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Abstract: Ultrafine Polyvinyl alcohol (PVA) fibers have an outstanding potential in various appli-
cations, especially in absorbing fields. In this manuscript, an electrostatic-field-assisted centrifugal
spinning system was designed to improve the production efficiency of ultrafine PVA fibers from
PVA aqueous solution for NH3 adsorption. It was established that the fiber production efficiency
using this self-designed system could be about 1000 times higher over traditional electrospinning
system. The produced PVA fibers establish high morphology homogeneity. The impact of processing
variables of the constructed spinning system including rotation speed, needle size, liquid feeding rate,
and voltage on fiber morphology and diameter was systematically investigated by SEM studies. To
acquire homogeneous ultrafine PVA fiber membranes, the orthogonal experiment was also conducted
to optimize the spinning process parameters. The impact weight of different studied parameters on
the spinning performance was thus provided. The experimental results showed that the morphology
of micro/nano-fibers can be well controlled by adjusting the spinning process parameters. Ultrafine
PVA fibers with the diameter of 2.55 µm were successfully obtained applying the parameters, includ-
ing rotation speed (6500 rpm), needle size (0.51 mm), feeding rate (3000 mL h−1), and voltage (20 kV).
Furthermore, the obtained ultrafine PVA fiber mat was demonstrated to be capable of selectively ad-
sorbing NH3 gas relative to CO2, thus making it promising for NH3 storage and other environmental
purification applications.

Keywords: ultrafine fiber; electrostatic-field-assisted centrifugal spinning; polyvinyl alcohol (PVA);
highly efficient production; orthogonal experiment

1. Introduction

Micro/nano-fibers have been widely used in a wide range of applications, due to their
very promising characteristics of large specific surface area, selective permeability, and
surface adsorption properties [1]. As a kind of water-soluble polymer with biodegradability,
biocompatibility, and nontoxicity, polyvinyl alcohol (PVA) possesses very good chemical
and thermal stability with a broad spectrum of applications [2]. PVA is also a very excellent
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candidate to fabricate micro/nano-fibers with the highest ultimate strength and modulus in
theory. Such a unique property makes PVA adaptive for various spinning methods, such as
phase separation [3], self-assembly, template synthesis [4], drawing [5], and electrospinning
(ES). The ES method has been widely used because of its advantages including: simple
preparation technology, good tenability, and strong technical combination [6]. Although the
ES system is considered the most effective and versatile technique for producing fibers with
nanoscale diameters, there are evident limitations for such a system. For instance, many
polymers applied for electrospinning are dissolved in highly toxic chlorinated or fluorinated
solvents, thus making the electrospinning process environmentally unamiable [7,8]. A high
electrostatic field is usually required to facilitate the conventional fiber production, thus
generating high costs and safety issues [9]. Moreover, the electrospinning process is rather
inefficient, with solution feeding rates of as small as 1 mL h−1 [10–12]. All these crucial
limitations cause the commercial applicability of electrospun fibers to be restrained [13].

Alternatively, centrifugal spinning (CS) is a low-cost process that does not require a
high voltage supply, thus holding a high potential for industrial scaling [14,15]. CS is a
simple and controllable process that uses centrifugal forces to create fibers, imitating the
cotton candy production principle [15–19]. The spinning fluid is placed inside a rotating
spinneret. During the rotation of the spinneret, the centrifugal force overcomes the surface
tension and viscosity of the spinning fluid to eject a liquid jet from the orifice. Subsequently,
the jet is elongated before depositing onto the collector to form solidified micro/nano-
fibers. Numerous polymeric materials have been utilized to demonstrate such a CS process,
including nylon-6 [20], polyacrylonitrile [21], polycaprolactone [22], polylactic acid [23],
and polyvinylpyrrolidone [24]. Yanilmaz et al., prepared a SiO2/PAN membrane as a
diaphragm material for lithium-ion batteries by the CS method [25]. Nava R et al., prepared
a silicon carbide composite fiber based on CS as the non-binder anode for lithium-ion
batteries, exhibiting a potential for large-scale production [26]. Some recent studies have
focused on CS principles. By optimizing the multiple regression method, Stojanovska
et al., investigated the distance between the orifice and collector, the rotation speed, and
the diameter of the nozzle to determine the parameters that have a great impact on fiber
morphology and diameter [27].

