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Abstract: Affected by the service environment, the actual service conditions of rail steel are complex,
and the safety evaluation methods are limited. In this study, the fatigue crack propagation in the
U71MnG rail steel crack tip was analysed by means of the DIC method, focusing on the shielding
effect of the plastic zone at the crack tip. The crack propagation in the steel was analysed based on a
microstructural approach. The results show that the maximum value of stress of the wheel–rail static
contact and rolling contact is in the subsurface of the rail. The test grain size of the material selected
along the L–T direction is smaller than that in the L–S one. Within a unit distance, if the grain size is
smaller, the number of grains or grain boundaries will be greater so that the driving force required for
a crack to pass through the grain boundary barriers will be larger. The Christopher–James–Patterson
(CJP) model can well describe the contour of the plastic zone and can well characterize the influence
of crack tip compatible stress and the crack closure effect on crack propagation under different
stress ratios. The crack growth rate curve at the high-stress ratio is shifted to the left relative to the
low-stress ratio, and the crack growth rate curves obtained under different sampling methods have
good normalization.

Keywords: rail steel; crack tip plastic zone; CJP model; crack closure; crack propagation rate

1. Introduction

With the development of railways and the progress of metallurgical technology, the
structure of rail transit lines faces new challenges in high speed, heavy load, safety and
longevity. As the main component of railway track, the U71MnG rail is used to guide
wheels, bear train load and provide a continuous, smooth and minimum resistance rolling
surface for wheels. In electrified railways or automatic block sections, rails can also be used
as track circuits. Affected by the complex service environment, the fracture failure behavior
of rail is complex, and the existing safety evaluation methods are limited and susceptible to
subjective factors, which may lead to inaccurate evaluation results and threaten operational
safety [1].

For the U71MnG rail material in service, there is a certain range in the plastic defor-
mation zone at the crack tip due to stress concentration after external load. Accurately
characterizing the shape, location and size of the plastic zone at the crack tip can provide
an accurate stress field for the solution of linear elastic fracture mechanics and provide
mechanical analysis for accurately evaluating the crack instability and propagation of rail
steel materials. The traditional linear elastic fracture mechanics uses the stress intensity
factor (SIF) “K” to characterize the driving force of the crack tip. The stress field at the
crack tip is determined by K; the K value is proportional to the strength of the crack tip
stress field [2]. Affected by dislocation, passivation, hardening, crack bifurcation and other
factors, there are many models to characterize the stress field at the crack tip, such as the
Westergaard model, the Williams model, the Muskhelishvili model, the Irwin model, the

Materials 2023, 16, 2981. https://doi.org/10.3390/ma16082981 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16082981
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma16082981
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16082981?type=check_update&version=1


Materials 2023, 16, 2981 2 of 16

Dugdale model, the Elber model, the Christopher–James–Patterson (CJP) model, etc. [3–7],
which have their advantages in characterizing the plastic zone at the crack tip, and the
appropriate model can quantify and separate the various factors affecting fatigue crack
growth (FCG). As a measurement technique that can intuitively characterize the crack stress
field, the photoelastic method can more directly evaluate the influence of crack closure
and wake area on the crack tip stress field and SIF. This method can be used to have a
deeper understanding of the relationship between wake contact force, effective SIF and
specimen flexibility. Based on the Muskhelishvili potential function method, Pacey et al. [8]
established a mathematical model considering the uniform compressive stress between
the crack surfaces and the shear stress on the crack side. The uniform compressive stress
is not an accurate reflection of the contact stress of the crack surface, but it can reflect the
influence of the plastic zone on the elastic zone. The variables included in the optimization
model make the theoretical stress field agree well with the experimental stress field so
that the theoretical model can reflect the influence of the plastic zone and wake zone on
the SIF. The model is first applied to the measurement of the SIF of the artificial sharp
notch, and the results show that the obtained SIF is in good agreement with the theoretical
SIF [9]. Vasco-Olm et al. [10] used 2024-T3 aluminum alloy CT specimens and collected
the displacement field of the loading stage under a certain cycle at the DIC method. The
Westergaard model, the Williams model, the Muskhelishvili model and the CJP model were
used to fit the experimental displacement field to obtain the SIF of each model. The results
show that the SIF of the Westergaard model is the largest difference from the theoretical
solution. The SIF of the Williams model and the Muskhelishvili model are close to the
theoretical solution, while the CJP model is considered to have the ability to evaluate the
crack shielding effect. The fracture toughness can be estimated from the variation of KF
and KR with the external load.

