has been attempted by different advanced oxidation processes
(AOP) such as: photocatalysis using TiO2 [50–52], photo-Phenton [52], ultrasonic assisted
electrocatalysis on MnO2 catalysts using peroxydisulfate as the oxidant [53], electrocatalysis
on Ti/IrO2-SnO2-Sb2O5 [52] or PbO2/Fe [54], and catalysis on hematite-derived nanocom-
posites using H2O2 as the oxidant [55]. However, there are several disadvantages to these
processes since photocatalysis and electrocatalysis imply higher costs of the equipment
required for industrial applications, the use of TiO2 as a photocatalyst did not lead to a
substantial loss in the total organic carbon content of the water even if the water coloration
disappeared [50], while the use of peroxydisulfate as an oxidation agent implies the gen-
eration of sulfate as a by-product, which pollutes the water. From both the economic and
environmental points of view, the more favorable systems are those based on conventional
catalysis using H2O2 as an oxidation agent.

Considering this state of the art, our contribution is focused on the synthesis, charac-
terization, and catalytic activity testing in oxidative dye removal from wastewater of new
hybrid composites based on Mo-containing LDH and graphene oxide with different GO
loading. It was assumed that using the co-precipitation method at pH 10, the inclusion of
MoO4

2− compensation anions, which can activate the H2O2 molecules in the LDH will be
favored. Moreover, incorporating GO will enhance the affinity of the resulting solids for
the organic dye substrate.

2. Materials and Methods

The chemicals necessary for the synthesis of the Mo-LDH phase, e.g., magnesium
nitrate hexahydrate Mg(NO3)2·6H2O, aluminum nitrate nonahydrate Al(NO3)3·9H2O,
sodium molybdate dihydrate Na2MoO4·2H2O, anhydrous sodium carbonate Na2CO3, and
sodium hydroxide NaOH (pearls), were all of chemical purity grade and were purchased
from Merck (Darmstadt, Germany). For the preparation of the GO phase, graphite powder
325 mesh from Sigma–Aldrich (Saint Louis, MO, USA), sodium nitrate NaNO3, potassium
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permanganate KMnO4 (chemical purity from Merck), H2SO4 (98%), hydrochloric acid
HCl 37% (from Merck), and hydrogen peroxide H2O2 30% (from ChimReactiv, Bucharest,
Romania) were utilized.

Indigo carmine (IC) from Sigma–Aldrich (Saint Louis, MO, USA) was used to prepare
the simulated dye-contaminated water in the laboratory.

All the aqueous solutions were obtained using distilled water with a conductivity of
2.5–5 µS/cm.

2.1. Materials Synthesis

A sample of LDH containing molybdate as the compensation anion was prepared
by co-precipitation at pH 10 to serve as a reference. To this aim, two solutions have been
prepared using distilled water as solvent: (i) solution A containing Mg(NO3)2·6H2O and
Al(NO3)3·9H2O at a molar ratio Mg/Al = 3 and a concentration of cations (Mg + Al) equal
to 0.35 M and (ii) solution B containing NaOH (0.76 M) and an amount of Na2MoO4·2H2O
equal to 50 molar percent of the amount of Al(NO3)3·9H2O dissolved in the solution A
(molar ratio Mo/Al = 0.5:1). The molar ratio between NaOH and the sum of cations
in solution A was 2.2:1. The precipitation was carried out at room temperature under
vigorous stirring (300 rpm) using a TIM854 Titration Manager from Radiometer Analytical
(Budapest, Hungary), which allows a constant pH value to be maintained by the addition
of the required amounts of the pH-adjusting solution B from an automatic burette. Solution
A and solution B were added concomitantly in the precipitation reactor, which already
contained 50 mL of distilled water brought to pH 10. After finishing the addition of
solutions A and B, another portion of 50 mL distilled water was added, a vertical condenser
was fixed on the top of the reactor, and the obtained gel was heated at 70 ◦C and aged
for 18 h. The aged gel was separated by filtration and the resulting cake was thoroughly
washed with distilled water to remove the soluble by-product salts. The washing ended
when the conductivity of the washing water fell below 100 µS/cm. The cake was dried in
an oven with air circulation at 90 ◦C for 24 h. The dried sample was designated as HTMo.

Five samples of Mo-LDH-GO composites containing 5, 10, 15, 20, and 25 wt% GO
labeled as HTMo-xGO (where HT is the abbreviation used for Mg/Al in the brucite type
layer of the LDH and x stands for the concentration of GO) were synthesized by co-
precipitating the LDH phase in the presence of GO at pH 10, similar to the method applied
by us for the synthesis of Ce-LDH-GO hybrids [24]. To this aim, a suspension of GO with
a concentration of 4 g/L was prepared using Hummers’ method [4] as it was described
in reference [24]. The details of the preparation of the GO suspension are included in
Supplementary Materials Paragraph S1.