Although ES method can produce fibers with excellent morphology and high distribu-
tion uniformity, the low production efficiency and high dependency on polymer properties
inhibit its large-scale applications. Despite having high production efficiency, CS tends
to produce fibers with morphology and distribution uniformity that are not as good as
electrospun fibers [28,29]. Electro-centrifugal spinning (ECS) combines the advantages
of ES and CS, which not only greatly expands the application range of CS by producing
fibers with good morphology, high uniform distribution, and excellent performance but
also dramatically improves the production efficiency [30,31]. A centrifugal drawing force
is utilized alongside the electrical force to improve both yield and alignment. Both forces
could effectively elongate the polymer jet in ECS to form fibers. In recent years, ECS has
been widely used in the production of micro/nano-fibers [32,33]. Based on ECS, Liu et al.,
prepared uniaxial and cross-oriented ultrafine polystyrene fiber arrays at a lower operating
voltage and rotation speed [34]. Khamforoush et al., improved the ECS by employing
double nozzles as spinnerets which significantly promoted the production efficiency of
micro/nano-fibers [35]. Muller et al., applied ECS to prepare ultra-thin fibers with di-
ameters of tens of nanometers. The productivity of this highly interconnected nano-fiber
nonwoven net was several orders of magnitude higher than that of a traditional ES sys-
tem [30,36]. In order to explore the improvement of the production efficiency of the ECS
system, a self-designed electrostatic-field-assisted centrifugal spinning device was used in
this work to produce ultrafine PVA fibers. The effect of various process parameters on fiber
diameter and morphology was systematically investigated. Importantly, the optimized
PVA fiber mat demonstrated the superiority of the highly selective adsorbing performance
of ammonia (NH3) to CO2. The findings presented in this work can be a step forward



Materials 2023, 16, 2903 3 of 17

in producing ultrafine PVA-based fiber materials for many critical applications, such as
environmental purification, bioengineering, and NH3 storage.

2. Materials and Methods
2.1. Materials

PVA (polymerization degree: 1700; degree of hydrolysis: 87–89%) was purchased from
Aladdin (Shanghai, China). All solutions were prepared in deionized water.

2.2. Preparation of Ultrafine PVA Fibers

In this work, ultrafine fibers were obtained with a very high production efficiency
by a self-designed electro-centrifugal spinning (ECS) setup. As shown in Figure 1a, the
ECS setup is powered by a motor. The rotation speed of the chamber is controlled in the
range from 1000 to 9000 rpm by changing the voltage applied to the motor. A high voltage
power supply with a DC voltage range of 8–24 kV is used to supply the electrostatic field.
Four metallic cylinders connected to the negative electrode of high voltage supply are
employed as the fiber collector (shown in Figure 2a). A metallic tube is connected to the
positive electrode. The solutions are added into the chamber through the tube using a
syringe pump. The chamber fabricated by the 3D printing technique is connected with two
nozzles as the spinneret (Figure 2b). The diameter of the chamber is 6 cm, and the length
of the nozzle is 2.5 cm. As the spinning solution, PVA solution with a concentration of
15% was prepared by dissolving PVA powders in distilled water under continuous stirring
at 80 ◦C for 2 h. Then, the obtained solution was kept at room temperature to eliminate
bubbles. As Figure 1b shows, during the spinning process, the solution in the chamber
was ejected from the nozzle and stretched under the centrifugal and electrostatic forces.
The produced fibers were collected onto a collector as shown in Figure 2c. The distance
between the center of the spinneret and the collector bar was set to be 30 cm. Because of
the low volatile evaporability of water, the temperature and the relative humidity were
controlled for all experiments, with temperature above 50 ◦C and RH below 20% using an
additional air conditioning system.
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2.3. Characterizations

The morphologies of the produced PVA fibers were characterized using a HITACHI
S-4800 scanning electron microscope (SEM, Tokyo, Japan). The diameters of the fibers
were statistically analyzed using an image processing software (Nano Measurer 1.2) by
measuring more than 100 fibers from SEM images for each sample.

2.4. Gas Adsorption

The N2 adsorption–desorption isotherms (298 K) of the PVA fiber samples were
measured using Micromeritics ASAP 2460 adsorption equipment. The BET surface area
was calculated from the N2 adsorption isotherm data with relative pressures between 0.05
and 0.3 bar at 298 K. The pore size distribution density functional theory (NLDFT) method
was derived from the adsorption branch of the N2 isotherm by the nonlocal adsorption
method. The pore was assumed to be a slit pore model based on the isotherm profile.
The total pore volume of the sample was calculated from the amount of N2 adsorbed at
a relative pressure of 0.99. The micropore area and volume were estimated by the t-plot
method.

The ASAP2460 adsorption device and Quantachrome Instrument (version 5.0) were
used to determine the adsorption and desorption isotherms of PVA fiber mats for CO2
and NH3 at 298 K, respectively. Before the gas adsorption measurement, the sample was
degassed for approximately 8 h until the weight remained constant.

3. Results and Discussion
3.1. Morphology Analysis

In this work, in order to obtain ultrafine PVA fibers with a high production efficiency
the process parameters were systematically studied and optimized. For the same spinning
solution, the centrifugal force plays a critical role in determining the CS fiber morphology,
while the ES fiber morphology mainly depends on the electric force. In this ECS spinning
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system, PVA fibers were formed upon the stretch of the solution by the centrifugal force and
the electric force, along with solvent evaporation. Other factors also exist that may affect
the fiber morphology and diameter distribution, such as nozzle specification/size, feeding
rate, and collection distance. In this work, needles with various inner diameters were
employed as nozzles. Primarily, the CS spinning system was used to investigate the effect
of a single factor on the PVA fiber morphology, including needle diameter, rotation speed
and feeding rate. After the determination of optimum spinning parameters, an electrostatic
field was applied to explore the effect of voltage on the spinning performance of the ECS
system [14,17,37,38]. In addition, orthogonal experiments were adopted to explore the
influence extent of all the parameters mentioned above on the PVA fiber morphology. In the
final, ultrafine PVA fibers were successfully produced with an exceptionally high efficiency
applying the optimized parameters.

3.1.1. Effect of a Single Factor on the PVA Fiber Morphology

• Nozzle specification

As an important parameter for CS spinneret, the specification of the nozzle affects the
solution flow and fiber morphology. The choice of the nozzle specification depends on the
polymer of the spinning solution [23,27]. In this work, needles with the inner diameter
ranging from 0.3 mm to 0.7 mm were investigated to determine the optimal nozzle specifi-
cation for the fiber production (Table 1). In the study, the rotation speed of the chamber and
the feeding rate of the solution were fixed to be 5500 rpm and 3000 mL h−1, respectively.

As predicted, needle 24# with the inner diameter of 0.3 mm was too fine for the
high-viscosity PVA solution employed in this experiment to penetrate through without
stretching by the electric force. The blocked nozzle becomes incapable of ejecting the liquid
jet. As a result, fibers cannot be formed [37]. Conversely, needle 19# with the inner diameter
of 0.7 mm was too coarse to stretch the PVA solution into fibers. With the increase in the
inner diameter of the needle, the solution droplet in unit time possesses elevating surface
area flowing out of the needle under the same feeding rate. The stress distributed over
the solution droplet provided by the centrifugal force is decreased with the increase in the
droplet surface area [39–41]. Consequently, the centrifugal force caused by the rotating
chamber under the rotation speed of 5500 rpm was unable to overcome the viscosity and
the surface tension of the solution droplet out of needle 19#.

Table 1. The diameter of needles.

Needle Number Inner Diameter [mm]

19# 0.70
20# 0.60
21# 0.51
22# 0.41
23# 0.33
24# 0.3

Figure 3 shows the morphology and diameter distributions of PVA fibers obtained
with the nozzle changing from needle 20# to needle 23# (0.60–0.33 mm diameter). The
average diameter of PVA fibers is shown in Figure 4. Although the average diameter
change in fibers is not significant for all samples, the fiber uniformity varies much more
obviously. With needle 20# as the nozzle, the fiber presents a maximum diameter value.
As the needle diameter decreases from 0.6 mm to 0.41 mm, the mass of jet in unit time
decreases. Consequently, fibers become finer with smoother surface morphology, with
the average diameter decreasing from 6.80 µm to 4.52 µm. However, the inner diameter
of needle 23# might also be inappropriate for the PVA solution applied in this work. For
needle 23#, unsatisfactory spinnability was also evidenced by the unstable spinning process
and the wider diameter distribution of the resulting PVA fibers. Overall, based on the
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analysis of fiber diameter and surface morphology of PVA fiber samples, needle 21# and
22# can be verified to be the optimum choice as the nozzle.
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• Rotation speed

As mentioned above, the centrifugal force-enabled stretch of the solution jet during
centrifugal spinning can overcome the viscous and surface tension of solution droplet out
of the needle tip. The centrifugal force is in direct proportion to the rotation speed of the
rotating spinneret. To evaluate the effect of the rotation speed on the spinnability and
surface morphology of the produced PVA fibers, experiments at different rotation speeds
(3500–7500 rpm) were carried out using the 15% PVA spinning solution and needle 22#
with a fixed feeding rate of 3000 mL h−1.

Representative SEM images of the produced fibers and their statistical analysis of
fiber diameter distribution are shown in Figures 5 and 6, respectively. An increase in the
rotation speed of the spinneret strengthens the centrifugal force and consequently results
in the greater elongation of the liquid jet and a decrease in fiber diameters [14,28,42,43].
Notably, the surface morphology and the uniformity of PVA fibers present the tendency to
be improved with the decrease in fiber diameter from 12.07 to 8.44 µm, corresponding to a
gradual increase in rotation speed from 3500 to 6500 rpm. However, droplets are sprayed
rather than being stretched into fibers with the rotation speed larger ≥7500 rpm. A too
high rotation speed might result in thick or cracked fibers due to the short flight time and
low evaporation of solvent [42]. Figure 5a shows that the liquid jet is not fully elongated
into fibers, likely because the centrifugal force produced from the rotational spinneret
with the rotation speed of 3500 rpm was insufficient for fiber stretching. As the average
fiber diameter decreases, the overall fiber diameter distribution tends to be narrowed [44].
Above all, the best PVA fiber morphology (a fluffy morphology) is obtained at the rotation
speed of 6500 rpm, together with a concentrated fiber diameter distribution.

• Effect of feeding rate

The variations of fiber morphology and diameter distribution of the PVA fibers with
varying feeding rates (ranging from 2900 to 3300 mL h−1) are presented in Figures 7 and 8.
To establish the correlation between fiber morphology and feeding rates, the solution
concentration, nozzle size, and rotation speed were fixed to be 15%, 22#, and 5500 rpm,
respectively. Figure 8 shows that there is no significant correlation between the average
fiber diameter and the feeding rates. However, the fiber morphology and the diameter
distribution show that fibers would display obvious inhomogeneity if the feeding rate
goes beyond a critical value (approximately 3100 mL h−1). The feeding rate with higher
than 3100 mL h−1 would cause a rapid accumulation of the solution at the needle tip.
Consequently, the solution streams could not be elongated adequately into fibers because
of the lower shearing force and tensile force on the surface per unit volume solution [45].
Furthermore, there would not be enough time for water to be evaporated if there is too
much aqueous solution, which is another crucial reason for the formation of heterogeneous
fiber [37]. However, a feeding rate that is too low can generate another issue. The high
velocity airflow surrounding the spinneret causes the solution jet losing its solvent rapidly.
As a consequence, the extension of the jet becomes more difficult, resulting in the forma-
tion of thicker fibers with a wider diameter distribution, which is not favorable for the
production of ultrafine PVA fibers.

• Effect of the electrostatic field voltage

For obtaining uniform PVA fibers controlling the stability and the stretching of the
spinning fluid jet is essential in centrifugal spinning. As proved by previous explorations
on electrospinning technique, the electrostatic force is an extremely efficient dragline force
in solution jet stretching [46]. Therefore, the CS device is further promoted to establish the
electrostatic-assisted centrifugal spinning setup. Introducing an additional electrostatic
field into the CS system can, to a certain extent, overcome the problem of unstable liquid
jet. The jets with a positive charge repel each other upon the applied voltage, while the
collector with a negative charge provides an attraction force to the jets. As a consequence,
the combination of electric field force and centrifugal force can easily overcome the surface
tension of the solution droplet and elongate solution jet into much thinner fibers. A series of
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experiments are performed by altering the applied voltage in the range of 8 to 24 kV, with
the nozzle size, rotation speed, and feeding rate fixed to be 22#, 5500 rpm, and 3000 mL h−1,
respectively (Figure 9). The average fiber diameter decreases from 6.30 to 2.86 µm with an
increase in the applied voltage from 8 to 24 kV (Figure 10). It is obvious that the introduction
of an electrostatic field made an exceeding improvement on the spinning stability and the
fiber morphology when compared with CS technology. The fibers produced using ECS
setup present much smaller diameter and narrower diameter distribution. An increase
in the applied voltage definitely generates an increased electrostatic field force, thereby
inducing greater stretching force on the solution jet. As a result, fibers get more sufficiently
elongated to be thinner and more homogeneous with the increase in voltage. The studies
indicate that the applied voltage strongly affects the fiber alignment. The applying low
voltage of 8 kV enables a mass of fibers to be stuck together. While with a high voltage of
24 kV, the instability of the jet worsens the fiber uniformity. At the 20 kV voltage the fiber
distribution becomes highly homogeneous (Figure 9d).
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nozzle size, rotation speed = 5500 rpm and feeding rate = 3000 mL h−1.



Materials 2023, 16, 2903 11 of 17Materials 2023, 16, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 10. Tendency of average diameter of PVA fibers with applied voltage. 

3.1.2. Orthogonal Experimental Design of Centrifugal Spinning 
According to the single-factor experiments, value ranges of the four above parame-

ters appropriate for the PVA fiber spinning were determined. To obtain ultrafine fibers 
and further optimize the centrifugal spinning parameters, the L9 (39) orthogonal test was 
performed to investigate the impact of four factors including needle size (factor A), 
feeding speed (factor B), rotation speed (factor C), and electrostatic field voltage (factor D) 
on the fiber morphology. Average diameter and standard deviation of the average di-
ameter are the evaluation indices of the orthogonal experiment in the study. The three 
levels of the four factors are shown in Table 2, and the analysis results of the orthogonal 
test are given in Tables 3 and 4. The SEM study results and PVA fiber diameter distribu-
tion are presented in Figure 11. 

Figure 11 shows that PVA fibers could be possibly obtained by all planned experi-
ments. A range analysis table is provided for the nine group experiments (experiment 
No. 1–9 in Tables 3 and 4). Among the nine group experiments, experiment No. 8 pre-
sents fiber samples with the best surface morphology (Figure 11h), an average diameter 
of 2.55 μm, and the narrowest fiber distribution. For a further analysis of the results, there 
are two indexes in the two tables (Tables 3 and 4). K values represent the mean values of 
average diameters and standard deviation of diameters for A–D factors at various levels. 
Thus, in order to get ultrafine PVA fibers the value of K should be as small as possible. 
According to the value of the index (KA1 > KA2 > KA3, KB1 > KB2 > KB3, KC3 > KC1 > 
KC2, KD1 > KD2 > KD3) presented in Table 3, the optimum parameters of rotation speed, 
nozzle size, feeding rate and voltage for ultrafine fibers formation can be 6500 rpm, 0.41 
mm, 3100 mL h−1, and 20 kV, respectively. R values reflect the effect of a conducive or 
detrimental level on the average diameter and its standard deviation. The maximum R 
value corresponds to the most important factor. By comparing the two sets of R values, it 
is obvious that the influences of rotation speed of the spinneret and electrostatic filed 
voltage are much higher than the other two factors. Simultaneously, both the feeding rate 
and the needle specification could exert impacts on the fiber morphology. 

  

Figure 10. Tendency of average diameter of PVA fibers with applied voltage.

3.1.2. Orthogonal Experimental Design of Centrifugal Spinning

According to the single-factor experiments, value ranges of the four above parameters
appropriate for the PVA fiber spinning were determined. To obtain ultrafine fibers and
further optimize the centrifugal spinning parameters, the L9 (39) orthogonal test was
performed to investigate the impact of four factors including needle size (factor A), feeding
speed (factor B), rotation speed (factor C), and electrostatic field voltage (factor D) on the
fiber morphology. Average diameter and standard deviation of the average diameter are
the evaluation indices of the orthogonal experiment in the study. The three levels of the
four factors are shown in Table 2, and the analysis results of the orthogonal test are given
in Tables 3 and 4. The SEM study results and PVA fiber diameter distribution are presented
in Figure 11.

