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Abstract: Models of ferromagnetic hysteresis are established by following a thermodynamic approach.
The class of constitutive properties is required to obey the second law, expressed by the Clausius–
Duhem inequality, and the Euclidean invariance. While the second law states that the entropy
production is non-negative for every admissible thermodynamic process, here the entropy production
is viewed as a non-negative constitutive function. In a three-dimensional setting, the magnetic field
and the magnetization are represented by invariant vectors. Next, hysteretic properties are shown
to require that the entropy production is needed in an appropriate form merely to account for
different behavior in the loading and the unloading portions of the loops. In the special case of a
one-dimensional setting, a detailed model is determined for the magnetization function, in terms of a
given susceptibility function. Starting from different initial magnetized states, hysteresis cycles are
obtained by solving a nonlinear ordinary differential system. Cyclic processes with large and small
amplitudes are established for materials such as soft iron.

Keywords: magnetization; ferromagnetic hysteresis; magnetic susceptibility; thermodynamic consis-
tency; rate equations
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1. Introduction

Hysteresis is a phenomenon relevant to various areas of science and means that the
non-linear relation between two physical quantities, say input and output, changes de-
pending on the increasing or decreasing phase of the input. In particular, ferro-magnetic
hysteresis phenomena, along with the variation in magnetic susceptibility, affect the po-
sitional accuracy in magnetic resonance imaging systems [1] and occur during a typical
charge-and-discharge process of a high-temperature superconducting magnet for NMR
applications [2]. Hence, much effort has been devoted to the reduction and correction of
magnetic hysteresis in magnetic-resonance imaging devices.

The first detailed model of hysteresis traces back to Duhem [3]. If u is a piecewise
monotone input, then the output x is given by

ẋ(t) =
{ φl(x(t), u(t))u̇(t), for u̇(t) ≤ 0,

φr(x(t), u(t))u̇(t), for u̇(t) ≥ 0,
(1)

where a superposed dot denotes the time derivative. Duhem-like models have been devel-
oped and investigated in several contexts, such as circuit theory [4,5] and ferromagnetic
materials [6,7]. Next Preisach [8] modeled hysteresis by introducing two thresholds char-
acteristic of the material [9,10]. Lately, further models have been developed by means
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of the Langevin function [11,12] and potential functions [13]. A generalization of the
Preisach model was investigated in [14,15] through hysteresis operators, and a connection
with thermodynamics was developed through hysteretic (clockwise and counterclockwise)
potentials and a dissipation operator.

Duhem-like rate equations seem to be the most convenient schemes for describing
any type of hysteresis. Moreover, to our mind, once the balancing (dynamic) laws of a
continuum are established, the second law of thermodynamics has to be the key point to
characterizing admissible constitutive properties. Following that, in this paper, we develop
a thermodynamic approach to ferromagnetic hysteresis by requiring the consistency of the
constitutive functions with the second law expressed by the Clausius–Duhem inequality.
Indeed, while the second law states that the entropy production, say γ, is non-negative for
every admissible thermodynamic process, we follow the assumption that γ itself has to
be considered as given by a constitutive function, the entropy η and the other constitutive
functions. This view in essence traces back to Green and Naghdi [16], though thereafter no
significant application has been developed in the literature. Lately, we have made recourse
to this scheme in connection with hysteresis in plasticity [17] and ferroelectrics [18].

The purpose of this paper is to establish a model of hysteresis for ferromagnetic
materials. First, general thermodynamic relations are expressed in a three-dimensional
setting. The (ferromagnetic) body is allowed to be deformable, and hence, balance equa-
tions and constitutive assumptions involve mechanical and electromagnetic properties.
Since hysteresis is determined by a non-linear relation between the rate of magnetization
and the magnetic field, it is non-trivial to comply with the objectivity principle, whereby
the constitutive equations are required to be invariant relative to Euclidean transforma-
tions. It follows that both objectivity and the balance of angular momentum hold if the
magnetization and magnetic field are expressed by Lagrangian fields.

Next, with the restriction to collinear fields, we establish explicit models of hysteresis
suitable for describing soft iron materials. As a thermodynamic restriction, it follows that
the hysteresis curve is run in the counterclockwise sense. Examples are given of cycles with
different properties of the asymptotic regime (saturation).

Notation

We consider a body occupying a time-dependent region Ω ⊂ E 3. The motion is
described by means of the function χ(X, t), providing the position vector x ∈ Ω = χ(R, t).
The symbols ∇ and ∇R denote the gradient operator with respect to x ∈ Ω and X ∈ R. The
function χ is assumed to be differentiable; hence, we can define the deformation gradient
as F = ∇R χ, or in suffix notation, FiK = ∂XK χi. The invertibility of X → x = χ(X, t)
is guaranteed by letting J := det F > 0. For any tensor A, we define |A| as (A · A)1/2.
Throughout (x, t) ∈ Ω×R. We let v(x, t) be the velocity field. For any function f (x, t), we
let ḟ be the total time derivative; ḟ = ∂t f + (v · ∇) f . A prime denotes the derivative of a
function with respect to the argument.

2. Balance Equations

We consider a ferromagnetic, deformable body where electric conduction and electric
polarization are negligible. Let ρ(x, t) be the mass density. The balance of mass leads to the
local continuity equation

ρ̇ + ρ∇ · v = 0.

Let T be the mechanical Cauchy stress tensor and b be the mechanical body force. The
equation of motion can be written in the form

ρv̇ = ∇ · T + ρb + fM,
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where fM is the force per unit volume of magnetic character. In stationary conditions or in
the approximation of a negligible electric field, we have

fM = µ0(M · ∇)H

where H is the magnetic field, M the magnetization (per unit volume), and µ0 the per-
meability of free space. The balances of angular momentum and energy are taken in
the form

skw(T + µ0H⊗M) = 0, (2)

ρε̇ = µ0ρH · ṁ + T · L−∇ · q + ρr, (3)

where ε is the internal energy (per unit mass), m = M/ρ, L is the velocity gradient,
Lij = ∂xj vi, q is the heat-flux vector, and r is the energy supply (per unit mass).

Let η be the entropy density and θ the absolute temperature. As the second law of
thermodynamics, we take the following statement: the inequality

ρη̇ +∇ · q
θ
− ρr

θ
= ργ ≥ 0 (4)

holds for any process compatible with the balance equations. The non-negative scalar
γ, namely, the (rate of) entropy production per unit mass, is assumed to be given by a
constitutive function. Hence, the thermodynamic process consists of η, q, r, γ, and the other
functions occurring in the balance equations.

In terms of the Helmholtz free energy

ψ = ε− θη

the entropy (or Clausius–Duhem) inequality (4) can be written as

− ρ(ψ̇ + ηθ̇) + µ0ρH · ṁ + T · L− 1
θ

q · ∇θ = θργ ≥ 0. (5)

To simplify the description of the material properties, it is understood that H and M
are the fields measured in the reference locally at rest with the body.

3. Euclidean Invariance and Power Representation

The internal energy ε, the entropy η, and the free energy ψ are invariant under a
change of frame. Hence, they can depend only on invariant quantities. A change in frame
F → F ∗ given by a Euclidean transformation, such that x 7→ x∗, is expressed by

x∗ = c + Qx, QTQ = 1. (6)

Under the transformation (6), the deformation gradient F and the magnetic field H
change as vectors:

F∗ = QF, H∗ = QH,

and hence they are not invariant. Yet invariant scalars, vectors, and tensors occur in
connection with F and H.

We first look at invariants of mechanical character. The right Cauchy–Green tensor C
and the Green–St. Venant strain tensor E, defined as

C = FTF, E = 1
2 (C− 1),

are invariant in that
C∗ = F∗TF∗ = FTQTQF = FTF = C,
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and the like for E. Consequently, the scalar

F · F = tr C = 2tr E + 3

is invariant too. Since
L∗ = QLQT + Q̇QT ,

the power T · L is apparently non-invariant. Decompose L in the classical form

L = D + W,

where D is the stretching tensor and W is the spin; we have

D∗ = QDQT , W∗ = QWQT + Q̇QT .

Let
TRR = JF−1TF−T

be the second Piola stress. We observe that since Ė = FTDF, so

T ·D = J−1(FTRRFT) ·D = J−1TRR · (FTDF) = J−1TRR · Ė.

Hence, we have
T · L = J−1TRR · Ė + T ·W. (7)

The referential heat flux and temperature gradient

qR = JF−1q, ∇R θ = FT∇θ

are invariant, and so is the power:

q · ∇θ = J−1qR · ∇R θ. (8)

In connection with the magnetic field H and the magnetization M, we can consider
the fields

HHH = J−1FTH, MMM = JF−1M.

The fields J−1FTH and JF−1M are invariant:

HHH∗ = (J∗)−1(F∗)TH∗ = J−1FTQTQH = HHH,

MMM∗ = J∗F∗−1M∗ = JFQTQM = MMM.

Consequently, the scalars

H = |HHH|, M = |MMM|, HHH · MMM

are also invariant. Indeed, we have

H = J−1(FTH · FTH)1/2 = J−1(H · BH)1/2,

M = J(F−1M · F−1M)1/2 = J(M · B−1M)1/2,

HHH · MMM = FTH · F−1M = H ·M,

where B = FFT . Hence, in addition to being Euclidean invariants, the fields HHH, MMM make the
inner product HHH · MMM invariant and HHH · MMM = H ·M. Likewise, we found that H = JHHH =
FTH is invariant too.
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It is worth expressing the power µ0ρH · ṁ in terms of HHH and MMM. Let ρR = ρJ be the
mass density in the reference configuration. Since M = J−1FMMM,

m =
1
ρ

M =
1
ρR

FMMM

whence
ṁ =

1
ρR

(ḞMMM+ FṀMM) =
1
ρR

(LFMMM+ FṀMM) =
1
ρ

LM +
1
ρR

FṀMM.

It then follows that

µ0ρH · ṁ = µ0(H⊗M) · L + µ0 J−1H · FṀMM.

Hence, we obtain

µ0ρH · ṁ = µ0(F−1H⊗ F−1M) · Ė + µ0(H⊗M) ·W + µ0HHH · ṀMM. (9)

Incidentally,

F−1H⊗ F−1M = JF−1F−T HHH⊗ F−1M = C−1HHH⊗ MMM. (10)

For later convenience we notice that, by (9) and (10),

µ0ρRH · ṁ = µ0(C−1H⊗ MMM) · Ė + µ0 J(H⊗M) ·W + µ0H · ṀMM, (11)

while
JT · L = TRR · Ė + JT ·W.

4. Consistency with the Balance of Angular Momentum

While the fields H and MMM enjoy Euclidean invariance, we now look for specific
requirements induced by (2). We go back to the form (5) of the Clausius–Duhem inequality
and note that

−ψ̇ + µ0H · ṁ = (−ψ + µ0H ·m)̇− µ0m · Ḣ.

Hence, we let
φ = ψ− µ0H ·m

and write inequality (5) in the form

− ρ(φ̇ + ηθ̇)− µ0M · Ḣ + T · L− 1
θ

q · ∇θ = ρθγ. (12)

To fix our ideas, let
θ, F, H,∇θ

be the set of variables for the functions φ, η, T, q, and γ. Computation of φ̇ and substitution
result in

−ρ(∂θφ + η)θ̇ + (T− ρ∂Fφ⊗ FT) · L− (µ0M + ρ∂Hφ) · Ḣ− ρ∂∇θφ · ∇̇θ

−1
θ

q · ∇θ = ρθγ ≥ 0.

The arbitrariness of ∇̇θ, θ̇ and L, Ḣ implies

∂∇θφ = 0, η = −∂θφ

and
T = ρ∂Fφ⊗ FT , µ0M = −ρ∂Hφ.
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The constraint (2) results in

skw ∂Fφ⊗ FT = skw H⊗ ∂Hφ (13)

and the requirement (13) holds if ∂Fφ is related to ∂Hφ.
Any field H̃ of the form f (J)H is objective. Hence, we let φ depend on F through

E = (FTF− 1)/2 and jointly on F and H through H̃, H̃K = f (J)FiK Hi. If φ = φ(E, H̃) then

∂Fφ⊗ FT = F∂EφFT + ∂H̃P
φ∂F H̃P FT .

Since
∂FiK J = JF−1

iK , ∂FiK H̃P = f ′HP JF−1
iK + f HiδKP

and
∂FiK EPQ = 1

2 (FiQδPK + FiPδQK),

so
(∂Fφ⊗ FT)ij = FiP∂EPQφ FjQ + ∂H̃P

φ f ′HP Jδij + f ∂H̃P
φHiFjP, (14)

(H⊗ ∂Hφ)ij = f ∂H̃P
φ HiFjP, (15)

where f ′ = d f /dJ. Notice that

F∂EφFT + f ′ JH · ∂H̃φ 1 ∈ Sym.

Consequently, by (14) and (15), it follows that the requirement (13) holds identically
for any magnetic field

H̃ = f (J)FTH.

Owing to the form (11) of the power, the pair MMM,H seems more convenient to describe
the magnetic behavior in deformable bodies. That is why we then proceed with the choice
of H, i.e., f = 1, for the referential magnetic field.

5. Thermodynamic Restrictions

The Euclidean invariance suggests that we investigate the Clausius–Duhem inequal-
ity (5) in the Lagrangian description. Hence, we consider J times inequality (5) and use the
representations (7)–(9) of the powers T · L, q · ∇θ, and µ0ρH · ṁ to obtain

−ρR(ψ̇ + ηθ̇) + µ0H · ṀMM+ (TRR + µ0 C−1H⊗ MMM) · Ė + J(T + µ0H⊗M) ·W

−1
θ

qR · ∇R θ = ρRθγ ≥ 0. (16)

Hereafter, we use the referential fields ηR = ρRη, ψR = ρRψ. For later developments, it
is convenient to consider the free energy

φR = ψR − µ0H · MMM.

Moreover, to save writing, we let

T RR := TRR + µ0 C−1H⊗ MMM. (17)

By (10) and the definition of TRR, we have

T RR = J{F−1TF−T + µ0(F−1H)⊗ (MF−T} = JF−1{T + µ0H⊗M}F−T .

Consequently,

T RR ∈ Sym ⇐⇒ T + µ0H⊗M ∈ Sym. (18)
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Equation (16) is then rewritten to read

− (φ̇R + ηR θ̇)− µ0MMM · Ḣ+ T RR · Ė + J(T + µ0H⊗M) ·W− 1
θ

qR · ∇R θ = ρRθγ ≥ 0. (19)

The purpose of modeling ferromagnetic hysteresis suggests that we take (θ, F, H, M,
∇θ, Ḟ, Ḣ) as the set of independent variables, or alternatively Ṁ in place of Ḣ. Yet invari-
ance requirements demand that the dependence on the derivatives occurs in an objective
way. Moreover, the Euclidean invariance of the free energy φ implies that the dependence
of φR is a function of Euclidean invariants. Now, θ, E,H, MMM are invariants, and hence we let

φR = φR(θ, E,H, MMM,∇R θ, Ė, Ḣ)

and the like for ηR, TRR, qR, and γ.
Compute the time derivative of φR and substitute in (19) to obtain

−(∂θφR + ηR)θ̇ + (T RR − ∂EφR) · Ė− (µ0MMM+ ∂HHHφR) · Ḣ− ∂MMMφR · ṀMM− ∂∇R θφR · ∇R θ̇

−∂ĖφR · Ë− ∂ḢHHφR · Ḧ+ J(T + µ0H⊗M) ·W− 1
θ

qR · ∇R θ = ρRθγ ≥ 0. (20)

The (linearity and) arbitrariness of ∇R θ̇, Ë, Ḧ, θ̇, W implies that

∂∇RθφR = 0, ∂ĖφR = 0, ∂ḢHHφR = 0,

ηR = −∂θφR, T + µ0H⊗M ∈ Sym. (21)

The symmetry condition in (21) is just the balance relation (2) of angular momentum.
Hence, (20) simplifies to

(T RR − ∂EφR) · Ė− (µ0MMM+ ∂HHHφR) · Ḣ− ∂MMMφR · ṀMM−
1
θ

qR · ∇R θ = ρRθγ ≥ 0. (22)

In the following analysis of (22), we neglect cross-coupling effects. Specifically, we
assume T is independent of Ḣ and∇R θ; ṀMM is independent of Ė and∇R θ; qR is independent
of Ė and Ḣ. Consequently, inequality (22) splits into three sub-inequalities:

− (µ0MMM+ ∂HHHφR) · Ḣ− ∂MMMφR · ṀMM = ρRθγH ≥ 0, (23)

(T RR − ∂EφR) · Ė = ρRθγT ≥ 0, (24)

− 1
θ

qR · ∇R θ = ρRθγq ≥ 0. (25)

The three functions γH, γT, and γq are non-negative as particular cases of γ; i.e., γH is
the value of γ as Ė = 0,∇R θ = 0 and the like for γT and γq. Equation (23) is investigated
in the next sections; the joint occurrence of Ḣ and ṀMM result in hysteretic properties of
the material. As for Equation (24), the stress TRR, and hence T RR, can depend on Ė. This
dependence is allowed in the form

T RR = ∂EφR + Ξ Ė, ρRθγT = Ė · ΞĖ, (26)

where Ξ is a positive semi-definite fourth-order tensor such that Sym→ Sym. In view of
(17), we have

T + µ0H⊗M = J−1F∂EφRFT + Ξ̂ Ė; (27)

in suffix notation Ξ̂ijRS = J−1FiPFjQΞPQRS. Hence, as must be the case, T + µ0H⊗M ∈ Sym.
Equation (27) shows that the stress T consists of the elastic term J−1F∂EφRFT , the magnetic
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term −µ0H ⊗M, and the viscous term Ξ̂Ė. Equation (25) is the heat equation in the
reference configuration. Fourier’s law q = −κ(θ)∇θ is allowed so that

qR = −κ(θ)JC−1∇R θ

and hence makes ρRθγq = κ(θ)J∇R θ · C−1∇R θ. Rate-type constitutive equations for qR are
obtained by letting q̇R be given by a constitutive function while qR is one of the independent
variables [19].

Cyclic Processes

We first go back to inequality (19) and investigate cyclic processes of inviscid materials,
Ξ = 0, in uniform temperature fields; ∇R θ = 0. In a cyclic process in the time interval
[ti, t f ], we have

Γ(ti) = Γ(t f ), Γ := (θ, E,H, MMM).

Integration in time of (19) on [ti, t f ] yields

∫ t f

ti

(−ηR θ̇ − µ0MMM · Ḣ+ T RR · Ė)dt =
∫ t f

ti

ρRθγ dt ≥ 0.

Two interesting cases occur in isothermal processes, where θ̇ ≡ 0, so that∫ t f

ti

(−µ0MMM · Ḣ+ T RR · Ė)dt ≥ 0,

depending on the constitutive properties. First, if T RR is independent of Ḣ then both terms
are required to be non-negative, so that∫ t f

ti

(MMM · Ḣ)dt ≤ 0,
∫ t f

ti

(T RR · Ė)dt ≥ 0. (28)

Second, let
φR = ΦR(θ, E) + ϕR(θ,H, MMM).

Since

−(φ̇R + ηR θ̇)− µ0MMM · Ḣ+ T RR · Ė = −ϕ̇R − (∂θΦR + ηR)θ̇ − µ0MMM · Ḣ+ (T RR − ∂EφR) · Ė

and T RR − ∂EφR = 0, throughout an isothermal cyclic process, we have∫ t f

ti

(MMM · Ḣ)dt ≤ 0. (29)

Of course if T RR satisfies (26), then the corresponding integral (28) is non-negative.

6. Hyper-Magnetoelastic Materials

If MMM is not among the independent variables, then the arbitrariness of Ḣ in (23)
implies

µ0MMM = −∂HHHφR, (30)

in addition to γH = 0. The dependence of φR on θ, E,H allows us to say that Equation (30)
represents the constitutive equation of the magnetization in a hyper-magnetoelastic material.

6.1. Linear Magnetoelastic Materials

For definiteness, we look for constitutive equations associated with a special class
of free energies. Let χ possibly depend on θ. Let be the magnetic susceptibility, per unit
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volume, in the current configuration. We assume that the free energy ρφ is the sum of a
thermoelastic part ρΨ(θ, C) and a quadratic isotropic part due to magnetization:

ρφ(θ, C, H) = ρΨ(θ, C)− 1
2 µ0χ(θ)|H|2. (31)

Replacing H = F−TH and multiplying by J, we find

φR(θ, C,H) = ΨR(θ, C)− 1
2 µ0χJ(C−1H) ·H; (32)

the form (32) shows that φR is a function of invariant quantities. By (30), we have

µ0MMM = µ0χJC−1H. (33)

Hence, it follows that

M = χH, H = (χJ)−1CMMM,

which represents the magnetization function in a linear paramagnetic material. The associ-
ated free energy in terms of MMM is obtained by a Legendre transformation of (32),

ψR(θ, C, MMM) := φR + µ0H · MMM = ΨR(θ, C) + 1
2 µ0(χJ)−1(CMMM) · MMM. (34)

Correspondingly, in the current configuration the free energy is

ρψ(θ, C, M) := ρφ + µ0H ·M = ρΨ(θ, C) + 1
2 µ0χ−1|M|2.

For later convenience, we show that φ and ψ can be given by a joint dependence on H
and MMM. Owing to (33), we can write (34) as

ψR(θ, C,H) = ΨR(θ, C) + 1
2 µ0χJ(C−1H) ·H, (35)

and then

φR(θ, C,H, MMM) := ψR − µ0H · MMM = ΨR(θ, C) + 1
2 µ0χ(θ)J(C−1H) ·H− µ0H · MMM.

Correspondingly,

ρφ(θ, C, H, M) = ρΨ(θ, C) + 1
2 µ0χ(θ)|H|2 − µ0H ·M. (36)

6.2. Nonlinear Magnetoelastic Materials

According to Landau’s pioneering approach [20], nonlinear isotropic paramagnets are
associated with a free-energy function with a fourth-degree polynomial in the form

ρψ(θ, C, H, M) = ρΨ(θ, C) + 1
2 µ0χ−1(θ)|M|2 + 1

4 µ0κ|M|4,

where χ is given by the Curie–Weiss law

χ =
C

θ − θC
, C > 0,

and κ is a positive parameter. Hence, multiplication by J results in

ψR(θ, C, MMM) = ΨR(θ, C) + 1
2 µ0(χJ)−1(CMMM) · MMM+ 1

4 µ0κ J−3[(CMMM) · MMM]2.

With this free energy, we obtain

H = (χJ)−1[1 + χκ J−2(CMMM) · MMM]CMMM
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and
H =

[ 1
C (θ − θC) + κ|M|2

]
M. (37)

When the applied external field H vanishes, it follows that M = 0 is a solution at
any temperature. In addition, if θ < θC, there exist infinitely many pairs of non-vanishing
solutions:

M = ±Ms(θ)e, Ms(θ) :=

√
θC − θ

Cκ
,

where e is a generic unit vector. Hence, Ms(θ) can be viewed as the spontaneous magne-
tization modulus at θ < θC. In the (θ, M) plane, the curve consisting of the two branches
M = ±Ms(θ) describes a super-critical pitchfork bifurcation which is typical of second-
order phase transitions. In addition, by letting M∗ = Ms(0) =

√
θC/Cκ, we infer that Ms is

a decreasing function on (0, θC] so that 0 ≤ Ms(θ) < M∗ (see the dashed line in Figure 1).

0

Ms(θ)

M∗

θC θ

Figure 1. The perturbed (solid) and M unperturbed (dashed) pitchfork bifurcations.

1

Figure 1. Plot of the perturbed (H = 0.05, solid curve) and unperturbed (H = 0, dashed curve)
super-critical pitchfork bifurcations: C = κ = 1.

When the applied external field H does not vanish, we assume that M and H have a
common direction and consider the pertinent components, M and H. Then, (37) becomes
unidimensional in character and gives

H =
[ 1

C (θ − θC) + κM2]M.

The corresponding curve in the (θ, M)-plane is drawn in Figure 1 (solid line) for a
given positive value of H. For all θ � θC, there exists only one solution, say M0(θ), which
approaches zero, whereas for θ � θC there are three solutions very close to solutions 0,±Ms
of the homogeneous case.

Since the differential magnetic susceptibility, χd, can be computed as the derivative
with respect to H of the constitutive function for M, we infer

χd(M, θ) := ∂H M = (∂M H)−1 =
C

3CκM2 + θ − θC
.

Hence, if θ � θC, then M = M0(θ) is negligible and we get the Curie–Weiss law:

χd(θ) := χd(M0(θ), θ) ≈ C
θ − θC

.

Otherwise, when 0 < θ � θC we have M ≈ M2
s (θ) = (θC − θ)/Cκ so that

χd(θ) ≈ χd(Ms(θ), θ) =
C

2(θC − θ)
.
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Summarizing, the plot of χd(θ) is given in Figure 2.

0

χd(θ)

θC θ

Figure 1. The (Landau) differential magnetic susceptibility χd.

1

Figure 2. Plot of the (Landau) differential magnetic susceptibility χd with C = 1.

7. Hypo-Magnetoelastic Materials

We now look at more general non-dissipative models consistent with (23). We let
γH = 0 but allow MMM to be an independent variable, whence it follows from (23) that

∂MMMφR · ṀMM = −(µ0MMM+ ∂HHHφR) · Ḣ. (38)

Let n be a unit vector, n · n = 1. Any vector w can be represented as the sum of the
longitudinal part, along n, and the transverse part, (1− n⊗ n)w,

w = (w · n)n + (1− n⊗ n)w.

If the transverse part is undetermined, then we can write

w = (w · n)n + (1− n⊗ n)g. (39)

for any vector g. The representation (39) is now applied in connection with ṀMM.
Assume ∂MMMφR 6= 0. Hence, we let

n =
∂MMMφR

|∂MMMφR|

and find from (39) and (38) that

ṀMM =
ṀMM · ∂MMMφR

|∂MMMφR|2
∂MMMφR + (1− ∂MMMφR ⊗ ∂MMMφR

|∂MMMφR|2
)g

= −∂MMMφR ⊗ (µ0MMM+ ∂HHHφR)

|∂MMMφR|2
Ḣ+ (1− ∂MMMφR ⊗ ∂MMMφR

|∂MMMφR|2
)g.

If g = 0, we find

ṀMM = MḢ, M := −∂MMMφR ⊗ (µ0MMM+ ∂HHHφR)

|∂MMMφR|2
. (40)

The second-order tensor M in (40) depends non-linearly on the strain E and the
temperature θ, beyond MMM and H. By analogy with hypo-elastic materials ([21], §99), we
say that Equation (40) characterizes hypo-magnetoelastic materials.

Otherwise, if g = ΓḢ, then

ṀMM = −n⊗ (µ0MMM+ ∂HHHφR)

|∂MMMφR|
Ḣ+ [1− n⊗ n]ΓḢ,

whence

ṀMM =
[
Γ− n⊗ (µ0MMM+ ∂HHHφR + ΓT∂MMMφR)

|∂MMMφR|

]
Ḣ. (41)
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A particular case follows by taking Γ such that

µ0MMM+ ∂HHHφR + ΓT∂MMMφR = 0, (42)

thereby implying the vanishing of the dyadic term. Indeed, inner multiplication of ṀMM =
ΓḢ by ∂MMMφR and the use of (41) yield (38).

A Simple Hypo-Magnetoelastic Model

A special but significant class of hypo-magnetoelastic models is obtained assuming
the free energy ψ is independent of MMM. In this case ∂MMMφR = −µ0H and

M(θ, C,H) = Γ +
1
|H|2 H⊗

[
µ0MMM+ ∂HHHφR − µ0ΓTH

]
. (43)

In the special case Γ = 0, it follows that

M(θ, C,H) =
1
|H|2 H⊗

(
µ0MMM+ ∂HHHφR

)
.

Otherwise, if Γ 6= 0, we can choose Γ = Γ̂(θ, C,H) such that (42) holds as an identity
for any value of θ, C,H. From (43), it follows M = Γ̂ and then

ṀMM = Γ̂(θ, C,H)Ḣ. (44)

For definiteness, we exhibit a simple example assuming a quadratic expression of the
free energy:

ψR = ΨR(θ, C) +
1
2
H · ΥH(θ, C)H, ΥH = ΥT

H.

Since
∂HHHφR = ∂HHH

[
ψR − µ0H · MMM

]
= ΥHH− µ0MMM,

condition (42) reads ΥHH = µ0Γ̂
TH and the arbitrariness of H finally implies µ0Γ̂ = ΥH.

The special choice ΥH = µ0χ(θ)JC−1, corresponding to the free energy (36), gives

ṀMM = χ(θ)JC−1Ḣ.

8. Ferromagnetic Hysteresis

Starting from the dependence on the set of variables

θ, E,H, MMM, Ḣ

we have found that φR = φR(θ, E,H, MMM), T RR = ∂EφR, and (23) is required to hold with
γH ≥ 0. In addition, in an isothermal cyclic process, the inequality (29) has to be true. For
definiteness, we now investigate hysteresis properties by letting

ρRθγH = ζ|Ḣ|, ζ > 0.

Hence, MMM and H are subject to

(∂HHHφR + µ0MMM) · Ḣ+ ∂MMMφR · ṀMM = −ζ|Ḣ|. (45)

To select appropriate free energy functions φR we observe that, in the hysteretic regime,
M and H are neither independent nor are related in the form M = χH, as they are in the
paramagnetic regime. If we assume ∂MMMφR 6= 0 and let

n =
∂MMMφR

|∂MMMφR|
, g = ΓḢ
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then the requirement (45) and the representation formula (39) yield

ṀMM = −n⊗ (µ0MMM+ ∂HHHφR)

|∂MMMφR|
Ḣ− ζ|Ḣ|

|∂MMMφR|
n + [1− n⊗ n]ΓḢ,

whence

ṀMM =
[
Γ− n⊗ (µ0MMM+ ∂HHHφR + ΓT∂MMMφR)

|∂MMMφR|

]
Ḣ− ζ|Ḣ|

|∂MMMφR|
n. (46)

This relation shows a particular case that follows by taking Γ such that

µ0MMM+ ∂HHHφR + ΓT∂MMMφR = 0, (47)

thereby implying the vanishing of the dyadic term. By (47), it follows that the free energy
φR depends on H and MMM with a linear relation between ∂HHHφR and ∂MMMφR. Hence, we let φ
depend also on |M− χH|2, and correspondingly φR on MMM and H. Moreover, this term is
required to account for the ferromagnetic regime up to the Curie temperature θC. With this
in mind, we generalize the function (36) to

ρφ(θ, C, H, M) = ρΨ(θ, C) + 1
2 µ0χ(θ)|H|2 − µ0H ·M + 1

2 α(θ)U (θC − θ)|M− χH|2

where U is the Heaviside step function and α(θ)> 0 describes the possible dependence on
temperature. In the material description, we have

φR(θ, C,H, MMM) = ΨR(θ, C) + 1
2 µ0χJ(C−1H) ·H− µ0H · MMM

+ 1
2 α(θ)U (θC − θ)(J−1CMMM− χH) · (MMM− χJC−1H). (48)

For ease of writing, we now understand that θ ∈ (0, θC), and hence U (θC − θ) is
omitted. Observe that

∂HHHφR + µ0MMM = µ0χJC−1H− αχ(MMM− χJC−1H),

∂MMMφR = −µ0H+ α(J−1CMMM− χH),

and hence
∂MMMφR = −(χJ)−1C[∂HHHφR + µ0MMM].

Consequently, the constraint (47) holds with Γ = χJC−1, and the representation (46)
can be written in the form

ṀMM = χJC−1Ḣ− ζ|Ḣ|/α

|J−1CMMM− (χ + µ0/α)H|2 [J
−1CMMM− (χ + µ0/α)H]. (49)

8.1. One-Dimensional Models of Hysteresis

Assume the spatial fields H and M are collinear and the body is isotropic, or otherwise
H and M are in the direction of easy magnetization (easy axis of the transversely isotropic
body). We then let H = He1, M = Me1 and take (e1, e2, e3) be an orthonormal basis.
Hence, we represent the deformation gradient in the form

F = diag(1 + ξ, 1− δ, 1− δ).

Thus, we have J = (1 + ξ)(1− δ)2 and

H = FTH = diag((1 + ξ)H, 0, 0), MMM = JF−1M = diag((1− δ)2M, 0, 0).

This allows us to look at a one-dimensional setting. Furthermore we restrict attention
to small deformations, i.e., |ξ|, |δ| � 1, and then we assume H and MMM are approximately
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equal to H and M. Consequently, we consider the one-dimensional version of (29) and (45)
in the form ∫ t f

ti

MḢdt =
∮

MdH ≤ 0, (50)

(∂HφR + µ0M)Ḣ + ∂MφR Ṁ = −ζ|Ḣ|. (51)

Inequality (50) implies that the closed curve in the H −M plane, associated with the
cyclic process, is run in the counterclockwise sense. In rigid bodies, H = H, MMM = M, and
(51) holds exactly. Provided that ∂MφR 6= 0, from (51) it follows that

Ṁ = −∂HφR + µ0M
∂MφR

Ḣ − ζ

∂MφR
|Ḣ|.

Now, we consider the one-dimensional version of (48):

φR = ΨR +
1
2 µ0χH2 − µ0HM + 1

2 α[M− χH]2,

where α = α(θ) > 0. Correspondingly, Equation (49) simplifies to

Ṁ = χḢ − ζ

α[M−M(H)]
|Ḣ|.

whereM(H, θ) = (χ + µ0/α)H. Except at inversion points (where Ḣ = 0), we have

dM
dH

= χ− ζ

α[M−M(H)]
sgn Ḣ. (52)

If ζ depends on Ḣ at most through sgn Ḣ, then Equation (52) is invariant under the
time change t→ t∗ = ct, c > 0, and then we say that the equation is rate-independent. As
a check of consistency, we consider the limit behavior of non-dissipative materials, as is the
case in some magnetic nanoparticles (see [22]). This is made formal by letting γH = 0 and
then ζ = 0 so that (52) reduces to

dM
dH

= χ,

which represents the differential susceptibility of a paramagnetic material.
Let

χ1 = χ, χ2 = − ζ

α[M−M(H, θ)]
(53)

so we can write Equation (52) as a differential equation,

dM
dH

= χ1 + χ2 sgn Ḣ, (54)

for the unknown function M(H). The second term χ2 sgn Ḣ describes hysteretic effects
in that the slope changes depending on the sign of Ḣ. Since χ2 is proportional to ζ, the
vanishing of the entropy production γH results in χ2 = 0. Hence, χ2 = 0 is said to represent
(the limit case of) hysteretic non-dissipative materials, and χ1 represents the slope of the
curve M(H) of a paramagnetic substance; possibly, the slope is not constant and depends
on the values of M and H. When χ2 6= 0, we can view (54) as the positive, differential,
magnetic susceptibility. We then require that

χ1 > 0, |χ2| ≤ χ1.



Materials 2023, 16, 2882 15 of 23

Since α, ζ > 0, χ2 satisfies

χ2


> 0 if M <M(H, θ),
= 0 if M =M(H, θ),
< 0 if M >M(H, θ),

(55)

according to the counterclockwise sense required by
∮

M dH ≤ 0.
In summary, the model is characterized by the paramagnetic susceptibility χ1 = χ, the

hysteretic function ζ, and possibly the temperature-dependent function α. By definition, χ1
is fully determined by the free energy φR, whereas χ2 depends also on ζ. Hence, different
models are obtained by using the same function φR. The function χ2 is connected with
the entropy production through ζ, and as we will see in a while, governs the hysteretic
properties of the material.

It is of interest to consider the case

α(θ) =
{ α0/(θC − θ), if θ ∈ (0, θC),

0, otherwise,

where α0 > 0 possibly depends on F. SinceM(H, θ) = (χ + [θC − θ]µ0/α0)H,

lim
θ→θC

χ2 = 0, lim
θ→θC

M(H, θ) = χH.

Hence, regardless of the form of ζ, as θ → θC the curve M = M(H, θC)= χH is just the
magnetization curve of a paramagnetic material.

As shown by (54), the hysteretic function ζ, together with α and the sign of Ḣ, affects
the differential susceptibility dM/dH. Indeed, dM/dH = χ1 + χ2sgn Ḣ is the effective
slope of the magnetization curve in the H-M plane, and dM/dH = χ1 simply represents
the average value of the possible slopes at a fixed point (H, M) of this plane.

8.2. Soft Iron Models

Soft magnetic materials are of interest because they are easily magnetized and demag-
netized. They have low permanent magnetization (magnetic remanence) and low intrinsic
coercivity, but have a high level of saturation and a high Curie temperature. To this class
belong soft iron and isoperms, e.g., Fe–Ni–Cu alloys and Mn–Zn ferrites. A model for soft
materials is now established within the previous scheme:

Ṁ = −∂HφR + µ0M
∂MφR

Ḣ − ζ

∂MφR
|Ḣ|,

by assuming

φR =
1
2

α[M−M(H) + µ0H/α]2 + Λ(H)− µ0MH, α > 0,

ζ = ζ0[M−M(H)]2, ζ0 > 0,

whereM(H) is a monotone increasing function and Λ′(H) = µ0H[M′(H)− µ0/α]. Then,

∂MφR = α[M−M(H)], ∂HφR + µ0M = α[M−M(H)][µ0/α−M′(H)]

Hence, we have

dM
dH

=M′(H)− µ0

α
− ζ0

α
[M−M(H)]sgn Ḣ.



Materials 2023, 16, 2882 16 of 23

Letting

τh =
ζ0

α
, f (H) =M(H), g(H) =M′(H)− µ0

α
= f ′(H)− µ0

α

we can write
dM
dH

= g(H) + τh( f (H)−M)sgn Ḣ. (56)

Equation (56) is consistent with the second law of thermodynamics for a given function
f and g = f ′ − µ0/α. It is of interest that the constitutive relation (1.1) of [6] is similar
to (56). By analogy with [6], we first consider a function g to be piecewise constant, and
correspondingly, f is piecewise-linear. For definiteness, let µ0 = 1, α > 2, and

f (H) =


1
2 (H − 1) + 1 if H < −1,
H if − 1 ≤ H ≤ 1,
1
2 (H + 1)− 1 if H > 1,

g(H) =

{
1− 1/α if − 1 ≤ H ≤ 1,
1
2 − 1/α if |H| > 1,

In this case, hysteresis cycles are obtained by solving the system{
Ḣ = ωH cos ωt
Ṁ =

[
f ′(H)− µ0/α

]
Ḣ + τh

[
f (H)−M

]
|Ḣ|.

Figure 3 shows cyclic processes with large and small amplitudes, corresponding to
α = 5 and τh = 0.3.

-2 -1 0 1 2

-1

1

M

H

Figure 3. Soft iron hysteresis loops (solid), anhysteretic curve f = M (dashed), and a graph of g
(short dashed) withH = 1, 2.5. The initial states are H0 = 0 and M0 = −0.1.

As θ → θC, the parameters µ0/α and τh tend to vanish so that g approaches f ′ and (56)
reduce to

dM
dH

= f ′(H).

Hence, M = f (H) can be viewed as the magnetization curve of a paramagnetic
material.

Some properties, e.g., counterclokwise orientation, are established in [6] by assuming
that f ′ ≥ g. This condition, which here implies µ0/α ≥ 0, entails that the energy expended
in a complete traversal of a simple loop is non-negative ([7] Equations (1.6) and (3.18)).
However, it is not enough to ensure thermodynamic consistency with the existence of a
free energy. A stronger requirement that guarantees this consistency is the existence of a
positive constant ε > 0 such that f ′ − g > ε for all H and M. In the present model, this
property is trivially satisfied as f ′ − g = µ0/α > 0. Unfortunately, it implies that f ′ − g
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cannot vanish, not even at the limit as |H| goes to infinity, and this prevents the model from
exhibiting the saturation property.

A model allowing for the saturation property can be obtained as follows. Let ζ0 > 0 and

g(H) = f ′(H)− µ0/α > 0, ζ(H, M) = ζ0g(H)[ f (H)−M]2.

Hence,
dM
dH

= g(H)[1 + τh( f (H)−M) sgn Ḣ].

The vanishing of χ = g(H) as |H| approaches infinity is a way of modeling the
saturation property. On the other hand, this entails that f ′ approaches µ0/α as |H| tends to
infinity. Hysteresis paths are obtained by solving the system{

Ḣ = ωH cos ωt
Ṁ = g(H)

{
Ḣ + τh

[
f (H)−M

]
|Ḣ|
}

,

starting from (H0, M0) with different initial values. In Figure 4, hysteresis cycles are
depicted with different amplitudes A = 0.4, 1.4 and different initial values H0 = 0; M0 =
−0.1, 0, 0.1.

-1 0 1

-2

-1

1

2

M

H

Figure 4. Soft iron hysteresis loops with the saturation properties (solid): µ0, τh = 1, α = 2/3, and
f (H) = 1.5(tanh 2H + H) (dashed) and g(H) = 3/(cosh 2H)2 (short dashed).

As θ → θC, the parameters µ0/α and τh tend to vanish so that g approaches f ′ and (56)
reduce to

dM
dH

= f ′(H).

Since we assume that g(H) vanishes as |H| approaches infinity, the same does f ′(H)
in the limit θ → θC. Consequently, M = f (H) can be viewed as the magnetization curve of
a paramagnetic material with the saturation property.

8.3. Hysteresis Loss

Some remarks are in order on the dissipation due to hysteresis in the general scheme (51).
Owing to the counterclockwise sense,

A = −
∫ t f

ti

MḢdt
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is the area enclosed in a cycle and also 1/µ0 times the dissipation of the sample (also called
hysteresis loss). For a closed curve in the H-M plane, it follows from (51) that

A =
1

µ0

∫ t f

ti

ζ|Ḣ|dt.

If ζ is parameterized by temperature and strain but independent of H and M, then we
can regard ζ as constant in a H-M cycle so that

A =
ζ

µ0

∫ t f

ti

|Ḣ|dt = 2ζ∆H/µ0.

This is the case for the model (52), where the dissipation is proportional to the variation
∆H of the magnetic field and twice the hysteretic function ζ.

Otherwise, if ζ is given as in the soft iron model (56), then

A =
ζ0

µ0

∫ t f

ti

[M− f (H)]2|Ḣ|dt,

where f =M. Owing to the explicit calculation of the loading and unloading curves that
make up the cycle, in ([7], Equation (3.14)) the following result is proved

A(∆H) =
2

µ0τh

∫ ∆H/2

−∆H/2

[
1− cosh(τhy)

cosh(τh∆H/2)

]
[ f ′(y)− g(y)]dy, τh =

ζ0

α
;

here, for simplicity, we assume H̄ = 0 for the center of the loop. Accordingly, the area of a
loop of small amplitude ∆H is of order (∆H)3,

A ' 4τh
3µ0

[ f ′(0)− g(0)](∆H)3,

whereas the area of the major loop is given by

A∞ = lim
∆H→+∞

A(∆H) =
4

µ0τh

∫ ∞

0
[ f ′(y)− g(y)]dy.

Since all models considered are rate-independent, the hysteresis loss is independent
of the frequency at which the alternating magnetic field varies.

8.4. A Rate-Dependent Generalization

In order to jointly investigate hysteresis and frequency-dependent dissipation proper-
ties, we let

ρRθγH = (ζ0|Ḣ|+ ζ1)[M−M(H, θ)]2, ζ0, ζ1 > 0,

whereM(H, θ) = (χ + µ0/α)H and χ and α possibly depend on θ. Hence, (51) becomes

(∂HφR + µ0M)Ḣ + ∂MφR Ṁ = −(ζ0|Ḣ|+ ζ1)[M−M(H, θ)]2.

Considering once again the one-dimensional version of (48),

φR = ΨR +
1
2 µ0χH2 − µ0HM + 1

2 α[M− χH]2,

we obtain
Ṁ = χḢ − 1

α
(ζ0|Ḣ|+ ζ1)[M−M(H, θ)], (57)

which represents a generalization of (56) with f =M and g = χ.
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It is easy to check that this rate-type equation is rate-dependent in that the response
to an AC magnetic field (i.e., a magnetic field that varies sinusoidally) depends on its
frequency. For definiteness, let H(t) = H sin ωt, ω > 0. After introducing t∗ = ωt, we put

H∗ := H(t∗/ω) = H sin t∗, Ḣ∗ :=
dH∗

dt∗
(t∗) = H cos t∗.

Then,
Ḣ = ωḢ∗, Ṁ(t) = ωṀ∗,

and assuming all parameters are constant, (57) becomes

ωṀ∗ = ωχḢ∗ − 1
α
(ωζ0|Ḣ∗|+ ζ1)[M∗ −M(H∗, θ)].

In the limit of small frequencies, ω → 0, the material behaves as a reversible paramag-
net, with M =M(H, θ). Hence, χ(θ) + µ0/α(θ) may be considered as the static magnetic
susceptibility. Otherwise, in the limit of high frequencies, ω → +∞, the ferroelectric mate-
rial exhibits a frequency-independent hysteresis described by

Ṁ∗ = χḢ∗ − ζ0

α
[M∗ −M(H∗, θ)]|Ḣ∗|.

Let ε > 0. If ζ0 is small enough to satisfy the inequality

ζ0 � χα/ε,

then in the strip |M−M(H)| ≤ ε of the H-M plane, the material’s behavior is approxi-
mately visco-magnetoelastic and obeys the rate equation

Ṁ = χḢ − ζ1

α
[M−M(H, θ)].

This relation implies that M and H are not in phase under AC magnetic processes and
then are related in a complex form. In addition, a dependence of ζ0 on the derivative Ḣ
(and not only on its sign) would provide the same effect in the general case.

9. Generalization to Materials within Non-Uniform Fields

Within a quantum mechanical description, the interaction between magnetic moments
is modeled by exchange integrals of the probabilistic densities ([23], Ch. 15). The classical
analogue of the interaction in non-uniform fields may be modeled by allowing dependence
of the energy on the gradient of the magnetization or of the magnetic field ([20], § 44).

For definiteness, we look for a model involving ∇R H. To account for a dependence
on ∇R H, we consider the Clausius–Duhem inequality in the more general form with a
possibly non-zero extra-entropy flux kR [24]. Hence, we express the Clausius–Duhem
inequality as

−(φ̇R + ηR θ̇)− µ0MMM · Ḣ+ T RR · Ė + J(T + µ0H⊗M) ·W

−1
θ

qR · ∇R θ + θ∇R · kR = ρRθγ ≥ 0.

and let
θ, E,H, MMM,∇R θ, Ė, Ḣ,∇R H
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be the set of variables for the constitutive functions of φR, ηR,T RR, qR, γ. The standard
computation of φ̇R and substitution into (19) result in

−(∂θφR + ηR)θ̇ + (T RR − ∂EφR) · Ė− (µ0MMM+ ∂HHHφR) · Ḣ− ∂MMMφR · ṀMM
−∂∇R θφR · ∇R θ̇ − ∂ĖφR · Ë− ∂ḢHHφR · Ḧ− ∂∇RHHHφR · ∇R Ḣ

+J(T + µ0H⊗M) ·W− 1
θ

qR · ∇R θ + θ∇R · kR = ρRθγ ≥ 0.

Notice that kR is possibly dependent on Ḣ, and then ∂∇RHHHφR · ∇R Ḣ is not the unique
term in ∇R Ