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Abstract: This article presents the results of an analysis of the bending load characteristics and the
springback phenomenon occurring during three-point bending of 1.0 and 2.0 mm thick AW-2024
aluminium alloy sheets with rolled AW-1050A cladding. A new proprietary equation was proposed
for determining the bending angle as a function of deflection, which takes into account the influence
of the tool radius and the sheet thickness. The experimentally determined springback and bending
load characteristics were compared with the results of numerical modelling using different models:
Model I, a 2D model for a plane deformation state, disregarding the material properties of the clad
layers; Model II, a 2D model for a plane deformation state, taking into account the material properties
of the cladding layers; Model III, a 3D shell model with the Huber–von Mises isotropic plasticity
condition; Model IV, a 3D shell model with the Hill anisotropic plasticity condition; and Model V,
a 3D shell model with the Barlat anisotropic plasticity condition. The effectiveness of these five
tested FEM models in predicting the bending load and springback characteristics was demonstrated.
Model II was the most effective in predicting bending load, while Model III was the most effective in
predicting the amount of springback after bending.

Keywords: three-point air bending; bending load; springback; clad sheet metal

1. Introduction

In many industries, especially in aviation and automotive production, the selection
of material is based on the ratio of its density to strength [1]. In the aviation industry,
the materials used for aircraft coatings are high-strength aluminium alloys; however,
the disadvantage of these materials is their low corrosion resistance. Corrosion damage
occurring during operation is a serious threat, especially for aging aluminium aircraft
structures [2,3]. A way to improve the corrosion resistance of the materials is to apply
protective coatings made of corrosion-resistant materials. In the case of high-strength
aluminium alloy sheets, technically pure aluminium is used as a material for coatings, and
applied on both sides of the parent material in the rolling process [4].

Bending is one of the processes of shaping sheet metal elements with unfolded sur-
faces. Regardless of the bending method and operation used, three basic stages can be
distinguished in this process, i.e., elastic bending, plastic bending and springback. One
of the features determining the quality of bent elements is their dimensional and shape
accuracy. Due to this reason, the main problem during the analysis and design of this
process is the determination of the amount of springback of the material after bending and
the bending load.

An analysis of the bending process can be carried out with the use of analytical,
experimental and numerical methods. The springback value is most often determined
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by the dimensionless springback factor, K. This factor is calculated as the quotient of
the bending radius under load, ρg, and the bending radius after unloading, ρs, or as the
quotient of the bending angle after unloading, γs, and the bending angle under load, γg
(Figure 1).

K =
γs
γg

=
ρg

ρs
(1)

where:

γg and γs—band deflection angles under load and after springback, respectively,
ρg and ρs—band radii under load and after springback, respectively.

Figure 1. The shape of a bent sample: (A) under load and (B) after unloading.

Knowing the value of this factor for specific bending cases enables calculating the
radius or angle that should be used during bending in order to obtain a product of the
desired shape after bending. In other words, it makes it possible to eliminate or at least
minimize the adverse effects of the springback phenomenon after bending in the process
and technological equipment design stage. On the other hand, the knowledge of the course
and values of the bending load of components is necessary when designing dies and tools,
as well as in the selection of bending presses.

Depending on the accuracy of the results of the analysis of the bending process in
the design stage, in engineering practice, the correction of the shape of prototype bending
tools specified in the design is often performed by trial and error, with the number of
trials decreasing as the accuracy of the calculation result increases. From this aspect, it is
extremely important not only to know the computational methods used in this area, but
also the potential of these methods and their effectiveness depending on the models used
and the degree of inclusion in these models of factors influencing the analysed parameters
of the analysed process.

In the scientific literature, one can find many works devoted to analyses of the sheet
bending process, including the process force parameters and sheet springback for various
materials, taking into account various models of strain hardening, various plasticity condi-
tions, changes in the value of Young’s modulus, the Bauschinger effect and others. Various
approaches have been used to solve the issues under consideration, e.g., analytical [5,6]
and numerical [7,8], as well as using neural networks [9]. In most numerical calculations
related to the bending process, both implicit and explicit methods are used using com-
mercial software. Much less information is available on the effect of cladding layers in
predicting the springback or bending load of clad plates. One can find only the results
of research on bending of laminated (double layer) sheets, conducted mainly in terms of
determining the impact of the thickness of individual layers on the value of the bending
load and springback [10] or determining the bendability limit of such materials [11,12].
However, there are no studies available on clad (three-layer) sheets, which is the subject of
this study. In a study on the analysis of the bending process of double clad (three-layer)
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Cu/Al/Cu sheets [13], the focus was mainly on determining the cohesion of individual
layers after deformation.