Figure 11 shows that PVA fibers could be possibly obtained by all planned experiments.
A range analysis table is provided for the nine group experiments (experiment No. 1–9
in Tables 3 and 4). Among the nine group experiments, experiment No. 8 presents fiber
samples with the best surface morphology (Figure 11h), an average diameter of 2.55 µm, and
the narrowest fiber distribution. For a further analysis of the results, there are two indexes
in the two tables (Tables 3 and 4). K values represent the mean values of average diameters
and standard deviation of diameters for A–D factors at various levels. Thus, in order to get
ultrafine PVA fibers the value of K should be as small as possible. According to the value
of the index (KA1 > KA2 > KA3, KB1 > KB2 > KB3, KC3 > KC1 > KC2, KD1 > KD2 > KD3)
presented in Table 3, the optimum parameters of rotation speed, nozzle size, feeding
rate and voltage for ultrafine fibers formation can be 6500 rpm, 0.41 mm, 3100 mL h−1,
and 20 kV, respectively. R values reflect the effect of a conducive or detrimental level
on the average diameter and its standard deviation. The maximum R value corresponds
to the most important factor. By comparing the two sets of R values, it is obvious that
the influences of rotation speed of the spinneret and electrostatic filed voltage are much
higher than the other two factors. Simultaneously, both the feeding rate and the needle
specification could exert impacts on the fiber morphology.

Table 2. Orthogonal test factor levels which are applied in Tables 3 and 4.

Test Level Rotation Speed [rpm]
(Factor A)

Nozzle Size [mm]
(Factor B)

Feeding Rate [mL/h]
(Factor C)

Voltage [kV]
(Factor D)

I 4500 0.60 3000 +6, −6
II 5500 0.51 3100 +8, −8
III 6500 0.41 3200 +10, −10
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Figure 11. PVA fibers obtained from the orthogonal experiment of (a) experiment No. 1; (b) experi-
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(g) experiment No. 7; (h) experiment No. 8; (i) experiment No. 9.

Table 3. Orthogonal test analysis on the average diameter of ECS fibers.

Experiment No. Rotation Speed
(Factor A)

Nozzle Size
(Factor B)

Feeding Rate
(Factor C)

Voltage
(Factor D)

Average Diameter of ECS
Fibers [µm]

1 I I I I 5.51
2 I II II II 4.16
3 I III III III 3.42
4 II I II III 3.79
5 II II III I 4.88
6 II III I II 3.88
7 III I III II 3.65
8 III II I III 2.55
9 III III II I 2.68

K1 4.363 4.317 3.980 4.357

T = 34.52
K2 4.183 3.863 3.543 3.897
K3 2.960 3.327 3.983 3.253
R 1.403 0.990 0.440 1.104

Order of importance A > D > B > C
Optimal level A3 B3 C2 D3

K = ∑the value of evaluation indexes at the same level of each factor/3; R = max {K}–min{K}.
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Table 4. Orthogonal test analysis on the diameter standard deviation of ECS fibers.

Experiment No. Rotation Speed
(Factor A)

Nozzle Size
(Factor B)

Feeding Rate
(Factor C)

Voltage
(Factor D)

Standard Deviation of
Average Diameter [µm]

1 I I I I 1.67
2 I II II II 1.62
3 I III III III 1.29
4 II I II III 1.48
5 II II III I 2.01
6 II III I II 1.85
7 III I III II 1.48
8 III II I III 0.75
9 III III II I 1.67

K1 1.53 1.54 1.42 1.48

T = 12.91
K2 1.78 1.46 1.29 1.65
K3 1.00 1.3 1.59 1.17
R 0.78 0.24 0.31 0.48

Order of importance A > D > C > B
Optimal level A3 B3 C2 D3

K = ∑the value of evaluation indexes at the same level of each factor/3; R = max {K}–min{K}.

In this work, ultrafine PVA fibers (average diameter of 2.55 µm) with the minimum
diameter of roughly 510 nm were successfully produced with an exceptional high efficiency
(3000 mL h−1) by the self-designed ECS system. The PVA fibers produced are not as fine
as PVA fibers generated by the ES system and CS system in the literature [47], which can
be related with the much higher CS rotation speed, higher ES voltage, and almost twice
larger PVA molecules employed in the work [43]. Therefore, the PVA fibers produced by
the self-designed ECS system can be possibly further optimized [47,48].

Significantly, the PVA fiber production efficiency of this self-designed ECS system is
about 1000 times higher than that of ES system. The feeding rate in ECS process reaches
up to 3000 mL h−1, while usually the feeding rate in the traditional ES process can be as
low as just a few milliliters per hour [9,12–15]. Thus, ultrafine PVA fibers can be potentially
produced by the ECS system on a large scale.

3.2. Adsorption Performance toward NH3 and CO2

The air pollution caused by NH3 leakage from the NH3 chemical industry is becom-
ing more severe since NH3 is irreplaceable in the fields of fertilizers and pharmaceutical
products. Various adsorbents have been investigated for the removal of NH3 leakage. In
addition, as a sustainable fuel, NH3 has become more promising in the fuel cell industry,
thereby stimulating the material researches for NH3 storage [49,50]. Due to the multiple
hydroxyl groups of PVA molecules which can interact with NH3 molecules, PVA ultrafine
fibers would be a good candidate as the NH3 adsorbent [49]. To demonstrate the viable
application of the best prepared PVA fibers (experiment No. 8) from the above experi-
ments, their adsorptive performance toward two gases NH3 and CO2 of great concern was
investigated. The single-component isotherms of NH3 and CO2 over the ultrafine PVA
fiber mats were measured at 298 K, as shown in Figure 12. As presumed, the cotton-like
PVA fiber mats present a capacity of adsorbing NH3. NH3 molecules can be adsorbed
via constructing hydrogen bonds with hydroxyl groups of PVA molecules on the surface
of fibers, which make a contribution to inducing the gate opening at relatively low pres-
sures [49]. Although the obtained PVA fibers present lower adsorption capability than
MOF (Metal-organic framework) materials for NH3 adsorption [50], the much lower price
of PVA products is still very competitive. In addition, the NH3 adsorption performance
of PVA fibers can be further improved by the introduction of hierarchically porous struc-
tures [11,51]. The optimal PVA fiber mats exhibit adsorption selectivity to NH3 over CO2
(shown in Figure 12b) [52], and limited adsorption capacity can be noted for CO2 in stark
contrast to the decent adsorption capacity toward NH3. Therefore, a useful alternative
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to traditional adsorptive materials (such as activated carbon) is provided to capture the
hazardous NH3 for purifying the living environment around NH3 producing factories and
also for NH3 storage application. In addition, the present PVA fiber mates produced using
the novel self-designed ECS setup is expected to be extended to other PVA-based functional
materials for many critical applications even beyond environmental purification such as
flexible sensors and electronics, and NH3 storage applications.
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4. Conclusions

In this work, ultrafine PVA fibers were successfully produced with high efficiency by
a self-designed electrostatic-field-assisted centrifugal spinning system. Compared with
traditional centrifugal spinning systems, the present approach based on the spinning
apparatus by introducing an additional electrostatic field can efficiently produce ultrafine
fibers. Meanwhile, the PVA fiber production efficiency of the ECS system (≥3000 mL h−1)
is around 1000 times higher than that of a traditional electrospinning system (around
few milliliters per hour). For obtaining ultrafine PVA fibers by the designed ECS system,
the effects of rotation speed, needle size, feeding rate, and voltage on fiber morphology
were systematically investigated. The orthogonal test was used to explore the optimum
parameters. The rotation speed was demonstrated to be the most critical parameter for
the production of PVA fibers by ECS system. Ultrafine PVA fibers with the diameter of
2.55 µm were successfully obtained applying the spinning parameters, including rotation
speed (6500 rpm), needle size (0.51 mm), feeding rate (3000 mL h−1), and voltage (20 kV).
The optimal PVA fiber mat was demonstrated to be capable of selectively capturing NH3
relative to CO2. Therefore, this work opens up a new avenue for producing ultrafine fiber
materials for many critical applications beyond environmental purification, such as flexible
sensors and electronics, and NH3 storage applications.
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