In this paper, the fatigue crack propagation in the U71MnG rail steel is studied. The
local stress and strain state of rail steel is obtained by the finite element method, and the local
service equivalent load environment and boundary condition spectrum are constructed.
The DIC method is used as a test method to solve the crack tip displacement field based on
the CJP model to obtain the SIF of each stage of crack propagation, accurately characterize
the crack propagation behavior of rail steel, and focus on the shielding effect of the plastic
zone at the crack tip, combined with the microstructure analysis results to explain the crack
propagation behavior of rail steel.

2. Wheel–Rail Model Establishment

To determine the location of the experimental sampling and the rationality of the
sampling, the finite element method was used to establish a three-dimensional wheel–rail
rolling contact. The difference between the rail in the static and rolling state of the wheel
was also analysed. The model used a 60 kg/m rail and a LM wear-type tread wheel, the
three-dimensional wheel–rail rolling contact finite element model is shown in Figure 1.
The X-axis is the rail transverse, the Y-axis is the rail longitudinal, and the Z-axis is the rail
vertical coordinate system. The wheel tread and rail profile are both actual sizes, which
are divided by full hexahedral mesh. The nominal rolling circle of the wheel is in contact
with the center line of the rail. The radius of the wheel is 420 mm, the length of the rail is
500 mm, and the center position of the wheel is 50 mm away from the left end of the rail,
which eliminates the influence of the rail boundary conditions on the stress distribution.

The calculation area of wheel–rail contact is a highly nonlinear problem, and it requires
high calculation accuracy. To reduce the sensitivity of the contact area to the mesh size,
only the mesh of the wheel–rail contact area is refined [11], and the minimum size is
1 mm × 1 mm. The finite element calculation of wheel–rail rolling contact is divided into
two stages by using a transient solver. The first stage is the initial contact stage of the wheel–
rail, and the second stage is the rolling contact stage of the wheel–rail. In the first stage,
there is no relative sliding of the wheel. Under loading, the wheel and rail establish static
tight contact. The calculation results of the first stage are used as the initial conditions of



Materials 2023, 16, 2981 3 of 16

the second stage to simulate the wheel rolling along the rail in the positive direction of
Y [12]. The node of the hub hole adopts the cp element to couple the Y direction, the Z
direction and the rotation freedom around the X axis with the wheel center node. The axle
load is 20 t, each wheel is subjected to 100 kN and this loading is added to the wheel center
node. In the whole process of calculation, the left side of the rail constrains the degree of
freedom in the X and Y directions, the right side constrains the degree of freedom in the X
direction and the full constraint at the bottom. In the first stage, the wheel only releases the
degree of freedom in the Z direction. In the second stage, the degree of freedom in the Y
direction and the angle of constraint rotation around the X axis are released.
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Figure 1. Three-dimensional wheel-rail rolling contact finite element model. (a) wheel-rail rolling
contact overall model, (b) local refinement of contact area.

The wheel–rail contact center position is set as the origin, and the rail stress distri-
bution results of the wheel–rail under static contact and rolling contact are obtained. The
distribution of the stress field in the cross section of the two contact states is symmetrical,
as shown in Figure 2. However, in the distribution of the longitudinal section, the static
state is symmetrical, and the rolling state is asymmetrical, as shown in Figure 3. When
the wheel–rail is in static contact, the state near the wheel–rail contact center is mainly
adhesive [13]. The area far away from the contact center will have relative displacement
due to the deformation of the rail. The area of these areas is small, and the contact pressure
is relatively small, resulting in the size and active area of the friction force being small, so
the influence on the stress distribution is small, and the stress distribution of the rail is
symmetrical. In the rolling contact, the wheel–rail mainly produces relative motion in the
longitudinal direction, and the relative motion in the transverse direction has little change
compared with the static contact. Therefore, the stress distribution on the cross section in
the rolling state is still symmetrical. However, the action area of longitudinal friction is
large, which will lead to the phenomenon that the stress distribution in Figure 3 is at the
surface of the rail and shifts towards the back end of the contact area.
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The friction force of the static contact will cause the rail surface stress to become larger
in the relative sliding area. As shown in Figure 4a, the stress at the farther position of the
contact center produces a ‘bulge‘. The friction of the rolling contact will cause the stress in
the contact area to increase compared to the static contact, as shown in Figure 4b. From
Figures 2 and 3, it can be seen that whether it is static contact or rolling contact, the stress
field of the rail is in the distribution of the cross section and the longitudinal section. The
maximum value of the stress under the rolling contact is larger than the maximum value
under the static contact, but the difference in the stress level is not very large, ranging
within 55 MPa. This is because the maximum value of the stress is in the subsurface, the
depth of the friction effect is limited, and the area of the friction effect on the stress is mainly
in the rail surface [14]. In Figures 2 and 3, the stress distribution of the cross section and
the longitudinal section are in the range near the surface, and the rolling contact is greater
than the static contact, which reflects that the friction is mainly in the rail surface area. It
can be seen from Figure 4 that under the action of friction, the maximum value of stress
at the surface under rolling contact is 240 MPa larger than that of static contact, and the
effect of friction is more significant. The stress distribution on the surface under rolling
contact is also shifted to the back end of the contact area compared with the static contact.
In summary, the maximum value stress of the rail in the two contact states occurs in the
subsurface layer. The rolling of the wheel will affect the stress level of the rail surface layer
and the longitudinal stress distribution of the surface layer. Therefore, the sampling of
the test should include the area from the rail surface layer to the subsurface layer, and the
loading method should be along the longitudinal direction of the rail.
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3. Tests and Methods
3.1. Materials and Specimens

The test material is the U71MnG rail steel (China). The compact tension (CT) specimen
was designed according to the ASTM-E647 standard. The experimental study was the
plane stress state, so the thickness of the specimen was equal to 1 mm. Combined with the
simulation results in the second chapter, the sampling method and size of the specimen
are shown in Figure 5. During the actual service of the rail steel, the cracks will propagate
along the L–T and L–S directions; this study can provide a reference for predicting the
residual life of rail steel. The metallographic observation was carried out on the samples
along the L–T and L–S directions in Figure 5. The fine scratches and deformations on
the surface of the specimens were polished, and the polishing effect reached the mirror.
After polishing, the surface of the specimens was immediately corroded with nitric acid
with a volume fraction of 4% to prevent the formation of an oxide film on the polished
surface from affecting the erosion effect. After the corrosion, the specimens were wiped
with alcohol and dried, and the microstructure of the sample surface was observed by an
optical microscope.
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Figure 5a shows the schematic diagram of the specimen processed along different
directions, and Figure 5b shows the geometric size of the specimen. The chemical composi-
tion and basic mechanical properties of the materials are shown in Tables 1 and 2. Before
the test, the specimens in different sampling directions were observed and analyzed by
the bay Olympus BX51M optical microscope (Tokyo, Japan). The surface of the specimen
was polished, the speckle treatment was performed on one side of the specimen surface
and the crack propagation was observed and recorded by an industrial camera (Nreeohy,
Shenzhen, China) on the other side.

Table 1. Mass fraction of chemical composition of U71MnG rail steel.

C Si Mn P S Cr V Al

0.65–0.76 0.15–0.58 0.70–1.20 <0.03 <0.025 - - <0.01

Table 2. U71MnG rail steel mechanical properties parameter table.

Elastic Modulus Ultimate
Tensile Strength Yield Strength Elongation Poisson Ratio

E/MPa σb/MPa σs/MPa δ (%) υ

210,000 ≥880 780 ≥10 0.28

3.2. Fatigue Test

The constant amplitude type I FCG test was carried out on the CT specimen, and the
test was carried out on the E10000 ElectroPuls Instron tension–torsion dynamic testing
machine (London, UK). Figure 6a shows the field test loading device. The specimen was
prefabricated with a length of 2 mm before the test, with the details of the speckle pattern
and the tip radius diagram as shown in Figure 6b. The maximum loading Pmax = 1.1 kN. The
FCG test was carried out under two stress ratios, R = 0.1 and R = 0.3. The loading frequency
was equal to 20 Hz. All FCG tests were carried out at room temperature. During the test,
the industrial camera was used to measure and record the crack length at a specific interval
of cycles. At the same time, a digital image correlation (DIC) device, i.e., Revealer 2D-DIC
(Luoyang, China), was used to obtain the crack tip displacement field data. Referring to
the solution of displacement field parameters, the SIF values of the crack tip are solved by
the CJP model. The field of view of DIC was 4096 pixels × 3000 pixels, and the actual size
of each pixel was 0.007518 mm.
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3.3. Method for Calculating ∆K