This paper presents the results of experimental research and numerical analyses of
the three-point air bending process of AW-2024 aluminium alloy with rolled AW-1050A
cladding for anti-corrosion protection which, which, among others, is used to make the
outer plating of aircraft structures. The bending load and springback characteristics de-
termined experimentally were compared with those obtained in the process of numerical
modelling with the use of various plasticity conditions.

2. Material and Experimental Procedure

The tests were carried out with the use of AW-2024 aluminium alloy sheets with
the thicknesses of 1.0 and 2.0 mm used as-received, i.e., after softening annealing. The
chemical composition of the tested sheet material is presented in Table 1. The thickness of
the clad layers applied on both sides was 50 µm for a 1.0 mm sheet and 55 µm for a 2.0 mm
sheet (Figure 2), which corresponds to 10.0% and 5.5% of the sheet thickness, respectively.
The rolled AW-1050A cladding layer closely adheres to the AW-2024 sheet material, with
no visible transition zones. From the supplied sheets, samples were taken for uniaxial
stretching in the 0◦, 45◦ and 90◦ directions according to the rolling direction of the sheets.
The shape and dimensions of samples for testing in accordance with ISO 6892-1 are shown
in Figure 3.

Table 1. Chemical composition of tested sheet material [14].

Si Fe Cu Mn Mg Cr Zn Ti Zr + Ti
Others Aluminium

Min.Each Total

≤0.5 ≤0.5 3.8–4.9 0.3–0.9 1.2–1.8 ≤0.1 ≤0.25 ≤0.15 ≤0.2 0.05 0.15 Remainder

Figure 2. The microstructure of the tested sheets in the cross-section of sheets with a thickness of
1.0 mm (left) and 2.0 mm (right). CL—cladding layer, BM—base material.

Figure 3. Shape and dimensions of test specimens in mm.

Quasi-static uniaxial tensile tests of individual samples were carried out on a Zwick/
Roell Z030 testing machine by measuring the elongation and change in the sample width
using a multi extensometer. Three test samples were taken for each of the rolling directions,
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resulting in nine samples in total for each of the tested sheets. Tensile (and bending)
tests were carried out at the room temperature of 293 K. The tensile speed of the samples
was 30 mm/min. On the basis of the results of these tests, strain hardening curves were
developed. They were used to determine the material parameters for the four models of the
strain hardening curve described later in this work and presented in Section 4. The plastic
anisotropy factor, r, was determined on the basis of the relationship between the width
strain and thickness strain in the whole range of straining using the method proposed by
Welch et al. [15]. For both the 1.0 mm thick sheet and the 2.0 mm thick sheet, the value of
the yield strength of the base material was more than twice as high as the yield strength of
the cladding material, while the value of the normal anisotropy of the cladding material
was much higher than the value of this parameter for the base material (Table 2).

Table 2. Selected material parameters of the tested sheet material.

Direction
of Sampling

Yield Stress
σp0.2, MPa

Lankford Normal Anisotropy Coefficient
r

Sheet
1.0 mm

Sheet
2.0 mm

Clad
Material

Sheet
1.0 mm

Sheet
2.0 mm

Clad
Material

0 66.89 74.89 28.92 0.728 0.679 1.03
45 63.43 72.09 30.07 0.674 0.728 0.79
90 64.73 72.95 31.22 0.581 0.678 1.24

Mean value 64.62 73.01 30.07 0.664 0.703 0.96

For practical reasons, the curves of strain hardening are presented in the form of
constitutive equations of the so-called function of flow stress. Such equations were used,
among others, for the analysis and simulation of cold forming processes at relatively low
strain rates, when their influence on the flow stress can be neglected. In this paper, four
models of flow stress of various complexity levels were selected to describe the course of
the material strain hardening of the tested sheet:

- Hollomon [16]:

σp
(
εp

)
= K1ε

n1
p (2)

- Swift [17]:

σp
(
εp

)
= K2(ε0 + εp)

n2 (3)

- Voce [18]:

σp
(
εp

)
= A3 + K3

(
1− exp(−n3εp

)
) (4)

- El-Magd [19]:

σp
(
εp

)
= A4 + B4εp + K4

(
1− exp(−n4εp

)
) (5)

where σp—flow stress, εp—equivalent plastic strain, K1–K4, A3, A4, B4, ε0 and n1–n4—material
constants determined experimentally.