Identical preparation steps were applied for all the composites, the differences between
their synthesis consisting in the amounts of precursor salts used (respecting the molar ratios
Mg:Al of 3:1 and Mo/Al of 0.5:1), which varied with the concentration of GO to be included
in the resulting solid. Solution A contained the required amounts of Mg and Al nitrates
solubilized in a mixture of distilled water and the necessary quantity of GO suspension.
Solution B was prepared as described for the synthesis of HTMo, respecting the molar ratio
of NaOH/(Mg + Al) equal to 2.2:1 and Mo/Al of 0.5:1. The detailed compositions of the
reaction mixtures are presented in Supplementary Materials Table S1. All the procedures
related to equipment and pH of the precipitation, aging, washing, and drying of the
obtained solids were the same as for the synthesis of HTMo. The obtained samples were
labeled HTMo-5GO, HTMo-10GO, HTMo-15GO, HTMo-20GO, and HTMo-25GO.

2.2. Materials Characterization

Inductively coupled plasma atomic emission spectroscopy (ICP-AES), was used to
determine the metal content of the samples using a Liberty 110 spectrometer from Var-
ian (Palo Alto, CA, USA). To this aim, the samples were first calcined for 8 h in an air
flow (10 mL/min) at 500 ◦C to remove the graphene oxide and then the metals from the
remaining ashes were solubilized in ultrapure nitric acid.
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The total number of acid sites was determined by pyridine adsorption using the
methods described in reference [24]. For the determination of the total number of base sites,
a method based on the irreversible adsorption of organic acids as described in reference [34],
(e.g., acrylic acid, pKa = 4.2 for the determination of the total number of base sites and
phenol pKa = 9.9, for the determination of the number of strong acid sites) was used.
Before these determinations, the samples were thoroughly degassed under vacuum at
room temperature.

XRD powder patterns were recorded on a Panalytical X’Pert θ/2θ-diffractometer
(from Panalytical, Almelo, Netherlands) equipped with an Xcelerator detector using Cu-Kα

radiation (40 kV, 40 mA; λ = 1.5418 Å nm). The diffractograms were collected with a step
of 0.02◦/min and an acquisition time per step of 4 s. Peak positions and profiles were
fitted with the Pseudo-Voigt function using the HighScore Plus software package version
2014 (Panalytical). The PDF-4+ database of the International Center of Diffraction Data
(ICDD) was used for phase identification. Scherrer’s formula (1) was used to calculate the
dimensions of the crystallites:

Dhkl =
K·λ

βhkl ·cosθhkl
(1)

where K is a geometric factor (e.g., 0.9), λ is the wavelength of the incident X-ray, βhkl is the
width at half-intensity of the hkl reflection, and θhkl is the Bragg angle of the same reflection.

Attenuated total reflectance Fourier transformed infrared (ATR-FTIR) spectra in the
spectral range of 4000–400 cm−1 were recorded with a JASCO FT/IR-4700 spectrome-
ter (Jasco, Tokyo, Japan) equipped with a diamond crystal using a scanning speed of
128 scans/min, triangle apodization, and a resolution of 4 cm−1.

Raman spectra were recorded in extended mode using the 514 nm laser line, by
measuring the Raman bands in the range of 100–3100 cm−1 monitoring shifts in the Raman
band position narrower than 0.5 cm−1, using a high-resolution confocal Raman microscope
(Renishaw system, from Renishaw Ltd., New Mills, Wotton-under-Edge Gloucestershire,
UK) and a Leica DM2500 microscope (from Leica Microsystems GmbH, Wetzlar, Germany).

Scanning electron microscopy (SEM) analysis was performed on a Hitachi SU8230
(Hitachi, Tokyo, Japan) microscope at an acceleration voltage of 30 kV. The secondary
electrons signal was registered. Before being analyzed, all samples were covered with
a 9-nm-thick layer of gold, using a Quorum Q150T ES turbomolecular pumped coater
(Quorum Technologies, London, UK).

Textural analysis of the samples was performed through N2 physisorption at −196 ◦C
using a Micromeritics ASAP 2020 analyzer (Norcross, GA, USA). Before each measurement,
the samples were degassed under vacuum at 120 ◦C for 12 h. The specific surface areas
were calculated using the Brunauer–Emmett–Teller (BET) equation and the total pore
volume was estimated from the amount adsorbed at the relative pressure of 0.99. The
Barrett–Joyner–Halenda (BJH) model was used to determine the pore size distribution
(PSD) curves from the adsorption data.

2.3. Catalytic Tests

Catalytic tests for the oxidation of IC in simulated wastewater were performed in
a batch system under stirring at 150 rpm at 25 ◦C using 1 wt.% catalyst (particle size
0.16–0.25 mm) and H2O2 (30 wt.%) as an oxidation agent at different molar ratios H2O2/IC
in the range 32–64. Three simulated wastewater samples having concentrations of IC in
the range of 15 × 10−3 to 90 × 10−3 M were prepared. Blank tests (without catalyst in the
reaction mixtures) were performed for each reaction condition.