Considering the influence of various additional stresses caused by the closure effect,
the CJP model (biaxial stress) provides the displacement field solution equation [11,12], as
shown in Equation (1):

2G(u + iv) = k
[
−2Bz0.5 − 2Ez0.5 ln(z)− C

4 z
]
−

z
[
−(B + 2E)

−
z
−0.5
− E

−
z
−0.5

ln(z)− C
4

]
−[

A
−
z

0.5
+ D

−
z

0.5
ln(z)− 2D

−
z

0.5
+ C

2
−
z
] , (1)

where G is the shear modulus, u and v are the horizontal and vertical displacement fields,
respectively, κ = 3 − 4υ in the plane strain state, κ = (3 − 4υ)/(1 + υ) in the plane stress
state and υ is the Poisson’s ratio. A, B, C, D and E are the coefficients to be solved,
A = −B = K/

√
(8π), C = −T, T is T stress, D and E are the introduced correction terms,

z = reiθ, z is the conjugate complex number of z and the effective crack propagation driving
factor of the CJP model is:

∆KCJP = (KF,max − KR,max)− (KF,min − KR,min) (2)

KF = lim
r→0

√
2πr

[
σy(r, 0) + 2Er−0.5 ln r

]
=

√
π

2
(A− 3B− 8E) (3)

KR = lim
r→0

√
2πr[σx(r,±π)] = −(2π)

3
2 E (4)

KS = lim
r→0

√
2πr

[
σxy(r,±π)

]
= ∓

√
π

2
(A + B) (5)

where KF,max, KR,max and KF,min are KR,min are KF and KR under maximum and minimum
stress, respectively.

4. Results and Discussion
4.1. Microstructure Analysis

In each zone of the rail, the microstructure will be different and will affect the rate
of fatigue crack growth. For each of the samples (L–T or L–S), depending on the crack
length, the crack will grow through different zones of the rail. The metallographic structure
analysis was carried out at the corresponding positions of the crack stable propagation
stage (CSP) and the rapid propagation stage (CRP), as shown in Figure 7. L–T is sampled
on the parallel surface of the rail head, and the metallographic structure is similar, as
shown in Figure 7a–d. L–S samples were taken from the rail head and rail waist. The
metallographic structure of the rail head is shown in Figure 7e,f; the rail waist is shown in
Figure 7g,h. The results of L–T and L–S microstructure analysis show that the grain size of
L–T is smaller than that of L–S. When the microcrack enters another grain from one grain
through the grain boundary, the slip direction of the dislocation and the crack propagation
direction needs to be changed due to the change of grain orientation. Therefore, the smaller
the grain size, the more times the direction needs to be changed in the crack propagation
path, and the greater the energy consumption, that is, the higher the toughness of the
material [13–15].
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The metallographic structure of the U71MnG is mainly composed of pearlite and
ferrite. The content of ferrite and pearlite in L–T specimens remained at the same level
during crack propagation. In the process of crack propagation from the rail head to the rail
waist in L–S specimens, the content of ferrite was increased, and the content of pearlite
was decreased. Ferrite has good plasticity and toughness but low strength and hardness.
Pearlite is a two-phase mechanical mixture of ferrite and cementite. Pearlite has higher
strength and hardness than ferrite. The pearlite content in L–T is significantly higher than
that in L–S, and the crack propagation resistance of the L–T is higher than that of L–S under
the same driving force.