The Hollomon model, which is the simplest and most often used in engineering, is
the strain hardening model, and provides a good description of the hardening curve in
a wide range of deformations, which is why it is commonly used in modelling plastic
forming processes, especially those with large deformations, such as forging, extrusion,
punching, etc. The Swift model, similar to the Hollomon model, due to its versatility but
also greater accuracy in the description of the initial course of the strain hardening curve, is
very often used in the numerical modelling of a wide range of plastic forming processes in
the field of small and large deformations. The Voce model is also often used to describe the
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course of the strain hardening curve, which, similar to the Swift model, requires knowledge
of three material constants. The most complex of the selected models is the Voce model,
extended with an additional linear component, and its use requires determination of as
many as four material constants. In the literature, the El-Magd model is also referred to as
the extended Voce model [20].

Bending specimens that were 40 mm wide and 100 mm long were taken parallel to
the rolling direction. Experimental bending tests were carried out on a Zwick/Roell Z030
testing machine in a three-point tool system with the same radii (r = 5 mm) (Figure 4). For
each of the tested sheets, the curves of the bending load as a function of the deflection arrow
of the samples were determined in a one load cycle in the range of the deflection arrow
(0–20 mm) and in eight load cycles for the deflection, which were successively under load
(2, 4, 6, 8, 11, 14, 17 and 20 mm). Then, based on the experimental data, the numerical values
of the deflection arrow of the sample after unloading in subsequent bending cycles were
determined. The values of the bending angle and the springback angle in subsequent cycles
were calculated, together with numerical values of the springback factor corresponding to
these cycles.

Figure 4. A photograph of a bent sample.

To calculate the bending angles, γg, and springback, γs, in individual bending cycles,
Equations (6) and (7), respectively, are most often used. However, these formulas do not
take into account the radii of the bending tools and the thickness of the bent strand [9].

γg = arctg
(

fg

w

)
(6)

γs = arctg
(

fs

w

)
(7)

where

• fg and fs—band deflection arrows under load and after unloading,
• w—spacing of external bending rollers.

Simultaneously, it can be observed that as the deflection arrow grows, the location of
the contact point of the sample with the surface of the shaping tools changes (Figure 5),
which has a decisive impact on the value of the calculated bending angle (Figure 5a) and
springback angle (Figure 5b). Therefore, original formulas were proposed for calculating
the angle of bending (Equation (8)) and springback angle (Equation (9)), which take into
account the observed phenomenon and also consider the influence of the thickness of
the band:

γg = arctg
(

2fg

w−Afg

)
(8)

γs = arctg
(

2fs

w−Afs

)
(9)
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where A—dimensionless coefficient depending on the thinness coefficient, t/r, and the size
of the spacing of the external bending rollers, w. The value of parameter A was determined
on the basis of geometrical relationships using the least squares method with the use of the
Logger Pro program. The data used to determine the value of coefficient A for w = 50 mm
and w = 100 mm are shown in Tables 3 and 4, respectively. The values of the angles
γg3 or γs3 for individual deflection arrows fg or fs, respectively, were determined using
CAD software.

Figure 5. The influence of the geometrical parameters of the model on the value of the bending angle
under load, γg, (a) and the bending angle after unloading, γs, (b). γg1 and γs1— bending angles
without taking into account tool radii and sheet thickness, calculated from Equations (6) and (7),
γg2 and γs2—bending angles taking into account tool radii without taking into account the sheet
thickness, γg3 and γs3—bending angles taking into account tool radii and sheet thickness, calculated
from Equations (8) and (9).

Table 3. Data for determining the coefficient A for w = 50 mm.

fg or fs
mm

γg3 or γs3, rad

t/r

0.1 0.16 0.2 0.4

0 0 0 0 0
2 0.0812 0.0812 0.0813 0.0814
4 0.1643 0.1644 0.1646 0.1651
6 0.2481 0.2485 0.2488 0.2501
8 0.3315 0.3323 0.3327 0.3351
11 0.4534 0.4548 0.4557 0.4602
14 0.5682 0.5702 0.5716 0.5787
17 0.6731 0.6759 0.6777 0.6875
20 0.7667 0.7701 0.7725 0.7845

A 0.4304 0.4446 0.4541 0.5025

RMSE 8.2 × 10−4 8.4 × 10−4 8.4 × 10−4 7.6 × 10−4
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Table 4. Data for determining the coefficient A for w = 100 mm.

fg or fs
mm

γg3 or γs3, rad

t/r

0.1 0.16 0.2 0.4

0 0 0 0 0
2 0.0402 0.0402 0.0402 0.0402
4 0.0805 0.0805 0.0806 0.0806
6 0.1210 0.1210 0.1211 0.1212
8 0.1614 0.1614 0.1615 0.1617
11 0.2216 0.2217 0.2218 0.2223
14 0.2810 0.2812 0.2814 0.2821
17 0.3391 0.3394 0.3397 0.3408
20 0.3956 0.3961 0.3964 0.3979

A 0.2119 0.2178 0.2225 0.2421

RMSE 5.1 × 10−6 2.6 × 10−5 4.3 × 10−5 2.6 × 10−5

The dependence of the value of coefficient A on the value of the ratio of the sheet
thickness to the radius of the bending rollers, t/r, is more greatly emphasised with the
smaller spacing of the external bending rollers (Figure 6).

Figure 6. Dependence of the value of coefficient A on the t/r ratio and the size of the spacing of the
external bending rollers, w.

3. Numerical Modelling

An analysis of the bending process was performed with the use of a nonlinear FEM
and the commercial MSC.MARC/Mentat 2020 software. The aim of this analysis was
to determine the influence of five various variants of FEM models on the effectiveness
of forecasting the springback value and the bending load of clad sheets. The numerical
models were developed based on the experiments, taking into account the dimensions
of samples and tools as well as the pattern of loading the samples during bending. In
all models, the deformed strand of material was defined as a deformable body and the
tools of the bending device were defined as perfectly rigid bodies. The friction model was
described by Coulomb’s law. The friction coefficient between the sample material and the
tools was 0.23 [21]. The El-Magd model [19] was used to describe the course of the strain
hardening curves in all numerical models. The evolution of the surface of plasticity as a
result of the phenomenon of strain hardening was described using the isotropic model.
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In the calculations, the associated law of plastic flow of Prandtl–Reuss and the implicit
scheme of integration of differential equations over time with the Newton–Raphson method
were used.

The simulations of the bending process were carried out with the use of two 2D
numerical models (Figure 7) and three 3D shell models (Figure 8): model I—a 2D model
analysed in a plane deformation state disregarding the material properties of the clad
layers (Figure 7, left), model II—a 2D model analysed in a plane deformation state taking
into account the material properties of the clad layers (Figure 7, right), model III—a 3D
shell model with the Huber–von Mises isotropic plasticity condition, model IV—a 3D shell
model with the Hill anisotropic plasticity condition, V model—a 3D shell model with the
Barlat anisotropic plasticity condition. For model II, rigid connections between the cladding
and the base material were assumed. The cladding material properties were defined for
the outer layers of the mesh. For models III–V, due to the inability to use shell elements
in tasks requiring two-sided contact [22], the different material properties of the cladding
layers over the sheet were not taken into account. The process of unloading the sample was
modelled by switching off the contact between the sample and the bending punch, which
caused springback to occur.

Figure 7. Numerical models of the bending process: sample 2D model (top), Model I without
considering the material properties of the clad layers (bottom left), Model II taking into account the
material properties of the clad layers (bottom right).

Figure 8. Sample 3D shell model: (a) FE mesh, (b) under load, and (c) unloaded.
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For the discretization of the deformable body in 2D models, quad 4 type 11 elements
were used. Element type 11 is a four-node, isoparametric, arbitrary quadrilateral written
for plane strain applications. For these elements, a modified interpolation scheme was used
to improve the bending characteristics of the elements. This allows the ability to capture
pure bending using a single element through the thickness. This substantially improves the
accuracy of the solution, although the stiffness assembly computational costs increase [22].
The finite element meshes in model I and model II were the same. Four hundred finite
elements were used along the length and nine finite elements were used in the thickness of
the bent sample (Figure 7). The isotropic Huber–von Mises plasticity condition was used
in 2D models. In contrast to discretization of the deformable body in the 3D shell models,
4-node quad 4 bilinear elements of type 75 were used in the formula, considering the effects
of transverse shear and improving the behaviour of the shell elements during bending [20].
For these shell elements, the number of integration points on the thickness was 11. The
finite element meshes in all 3D shell models were the same (Figure 8a). The size of the
mesh elements was 1 mm in the width and length of the bent sample. Additionally, the
finite element mesh along the length of the bent specimen in the areas of contact with the
tools was densified and amounted to 0.5 mm. Ultimately, each of the 3D shell models
consisted of 5120 finite elements. In order to make the results of numerical calculations
independent of the mesh size of bodies modelled as deformable, during the development
of the FEM model, the influence of the finite element ship size was analysed by densifying
the mesh. After each compaction of the mesh, the bending load course was compared
with the course of this force obtained with the use of the mesh before refinement. In this
way, the nets were compacted until their further compaction had no greater impact on the
compared parameter. The material parameters used to calculate the required coefficients
in the Hill [23] and Barlat [24] models are shown in Table 1. Additionally, the value of the
exponent m in the Barlat equation was assumed to be m = 8 [24].

4. Results and Discussion

In order to describe the material properties of a deformable sheet, an elastic plastic
material model with nonlinear strain hardening was adopted. The material parameters of
the tested sheets and clad layer were determined experimentally based on a uniaxial tensile
test for four models of strain hardening. The material constants in Equations (2)–(5) were
determined for the individual strain hardening curves using the least squares method by
applying the Logger Pro program. The degree of matching of the individual equations of
the strain hardening curve to its course obtained during the tensile test was assessed using
the Bf index, which was calculated by relating the root mean square error, RMSE, to the
mean feature level of σp:

Bf =
RMSE(
σp

)
av

100% (10)

The values of material parameters in models (2)–(5) and the values of the fit error
(Table 2) ware calculated as the average of the three sample orientations with respect to the
rolling direction from the formula:

Xav =
(X0 + 2X45 + X90)

4
(11)

where X—the value of selected material parameter, the subscripts denote the orientation of
the specimen with respect to the rolling direction of the sheet.

A comparison of the values of errors in fitting the strain hardening curves with the use
of individual constitutive models shows that the El-Magd model was the best for both the
sheet material and the clad layer material (Table 5). For example, for a 1.0 mm thick sheet,
the error of fit with the El-Magd model was approximately 5 times smaller than for the
Hollomon model and approximately 4 times smaller than for the Swift and Voce models.
Even greater differences were found in the case of the 2.0 mm thick sheet metal. The best
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degree of fit of the El-Magd model to the results of the experiment in the entire range of
sample elongation is also documented in Figure 9. Additionally, it should be noted that the
degree of matching of individual Equations (2)–(5) was estimated for the range of tensile
test deformation was close to the range of deformations observed in the bending process.

Table 5. The results of the evaluation of the error of fitting the individual Equations (2)–(5) of the
strain hardening curves to the course of the experimental curve.

Strain
Hardening

Curve
Model

Designation
of Material
Constants

Average Values from Three Directions (0◦, 45◦ and 90◦)
1.0 mm Sheet 2.0 mm Sheet Cladding Material

Value of the
Constants

Fit Error
Bf, %

Value of the
Constants

Fit Error
Bf, %

Value of the
Constants

Fit Error
Bf, %

Hollomon
K1, MPa 325.78

2.725
352.99

3.375
114.6

1.138n1 0.268 0.256 0.225

Swift
K2, MPa 310.3

2.032
332.42

2.571
115.5

0.845ε0 0.00090 0.00059 0.00320
n2(t) 0.244 0.23 0.2329

Voce
A3, MPa 71.01

2.042
76.85

1.803
34.98

2.933K3, MPa 122.12 123.22 51.56
n3 23.31 32.17 10.76

El-Magd

A4, MPa 66.47

0.519

72.22

0.240

31.60

0.464
B4, MPa 277.15 301.32 95.12
K4, MPa 84.83 92.31 28.61

n4 42.00 52.26 33.84

Figure 9. The degree of fitting of the experimental strain hardening curve for a 1 mm thick sheet in
the direction 0◦ using Equations (2)–(5).

In order to assess the validity of introducing the relationships (8) and (9) to determine
the sample deflection angles, a comparison of the values of the deflection angles measured
for the samples after springback, γs, with the results of the angles calculated based on
the deflection arrow value was conducted. On the basis of the obtained characteristics
(Figure 10), it can be seen that the values of the bending angles calculated with the use of
Equation (9) are definitely closer to the values determined by the measurements than those
calculated using Equation (7), especially for larger deflection values of the samples.
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Figure 10. Comparison of the measured values of the sample deflection angle with the results of
calculations according to Equations (7) and (9).

As mentioned earlier, in order to determine the dependence of the bending load on the
deflection value, tests were carried out according to two schemes: multi-cycle bending with
sample unloading and single-cycle bending. It is worth noting here that during bending,
the surface of the samples did not reveal any changes that could be caused by damage to
the clad layer. Based on the bending characteristics obtained (Figure 11), it can be seen that
for both sheet thicknesses, the curves of single-cycle and multi-cycle bending practically
coincide with each other. Such bending characteristics can be useful in fairly common cases
when to obtain the desired curvature of the finished product it is necessary to re-bend
it to compensate for springback. The numerical values of the band deflection arrows fg
and fs both in the experiment and in the modelling were determined on the basis of the
measurement points of the bending characteristics for eight load cycles of the sample. The
method of reading the band deflection arrows fg and fs for the example of the second load
cycle of the sample is shown for the load characteristic in Figure 11. The values of deflection
arrows fg and fs determined experimentally and calculated from individual numerical
models are presented in Table 6 for a sheet of 1 mm thickness and Table 7 for sheet metal of
2 mm thickness.

Figure 11. Characteristics of the bending load as a function of the deflection arrow for one load cycle
(blue line) and eight load cycles (pink line), for the example of a 1.0 mm thick plate.



Materials 2023, 16, 2945 12 of 16

Table 6. Experimental and calculated values of the deflection arrow fs for given values of fg for a
1 mm thick sheet.

fg
mm

fs, mm

Experiment
Numerical Model Designation

I II III IV V

2 1.251 1.298 1.347 1.291 1.311 1.319
4 3.080 3.150 3.201 3.126 3.151 3.162
6 4.939 5.025 5.079 5.012 5.043 5.056
8 6.800 6.903 6.962 6.887 6.925 6.941

11 9.553 9.689 9.754 9.669 9.713 9.731
14 12.259 12.418 12.494 12.394 12.449 12.471
17 14.870 15.059 15.140 15.029 15.094 15.119
20 17.359 17.594 17.700 17.558 17.637 17.677

Table 7. Experimental and calculated values of the deflection arrow fs for given values of fg for a
2 mm thick sheet.

fg
mm

fs, mm

Experiment
Numerical Model Designation

I II III IV V

2 1.444 1.504 1.512 1.493 1.501 1.513
4 3.301 3.399 3.405 3.387 3.396 3.415
6 5.205 5.317 5.326 5.297 5.311 5.330
8 7.103 7.243 7.252 7.217 7.233 7.255

11 9.956 10.114 10.121 10.086 10.105 10.131
14 12.758 12.947 12.955 12.904 12.928 12.959
17 15.520 15.723 15.733 15.673 15.701 15.739
20 18.166 18.411 18.436 18.355 18.392 18.440

On the basis of the conducted research, the influence of the investigated numerical
models on the effectiveness of prediction of springback and the course of the bending
load characteristics was determined. Graphs (Figures 12 and 13) show the bending load
courses determined experimentally and calculated for the five numerical models tested,
respectively, for sheets with thicknesses of 1.0 and 2.0 mm. These results indicate that the
bending load characteristic determined numerically with the use of model II is the closest
to the bending load characteristic determined experimentally. In order to estimate which of
the proposed numerical models I–V is most useful for determining the value of the bending
load, the relative error value of the maximum bending load was determined based on
measurements and numerical calculations according to the relationship:

Br =
|XEXP − XFEM|
|XEXP|

100% (12)

where XEXP and XFEM are the maximum values of the analysed parameter determined
experimentally and numerically, respectively, with the use of various constitutive equations.
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Figure 12. Experimentally and numerically calculated courses of the bending load as a function of
the deflection arrow for a 1.0 mm thick sheet.

Figure 13. Experimentally and numerically calculated courses of the bending load as a function of
the deflection arrow for a 2.0 mm thick sheet.

In the case of both tested sheets, the best agreement of the numerical modelling results
with the results of experimental measurements was found for model II, which takes into
account the presence of the cladding layers (Figure 14). The observed higher values of
determined error for the sheet with a thickness of 1.0 mm according to all applied numerical
models result from the fact that for this sheet the percentage of cladding layer thickness is
almost twice as high as for the sheet with a thickness of 2.0 mm.

Figure 14. Comparison of the relative calculation error of the maximum bending load for the tested
sheets depending on the numerical models used.

On the basis of the measurement of the amount of elastic deformation of the tested
samples, the springback characteristics were determined. The springback characteristics
are presented as the dependence of the springback factor, K, on the relative deflection, w/fg
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(w—distance between supports and fg—deflection arrow under load). In the case of both
tested sheets, we obtained linear relationships with a high degree of correlation (Figure 15).

Figure 15. Experimental springback characteristics of the tested sheets.

The next step in the research was to determine which of the analysed numerical models
correlated best with the results of the experimental measurements. To assess the correctness
of the models used, the value of the relative error determined according to Equation (12)
was used, as in the case of the bending load. In the case of springback characteristics,
Model III (3D shell model with the Huber–von Mises isotropic plasticity condition) can
be considered as the best numerical model (Figure 16). The values of the relative error for
the entire range of bending curvatures of the 1.0 mm thick sheet metal ranged from 0.96 to
3.24%, while for the 2.0 mm sheet it ranged from 0.87 to 3.44%. The numerical model II
(which takes into account the presence of the cladding layers), which gave the best degree
of fit to the experimental results in the case of the bending load, showed a slightly lower
fit in the case of springback characteristics, but the relative error values were still within
the acceptable range. For this model, the values of the relative error for the entire range of
bending curvatures of the 1.0 mm thick sheet metal ranged from 1.54 to 5.49%, while for
the 2.0 mm sheet it ranged from 1.25 to 4.77%.

Figure 16. The values of the relative error in the calculation of the springback factor, K, of a 2.0 mm
thick sheet depending on the quotient (w/fg) for the tested FEM models.

5. Conclusions

This work presents the results of an analysis of the bending load and the springback
phenomenon observed during elastic plastic cold shaping of AW-2024 aluminium alloy with
AW-1050A aluminium cladding. The main conclusions of this work can be summarized
as follows:
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- Among the four popular models of yield stress, the El-Magd model proved to be the
most suitable for describing the course of the material hardening curve of the tested
sheets, for which the average error of the curve fitting was approx. 0.5%, while for the
Hollomon model it was about 3%.

- Among the five numerical models tested, Model II, taking into account the cladding
layer, turned out to be the most effective in forecasting the bending load, for which
the relative error value was below 1% regardless of the tested sheet.

- For all the tested models, a significant influence of the ratio of the thickness of the
cladding layer to the thickness of the sheet on the accuracy of the calculated bending
load was found. With the increase in the proportion of the cladding layer in the sheet
thickness, the accuracy of bending load prediction decreases. In the tested case, an
increase in the thickness of the cladding layer from 5.5% to 10% of the sheet thickness
resulted in an approximately two-fold increase in the relative error of the maximum
bending load for all models, except for Model V, where the increase was approximately
four-fold.

- The developed method for calculating the bending angle on the basis of the deflection
arrow is much more accurate than the previously known one, as it additionally takes
into account the influence of the tool radii and the thickness of the bent strand on the
bending angle value.

- Out of all the numerical models tested, Model III turned out to be the most effective in
predicting the amount of springback after bending.
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