Five recycling tests were performed only for the most active catalyst (HTMo-20GO).
Thus, the catalyst recovered after the first reaction cycle (2 h, 150 rpm, 25 ◦C, 1 wt.% catalyst,
30 × 10−3 M initial concentration of IC and 48/1 molar ratio H2O2/IC) was used in the
following reaction cycle using a fresh sample of simulated wastewater.

The IC concentration before and after the catalytic test was determined by UV-Vis
spectroscopy considering the intensity of the absorption maximum at λ = 610 nm and
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a calibration curve obtained on a Jasco V-650 double-beam UV-Vis spectrometer (Jasco,
Tokyo, Japan). The conversion of IC was calculated with the formula:

IC conversion =

[
(IC0 − ICt)

IC0

]
·100(%) (2)

where ICo is the molar concentration of IC at the beginning of the test, and ICt is the
remaining IC concentration at the end of the test.

The concentrations of H2O2 at the beginning and end of the catalytic tests were deter-
mined by the spectrophotometric methods 209 and 210 developed on an Aqualytic spec-
trophotometer AL 800/SpectroDirect (Aqualytic Gmbh, Dortmund, Germany) using the
specific reagent kits for the concentrations range of 0.01–0.5 mg/L and 0.03–1.5 mg/L H2O2.

The chemical oxygen demand (COD) and the total organic carbon (TOC) content in
the treated wastewater were two other analysis methods used for the assessment of IC
degradation. Both COD and TOC were determined using the Aqualytic AL800 spectrometer
and the corresponding reagent kits COD Vario tube tests 0–1500 mg/L and 0–150 mg/L
from Tintometer GmbH, Division Aqualytic (Dortmund, Germany) and TOC Cell test
(50–800 mg/L) from Merck KgaA (Darmstadt, Germany).

3. Results
3.1. Characterization of the Materials

The obtained solids were characterized using ICP-AES, determination of acid and
base sites, powder XRD, ATR-FTIR, Raman spectroscopy, scanning electron microscopy
(SEM), and N2 adsorption-desorption isotherms.

3.1.1. Chemical Composition and Acid-Base Properties

The results of the ICP-AES analysis, displayed in Table 1, indicate that as the amount
of graphene oxide increases, both Mg/Al and Mo/Al atomic ratios decrease, implying that
the presence of GO during synthesis results in an incomplete precipitation of Mg and Mo.
The loss of Mo is higher than that of Mg most probably because at least a part of the GO
platelets occupy some of the anionic exchange positions in the interlayer region of the LDH
where Mo is also accommodated as molybdate anions. This trend is more intense as the
content of GO in the synthesis increases.

Table 1. Metal content in the samples as determined by ICP-AES analysis.

Catalysts Metal Content (wt.%) Atomic Ratios

Mg2+ Al3+ Mo Mg/Al Mo/Al

HTMo 15.9 6.1 10.5 2.90 0.48
HTMo-5GO 14.5 5.7 8.7 2.83 0.43

HTMo-10GO 13.6 5.4 7.6 2.80 0.40
HTMo-15GO 12.6 5.0 6.9 2.80 0.39
HTMo-20GO 11.3 4.6 4.2 2.73 0.26
HTMo-25GO 10.0 4.1 3.6 2.71 0.25

The pyridine (Py) adsorption tests showed that all the hybrid samples had fewer acid
sites than GO, but more than HTMo (Table 2). It should also be noted that the proportion
of strong base sites (SB) determined by phenol adsorption decreases with the increase in
GO content incorporated in the solids whereas the proportion of Brønsted acid sites (HB)
increases. The sample HTMo-20GO exhibited the highest overall basicity and a Mo/Al
ratio that is almost half that of the one used in the synthesis mixture.
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Table 2. Distribution of acid and base sites in the samples.

Catalysts Total Acid Sites
(mmol Py/g)

HB 1

(%)
Total Base Sites

(mmol AA/g)
SB 2

(%)
Base/Acid
Sites Ratio

HTMo 0.15 10.1 0.20 25.1 1.33
HTMo-5GO 0.18 14.2 0.28 20.2 1.55

HTMo-10GO 0.25 18.4 0.40 17.4 1.60
HTMo-15GO 0.34 24.6 0.48 14.7 1.65
HTMo-20GO 0.20 21.3 0.52 10.8 2.40
HTMo-25GO 0.30 27.5 0.56 8.2 1.73

GO [24] 0.77 31.2 0.06 0 0.08
1—HB-Brønsted acid sites determined by pyridine adsorption from the areas of the corresponding peaks in IR
spectra as reported in reference [24]. 2—SB-Strong base sites determined by phenol adsorption.

3.1.2. Powder XRD Characterization

The XRD patterns of the HTMo-xGO composites show the formation of single-phase
layered double hydroxides without any impurities and confirm that the GO content intro-
duced during synthesis has an influence on the intensity of the diffraction lines. Practically,
the insertion of large amounts of graphene oxide during the synthesis of the materials led
to higher-intensity lines, as can be observed in Figure 2. The absence of the intense GO
(001) reflection indicated the exfoliation of the graphene sheets [24].
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The lattice parameters and the crystallite sizes are given in Table 3. The crystallite
sizes were calculated along two directions: perpendicular (D003) and parallel (D110) to
the brucite-like layers, respectively. Due to the layered morphology of LDH, for the
Scherrer mean crystallite sizes, the widths of two reflections were used: (003), related
to the c-axis along which the layers are stacked, and (110), related exclusively to the
brucite-like sheets. Table 3 shows the similar structural characteristics of all the samples.
The a-lattice parameter corresponds to the distance between two metals cations in the
brucite-like sheet and depends only on Mg/Al molar ratio, while the c-lattice parameter
depends on both the Mg/Al ratio and the size of the interlayer anions [2]. The lower
Mg/Al molar ratios obtained for the composite sample in comparison with the nominal
Mg/Al = 3 obtained for a reference LDH Mo-free Mg3Al-CO3

2− prepared under the same
conditions [33,34] are consistent with the evolution of the lattice parameters as revealed in
Figure S1 in the Supplementary Materials. The reference samples for the MgxAl-CO3

2−

(x = 3 and 2.5, labeled HT3-CO3 and HT2.5, respectively) were extracted from our previous
works [33,34,56]. As we had already asserted, the c lattice parameters, and hence the
interlayer spaces, are large enough to accommodate MoO4 species [33].
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Table 3. Structural data for HTMo and HTMo-xGO hybrids.

Samples
Lattice Parameters Crystallite Sizes

I003/I110
I110(HTMO)/

I110(HTMo-xGO)a (Å) c (Å) D003 (nm) D110 (nm)

HTMo 3.061 23.814 12.7 6.8 4.4 1.00
HTMo-5GO 3.058 23.582 10.4 6.5 4.2 0.85

HTMo-10GO 3.059 23.509 12.4 8.3 5.2 0.84
HTMo-15GO 3.058 23.326 12.3 8.3 4.7 0.99
HTMo-20GO 3.055 23.232 13.7 7.2 6.4 0.94
HTMo-25GO 3.054 23.271 15.0 6.9 6.7 0.92

The XRD patterns of the samples exhibit a better overall crystallinity compared to the
molybdate ion embedded LDH prepared at a lower Mg/Al value [35] and, moreover, as
mentioned, the GO presence, in particular for 10–25 wt.% range concentration, improved
the samples crystallinities. From the data in Table 3, it can also be noticed that the presence
of GO affected mostly the crystallite sizes, in particular the coherence lengths in the layer-
stacking direction (D003).

The fact that larger LDH particles were formed after the insertion of GO suggested
that GO sheets could serve as nucleating agents for LDH phase formation [57]. For the
HTMo-xGO series, the evolution of the absolute intensities of the (110) line, exclusively
related to the brucite-type layer, should go along with the decrease in the proportion of
the LDH phase in the nanocomposites. In fact, the data in Table 3 show a decrease in the
c-lattice parameter value accompanied by an increase in the I003/I110 ratio for all the HTMo-
xGO nanocomposites compared to HTMo sample. This fact indicates a slight modification
of the interlayer anionic composition due to mutual electrostatic interactions between the
LDH and GO phases. It may be inferred that there is probably a higher degree of hydration
with a different compaction of the anionic species.

3.1.3. Characterization by Infrared Spectroscopy

ATR-FTIR spectra of the hybrid solids are presented in Figure 3. The spectrum of
HTMo has the main absorption bands at 3433 cm−1 (characteristic for OH stretching
vibrations), 1637 cm−1 (corresponding to interlayer water bending modes), 1363 cm−1

(indicating the presence of carbonate ions in a symmetric environment [58,59]), 996 cm−1

(attributed to the antisymmetric mode of Mo–O–Mo characteristic for molybdate anions
(MoO4

2−) [35,59]), 830 cm−1 (stretching vibration in MoO4
2− [60]), and 734 cm−1, 623 cm−1,

and 580 cm−1 (specific to the vibrations mode of the oxygen atoms bonded to Mg and Al
from the crystal lattice [35]). Considering that Na2CO3 was not utilized in the synthesis,
the presence of carbonate was probably due to the carbonation of the NaOH used in
the preparation. The spectrum of neat GO shows the characteristic band for carboxylic
groups present on the GO surface at 1712 cm−1 and a sharp peak at 1613 cm−1 associated
with the stretching and bending vibration of OH groups in water molecules adsorbed on
the GO. A broad band in the region 3600–2500 cm−1 (with inflections at 3526, 3339, and
2859 cm−1) appeared due to the stretching vibrations of OH groups. Other bands were
observed too, such as a weak band at 3777 cm−1 corresponding to phenolic OH groups, a
band at 1381 cm−1 due to C–OH bond vibrations, a band at 1033 cm−1 (vibration mode of
aromatic C–O bonds), a band at 1159 cm−1 (corresponding to skeletal deformations), and a
low-intensity peak at around 548 cm−1 due to C–H vibrations in the aromatic ring [61]. As
can be seen, the bands corresponding to the neat HTMo and GO overlap across the entire
spectral domain. In the spectra of all hybrid HTMo-xGO samples, a doublet appears at
2353 and 2321 cm−1 indicating CO2 entrapment in the solids. Other bands common to all
the hybrids and not discernable in the neat HTMo and GO spectra are those at 1519 cm−1

and 1262 cm−1, which indicate the perturbance of the interlayer region of the LDH due
to the incorporation of GO. The intensity of the bands corresponding to the vibrations
mode of the oxygen atoms bonded to Mg and Al from the crystal lattice decreases as the
concentration of GO increases. However, it is noticeable that the decrease in the case of
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HTMo-20GO is more accentuated than that for HTMo-25GO. Compared to HTMo, the
relative intensity of the bands in the region 4000–2800 cm−1 decreases with the increase in
the concentration of GO included in the hybrids up to 15 wt.%. Meanwhile, for the samples
with 20 and 25% GO, the relative intensity of the bands in this region is higher than that
for HTMo. For HTMo-20GO this band is visibly broader, a fact that explains its higher
basicity (see Table 2). The band corresponding to Mo–O–Mo vibrations, which appeared at
996 cm−1 in the spectrum of HTMo, is overlapped by the band at 1033 cm−1 characteristic
to GO in the spectra of the HTMo-xGO hybrids. Moreover, it can be observed that this band
has a lower intensity for the samples having higher GO concentration suggesting that the
amount of molybdate anions decreases with the increase in graphene oxide concentration,
as could also be seen in the ICP-AES results (Table 1).
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3.1.4. Characterization by Raman Spectroscopy

In the Raman spectra presented in Figure 4, for HTMo, the most intense band is the
one appearing at 893 cm−1 which can be attributed to the Mo–O symmetrical stretching
vibration in MoO4

2− (Mo in tetrahedral coordination), while the band at 315 cm−1 can be
associated to the Mo=O bending vibrations [33]. The second most intense band appears at
1042 cm−1. This could indicate either contamination of the sample with carbonate since
the ν1 symmetric stretch of A1′ symmetry of carbonate anion is known to be positioned at
1030 cm−1 [58] or the presence of Mo in octahedral coordination. The absorption bands
present at 470 and 548 cm−1 are specific for the bending vibrations of Mg–OH, Al–OH.

In the Raman spectra of the hybrid materials, the signal coming from the graphene
oxide component masks the bands emitted by the neat HTMo in the region 100–1100 cm−1,
even though the concentration of the HTMo was higher than the GO concentration. How-
ever the spectra of the composites containing GO reveal the presence of a Mo–O symmetrical
stretching vibration in MoO4

2− based on the absorption band at 904 cm−1 which is shifted
from 893 cm−1 due to the insertion of graphene oxide. The band at 1042 cm−1 present in
the spectrum of the HTMo is clearly visible only for the composite sample containing 5%
GO. For all HTMo-xGO composites, the presence of GO was noticed in the Raman spectra
displayed in Figure 3. In the spectra, the presence of GO is signified by the presence of
the D band, (the dominant sp2 Raman signature of disorder in nanocrystalline carbonic
structures at 1336 cm−1) and the G band at 1572 cm−1 (related to planar carbonic structures
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with sp2 hybridized C atoms) [62]. For the neat GO, the ratio of the intensities of the two
bands ID/IG = 1.43. In the spectra of the hybrid materials, the G’ band appears at around
2600 cm−1 and it increases in intensity with increasing graphene oxide content inserted in
the composites. This fact suggests that as the GO concentration increases, some GO remains
dispersed on the surface of the LDH particles, leading to an agglomeration of intertwined
layers, as was noticed in the SEM micrographs.
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3.1.5. Characterization Using SEM Microscopy

SEM images of HTMo and HTMo-xGO samples containing 5–25 wt.% GO are displayed
in Figure 5. HTMo exhibited the typical sheet-like morphology of LDH. The samples with
5–25 wt.% GO had a distinctive morphology compared to HTMo. After adding various
concentrations of GO, the layered aggregates became more compact, and smaller particles
can be noticed on their surface. The sample HTMo-5GO presented small particles dispersed
on a thin layer, while, when increasing the amount of graphene oxide from 10 to 25 wt.%, a
mixture of smaller particles dispersed on the surface of the layered aggregates can be noticed.
These changes in morphology could be caused by the deposition of isolated GO particles on
the external surface of the LDH layers [31] as inferred from the Raman analysis results.

3.1.6. Textural Characterization

The textural features of the samples, as revealed by nitrogen adsorption–desorption, are
displayed in Table 4. The adsorption–desorption isotherms for all samples (Supplementary
Materials Figure S2) can be classified as type IV with a combination of H2a and H2b hysteresis
loops associated with inkbottle-shaped pores resulting in significant network effects [63].

The small surface area of the neat HTMo may be a consequence of the sticking and
twisting of the sheets as was observed by SEM analysis (Figure 5a). The samples HTMo-
15GO and HTMo-25GO had larger specific surface areas. For HTMo-15GO, this fact may
be a consequence of the pleated edges of the layers indicated by white arrows and the
dispersion of small grains (indicated by white circles) on their surface, as revealed by SEM
analysis (Figure 5d), whereas for HTM-25GO, there are numerous small grains dispersed
between larger agglomerates (Figure 5f). The fact that HTMo-20GO has a lower specific
surface area may be a consequence of the larger dimension of the particles (Figure 5e)
compared to those noticed on HTMo-15GO and HTMo-25GO. These solids also have a
bimodal pore size distribution (Supplementary Materials Figure S3). Meanwhile, the neat
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GO shows an H4-type hysteresis loop associated with narrow slit-like pores, including
some microporosity [24], and has a monomodal type pore size distribution. HTMo-20GO
exhibited a higher amount of wider pores (10.9 nm) than all the other hybrid samples.
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Table 4. Results of the textural analysis using nitrogen adsorption–desorption analysis.

Samples Ssp BET (m2/g)
t-Plot

Micropore
Area (m2/g)

t-Plot
External Surface

Area (m2/g)

BJH Adsorption
Average Pore
Width (nm)

BJH Adsorption
Cumulative

Volume of Pores
(cm3/g)

Pore Size 1

nm

HTMo 4.1 0.3 3.8 17.5 0.020 2.7 and 18.1
HTMo-5GO 22.7 2.0 20.8 8.6 0.057 2.7 and 9.1

HTMo-10GO 46.5 3.5 43.0 8.5 0.116 2.4 and 9.0
HTMo-15GO 82.9 5.0 77.9 8.6 0.209 2.7 and 9.0
HTMo-20GO 61.6 1.6 60.0 10.2 0.185 2.4 and 10.9
HTMo-25GO 80.9 2.5 78.4 8.0 1.197 2.6 and 9.0

GO [24] 79.8 24.5 55.3 5.5 0.059 3.9
1 From Supplementary Materials Figure S3.

3.2. Catalytic Tests Results

The results of the catalytic tests for indigo carmine oxidation with H2O2 after 2 h at
room temperature and 150 rpm using different molar ratios H2O2/IC and 1%wt. catalyst are
displayed in Table 5. It was found that the conversion of H2O2 is greater than that of indigo
carmine dye (IC), as a result of not only the oxidation of IC but also the decomposition
of a small amount of H2O2. The tests on H2O2 decomposition using the same amount
of catalyst, in the absence of IC, revealed that after 2 h, the level of H2O2 decomposition
was in the range of 4–6%, while without the catalysts, it was less than 3%. Under similar
conditions the conversions of IC and H2O2 both increase with the GO loading in the hybrid
catalysts up to 20% GO. The conversion is slightly lower for the sample with GO content
of 25% than for the one with 20% GO. The increase in the ratio H2O2/IC in the reaction
mixture leads to enhanced IC conversions for the catalysts HTMo, HTMo-5GO, HTMo-
10GO, and HTMo-15GO, while it has a lower influence for the catalysts HTMo-20GO and
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HTMo-25GO. For all catalysts, the conversion of H2O2 was lower as the ratio H2O2/IC
increased beyond the stoichiometric value of 32 by 25 up to 100%.

Table 5. The conversion of IC and H2O2 using HTMo-xGO catalysts at different molar ratios H2O2/IC
(initial concentration of IC 30 × 10−3 M, catalysts concentration 1 wt.%, 150 rpm, 2 h, 25 ◦C).

Catalysts
Molar Ratios H2O2/IC

32.1 40 48 56 64

IC
Conv.
(%)

H2O2
Conv.
(%)

IC
Conv.
(%)

H2O2
Conv. (%)

IC
Conv.
(%)

H2O2
Conv.
(%)

IC
Conv.
(%)

H2O2
Conv. (%)

IC
Conv.
(%)

H2O2
Conv. (%)

HTMo 66.1 70.1 71.3 61.2 74.5 53.8 79.1 49.3 82.8 45.5
HTMo-5GO 82.7 86.7 83.7 71.2 87.6 62.6 89.6 55.4 90.4 49.3
HTMo-10GO 83.4 87.4 87.6 74.1 89.8 64.1 91.4 56.4 91.8 50.0
HTMo-15GO 86.1 98.6 90.3 80.1 90.7 68.6 91.8 58.9 92.3 51.1
HTMo-20GO 94.6 95.4 94.8 78.1 96.6 66.5 95.7 57.5 95.9 52.2
HTMo-25GO 91.4 90.1 92.3 76.5 93.5 64.7 93.4 56.6 93.7 53.0

GO 12.3 16.3 16.2 17.0 20.2 17.5 22.1 16.7 23.5 15.8
blank 1.5 5.5 3.1 6.5 4.2 6.8 5.3 7.0 6.4 7.2

The increase in the initial concentration of IC in the range of 15 × 10−3 M to 90 × 10−3

M when using a molar ratio H2O2/IC of 48 in the reaction mixture led to a decrease in IC
conversion (Table 6) by 7–10% for all catalysts except HTMo-20GO. This catalyst also had
the highest overall basicity (Table 2) and the widest pores (e.g., 10.9 nm—Table 4) among
the hybrid catalysts. The COD and TOC were measured for the highest IC concentration
of 90 × 10−3 M. The results, shown in Supplementary Materials Table S2, indicate that
COD was less than 200 mgO2/L for all catalysts, and TOC was below the detection limit
for all hybrid catalysts and 55 mgC/L for neat HTMo. These COD values comply with
Romanian regulations for the discharge of treated water into natural receptors (maximum
300 mgO2/L [64]).

Table 6. The influence of the initial concentration of IC on the catalytic activity of HTMo-xGO
catalysts at molar ratio H2O2/IC = 48 (catalysts concentration 1 wt.%, 150 rpm, 2 h, 25 ◦C).

Catalysts ICo = 15 × 10−3 M ICo = 90 × 10−3 M

IC Conv. (%) H2O2 Conv. (%) IC Conv. (%) H2O2 Conv. (%)

HTMo 78.4 56.4 68.7 55.7
HTMo-5GO 90.1 64.3 81.2 64.9

HTMo-10GO 91.4 65.1 84.7 67.5
HTMo-15GO 92.2 65.7 85.4 68.1
HTMo-20GO 98.2 69.7 95.4 75.6
HTMo-25GO 96.4 68.5 88.3 70.2

GO 35.4 27.7 26.5 24.1
blank 4.6 7.1 3.5 6.8

4. Discussion

For the Mo-containing catalysts, the conversion of IC increased with the specific
surface area up to a maximum value of 96.6 % at Ssp 61.6 m2/g (catalyst HTMo-20GO—
Figure 6a). The conversion of IC rises with the proportion of mesopores in the catalysts
due to the easier accessibility of the IC to the catalytically active sites. The increase fitted a
linear trend for all the samples containing GO, while HTMo was a little below this trend,
probably due to its much lower surface area (Figure 6b).
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There is a linear increase in IC conversion with the basicity of the catalysts up to a
value of 1.73 of the ratio of base/acid sites (corresponding to HTMo-25GO) followed by
a slight increase beyond this value (Figure 6c). This fact may be related to the increase
in the single molecular oxygen generation from hydrogen peroxide in contact with the
base sites of the Mo-LDH phase [32,38]. The results showed that the conversion of indigo
carmine dye (IC) varied according to the Mo concentration, as shown in Figure 6d. The
variations were similar for all the investigated H2O2/IC ratios. For the hybrid catalysts,
the conversion decreases linearly with the increase in Mo amount, suggesting that at lower
concentrations, there are larger spaces between Mo active sites on the surface thus avoiding
their screening by the large molecules of IC.

The conversion of H2O2 was found to be less influenced by the surface area of the
catalysts, with the hybrid composites displaying a higher conversion than the single-phase
samples, HTMo and GO (Supplementary Materials Figure S4a).
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The number of mesopores (Supplementary Materials Figure S4b) and the basicity
(Figure S4c) show the same influence on H2O2 conversion as in the case of IC conversion. The
presence of Mo leads to an increased conversion of H2O2 compared to that obtained on GO.
The results indicate that the utilization of a hybrid catalyst, which combines the properties
of Mo-modified layered double hydroxides (HTMo) and graphene oxide (GO), results in
increased H2O2 conversion compared to using either HTMo or GO alone. This is because the
hybrid catalyst provides both Mo sites and oxygen-containing functional groups from GO,
whereas using GO alone only offers the latter. The hybrid catalysts exhibit a 15–16% increase
in H2O2 conversion compared to HTMo and a 50–51% increase compared to GO, as demon-
strated by the data in Supplementary Materials Figure S4a–c under the specified reaction
conditions. H2O2 conversion varied depending on the amount of Mo reaching a maximum
value for the HTMo-15GO sample (Supplementary Materials Figure S4d). The relationship
between IC and H2O2 conversion, considering factors like surface area, mesopore proportion,
basicity, and Mo concentration is consistent for all H2O2/IC ratios.

For the most promising catalyst, HTMo-20GO, the variation in IC conversion was
determined during 180 min, analyzing the water samples after 5, 10, 15, 30, 60, 90, 120,
150, and 180 min of reaction time. The results, plotted in Figure 7a, show a rapid increase
in the conversion up to 80% in the first 60 min, and a slower increase up to 120 min,
at which point a plateau is reached. The UV-Vis spectra collected at the beginning of
the test and during the process are shown in Figure 7b. The spectra obtained after 150
and 180 min are not presented due to their overlapping with the spectrum obtained after
120 min. Considering the modifications noted in the spectra during the process, it may
be inferred that the oxidative degradation starts after an induction period of 30 min since
all the absorption bands characteristic for IC are still present in the spectra. At 60 min
reaction time, there is a notable increase in the charge transfer band located at 210 nm while
the absorption maximum at 251 nm disappears and the maximum at 287 nm decreases
significantly. After 90 min, both absorption maxima at 287 nm and 251 nm characteristic of
aromatic intermediates [50] are lost, indicating the quasi-total mineralization of IC.
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Figure 7. IC conversion on HTMo-20GO (Reaction conditions: IC0 30 × 10−3 M, H2O2/IC = 48
catalysts concentration 1 wt.%, 150 rpm, 2 h, 25 ◦C); (a) Temporal variation; (b) UV-Vis spectra of the
initial wastewater and during the process.

The results of the recyclability tests performed on HTMo-20GO (Figure 8) show that
the catalyst is stable for at least five reaction cycles since the conversion of IC decreases
by less than 1% which is within the limit of experimental errors. The XRD pattern of the
HTMo-20GO catalyst recovered after the fifth cycle (Figure 9) does not show alterations
compared to the pattern of the fresh HTMo-GO indicating the stability of the catalyst.
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Compared to photocatalytic IC degradation with TiO2 photocatalyst [50], our catalysts
present the advantage of enabling the removal of IC without leaving colorless organic com-
pounds in amounts exceeding the allowed levels of COD in the treated wastewater (see Sup-
plementary Materials Table S2) and without requiring a UV source for the activation. There
is also no need to perform photocatalytic degradation at temperatures higher than 25 ◦C
(40 ◦C) and acidic pH (e.g., 2–4) in order to reach a high degradation rate of the dye [51,52].
Our catalyst is also more active than MnO2 catalyst [53] enabling 95.4% vs. 70% degradation
of IC at similar initial concentrations of IC (e.g., 42 mg/L (90 × 10−3 M) for HTMo-20GO
and 40 mg/L for MnO2) at lower catalyst loadings (1 wt.% HTMo-20GO < 1.4 wt.% MnO2)
without requiring the use of ultrasonication equipment. In terms of stability, the HTMo-20GO
catalyst was more stable than a Cu-hematite-based nanocatalyst, which lost 10% of its activity
after the fifth reaction cycle under similar conditions [55]. For the other catalysts tested in the
degradation of IC (TiO2, MnO2, Ti/IrO2-SnO2-Sb2O5 [50–53]) there were no reports related to
their recyclability.

5. Conclusions

The co-precipitation of Mo-modified layered double hydroxides (Mo-LDH) in graphene
oxide (GO) suspensions leads to the obtaining of single-phase hybrid materials without
impurities. Compared to the composition of the synthesis mixture, the distribution of metal
species in the hybrid materials reflected that the precipitation of the LDH-Mo was partially
hindered by the presence of the GO suspension, and there was a significant loss of Mo with
the increase in GO concentration. This fact could be a consequence of the competition between
molybdate anions and GO-generated anions for the occupation of the interlayer space of
the LDH. The insertion of GO enables the formation of larger LDH particles and a slight
modification in the interlayer anionic composition. Hybrid materials have fewer acid sites
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than pure GO and more basic sites than GO and HTMo. On the hybrid catalysts, the activation
of H2O2 was enhanced by an additive effect of molybdate sites and GO. The conversion of
indigo carmine (IC) over the prepared hybrid catalysts increases with their specific surface
area and basicity, reaching a maximum value of 96.6% when HTMo-20GO was used.

Mo-LDH-GO materials are environmentally friendly, easily recoverable, and reusable,
making them a promising solution for treating dye-contaminated wastewater by advanced
oxidation processes. Further experiments will be devoted to the study of the influence of
salt-type additives present in IC-contaminated wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16083025/s1, paragraph S1: The preparation of the GO sus-
pension; Figure S1: Variation in the lattice parameters determined by XRD depending on the chemical
composition of the brucite-type layer: (a) variation in a parameter, (b) variation in c parameter;
Figure S2: BET isotherms of the investigated samples; Figure S3: Pore size distribution of the in-
vestigated samples (BJH, Halsey–Faas correction); Figure S4: The influence of the physico-chemical
characteristics of the investigated catalysts on H2O2 conversion: (a) specific surface areas; (b) the
proportion of mesopores; (c) the basicity expressed as the ratio between base and acid sites; (d) Mo
concentration; (Reaction conditions: IC0 = 30× 10−3 M, H2O2/IC = 48 catalysts concentration 1 wt.%,
150 rpm, 2 h, 25 ◦C); Table S1: Compositions of the solutions A and B used in the syntheses of
HTMo-xGO hybrids; Table S2: The chemical oxygen demand (COD) and total organic carbon content
(TOC) of the water samples after the catalytic tests performed with a concentrated solution of IC
(0.09 mM; COD initial 574.7 mg O2/L; TOC initial—174.2 mg C/L) at a molar ratio H2O2/IC = 48/1.
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