4.2. Crack Tip Plastic Zone Characterization Analysis

The size and area of the plastic zone at the crack tip have an important influence
on the crack growth rate during crack propagation. The CJP model has a good effect on
characterizing the shape and closure effect of the plastic zone at the crack tip because the
CJP model takes into account the influence of plastic-induced shielding [16–19]. In this
study, the CJP model was used to reveal the effect of closure effect on crack growth rate.
In this study, the DIC method is used to obtain the full-field displacement field. In the
Matlab software processing solver (Matlab 2021), the ncorr.m program provided by the
open-source software (Ncorr V1.2) is used to solve the displacement cloud map and obtain
the displacement field data. The strain field is obtained by the full-field strain solution
method based on the two-dimensional Savitaky-Golay digital differentiator, and then the
stress field is solved by the generalized Hooke’s law, and it is substituted into the Von.
Mises yield criterion to obtain the size and shape of the experimental plastic zone. In the
process of obtaining the theoretical plastic zone, the coefficient sets A, B, C and E of the CJP
model need to be obtained. The solution of the coefficient set is very sensitive to the crack
tip position and the size of the calculation area. Yang et al. [20] used the L–M nonlinear
iterative algorithm to iteratively calculate the crack tip position as an unknown number to
avoid the resulting error caused by the inaccuracy of the initial crack tip position. Zhou and
Liu et al. [21] derived the relative error between the Westergard model stress component σy
and the exact solution stress component σ*y in an infinite plate and proposed that the error
is small when the fitting outer diameter is 0.1 times the crack length, and the larger plastic
zone can be up to 0.2 times. Thus, more accurate crack tip field parameters can be obtained.
As shown in Figure 8, the plastic zone boundary is taken as the inner diameter, the plastic
field area is removed, and the fitting outer diameter is selected to be about 0.1 times the
crack length to meet the accuracy requirements. The coefficient sets A, B, C and E are solved
by L–M nonlinear iteration.
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The DIC method has the advantages of a simple optical path, non-contact and full-field
measurement, but it has high requirements for image quality. If there are large noise, blur,
occlusion and other problems in the image, the accuracy and effect of the algorithm will be
affected. The theoretical plastic zone shape can be obtained by using the elastic field data
to obtain the CJP model coefficient set, as shown in Figure 9. The black scatter points in
the figure are the scatter points of the plastic zone measured experimentally, and the red
area is the theoretical plastic zone obtained based on the CJP model. It can be seen from
the figure that the size of the plastic zone increases with the increase of the crack length.
Comparing the size and shape of the theoretical plastic zone and the experimental plastic
zone of the CJP model, the results show that the CJP model can well describe the outline of
the experimental plastic zone and has a good description effect in both sampling directions
and throughout the crack propagation stage. This provides an accurate basis for using the
CJP model to study the crack propagation of U71MnG steel.
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4.3. Characterization of Crack Tip SIF

In the CJP model, KF, KR and KS are the three SIF that characterizes the crack propa-
gation process. KF characterizes the open-type SIF that drives crack propagation. KF and
KI are the SIF that drives crack propagation. KI is the traditional SIF of type I crack. KR
is the SIF corresponding to the stress parallel to the crack propagation direction in the
elastic zone due to the different Poisson ratios between the elastic material and the plastic
material. KS is the SIF corresponding to the shear stress along the crack surface caused by
the elastic–plastic compatible stress. In Figures 10 and 11, the variation trend of the three
SIF with the traditional SIF KI is shown. In the initial stage of crack propagation, the values
of KF, KR and KS remain unchanged, which is because there is no large deformation in the
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initial stage of crack propagation and the crack propagation speed is relatively small. As
the crack propagates, the values of KF, KR and KS change uniformly in a certain direction.
In Figure 10, the KF value corresponding to R = 0.3 is lower in the early stage of crack
propagation, while the propagation curve at R = 0.1 is almost the same as that of traditional
KI. In the later stage of crack propagation, due to the plastic-induced crack closure effect,
the KF is lower than the traditional SIF. Figure 10 well describes the difference between
the crack closure effect and the traditional solution of the crack tip SIF. In Figure 11, KR is
the SIF that hinders crack propagation. At the beginning of crack propagation, the value
changes around 0, and the SIF value at R = 0.1 is higher than the SIF value at R = 0.3. KS
and KR have similar trends, and both KS and KR gradually decrease with crack propagation.
The KR value obtained from this test is different from the previous observation results
of polycarbonate, 2024-T3 aluminium alloy, and industrial pure titanium [22–24]. Taking
industrial pure titanium as an example, the characteristics of industrial pure titanium are
not high strength but good plasticity, which is quite different from the U71MnG rail steel
used in this study, and the differences in microstructure will have a certain impact on KR
and KS values.
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The variation trend of KF, KR, KS and KCJP values with loading at two different crack
lengths is plotted and compared, as shown in Figure 12. The SIF of KF, KR and KS change
slowly with the loading at the initial stage of expansion and change sharply when exceeding
its certain value, which is correlated with the crack opening force. Because the SIF of the
CJP model can better characterize the crack closure phenomenon, it is not necessary to
consider the influence of crack opening SIF (Kop). KCJP is a SIF considering the driving
force and hindrance force of crack propagation. The value is obtained based on the CJP
model, which can well characterize the plastic-induced crack closure effect and ensure
accuracy [10,15,25,26].
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Figure 12. SIF of (a) KF, (b) KR, (c) KS, and (d) KCJP change with load P (In the legend, 1 and 2
represent different crack lengths, respectively. Under the condition of R = 0.1, 1 and 2 represent crack
lengths of 32.756 mm and 33.940 mm, respectively. Under the condition of R = 0.3, 1 and 2 represent
crack lengths of 32.037 mm and 33.513 mm, respectively).
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By analyzing the data in Figure 12, the KCJP value and the traditional KI value show a
linear growth trend, and the KCJP value obtained by the high-stress ratio solution under
the same crack length is smaller. Combined with the analysis of the relationship between
the plastic zone area and ∆KCJP in Section 4.2, the existence of residual compressive stress
in the plastic zone at the crack tip makes the SIF value that drives crack propagation’s need
to consume some energy to neutralize the influence of residual compressive stress, which
indirectly leads to the decrease of crack propagation rate.

Figure 13 shows the variation trend of the SIF ∆KCJP with the crack length a. The
results obtained based on the CJP model are lower than the typical values. This is because
there is a plastic effect at the crack tip during the entire crack propagation stage, so ∆KCJP
is lower than the traditional ∆KI, which reflects the elastic-plastic-induced shielding force
of the CJP model. The calculated ∆KCJP under a high-stress ratio is smaller than that under
a low-stress ratio and is quite different from the traditional ∆KI.
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4.4. Crack Growth Rate

This study explores the influence of different specimen directions and different stress
ratios on the crack growth rate of rail steel materials, as shown in Figure 14a shows the
crack growth rate curves under two stress ratios. The results show that the crack growth
rate is greatly affected by the stress ratio. At high-stress ratios, the crack growth rate
curve with R = 0.3 is shifted to the left compared with R = 0.1. The results of Ostashin et al.
are consistent with the results of this paper, which believed that the cyclic crack growth
resistance of steel decreases for high loading amplitudes as the load ratio increases [27].
In addition, Ostashin et al also study different parameters used for the construction of
the diagrams of fatigue crack-growth rate, and the crack-tip opening displacement and
local strain energy are more sensitive to the structural and mechanical characteristics of the
materials than the ordinary da/dN−∆K diagrams [28]. In Figure 14b, the crack propagation
rate of the specimen along the L-S direction is slightly higher than that in the L-T direction
under the same stress ratio. There are differences in the grain size of the metallographic
structure sampled in different directions. Under the same crack propagation distance,
the energy consumed by the crack to expand to the vicinity of the grain boundary in the
specimen with a smaller grain size is higher than that in the sample with a larger grain size.
Therefore, the crack propagation rate in Figure 14b is different, which also leads to different
cycles in the crack propagation process.
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The data in the analysis chart can also be found that the crack growth rate curve
shows good normalization and a good linear effect. It is worth mentioning that the driving
parameter ∆KCJP expressed by the CJP model does not need to be corrected. This is because
the CJP model takes into account the influence of plastic-induced shielding, which can
directly reflect the displacement state during crack propagation, avoiding the deviation
of the traditional SIF range from the real results under high plasticity. In the previous
work [29,30], the CJP model effectively reflects the distribution of experimental data and
has a good fitting effect. Compared with the traditional parameter ∆K, ∆KCJP is directly
solved by the crack tip displacement field and can be used to describe the fatigue crack
growth rate of materials without correction.

5. Conclusions

Based on the results of finite element simulation, combined with the DIC method and
microstructure analysis, this study describes the crack propagation in the U71MnG rail
steel under different stress ratios and different orientations of specimens based on the CJP
model. The results are as follows:

1. The maximum value of stress of the wheel–rail static contact and rolling contact is in
the subsurface of the rail, the stress level of the rail in the rolling contact state is higher
than that in the static contact state and the stress distribution of the longitudinal
surface layer of the rail changes under the influence of wheel rolling, which lays a
foundation for the sampling and loading method of the rail fatigue test and verifies
the rationality of the test.

2. The grain size in the L–T direction is smaller than that in the L–S direction. The finer
the grain, the more times the direction needs to be changed in the crack propagation
path, the greater the energy consumption and the lower the crack propagation rate.

3. The CJP model can well describe the contour of the experimental plastic zone. The
CJP model can well characterize the influence of the crack tip compatible stress and
crack closure effect on crack propagation under different stress ratios.

4. The crack growth rate curve under the high-stress ratio moves to the left relative
to the low-stress ratio, and the difference in grain size leads to the similarities and
differences in crack growth rate.
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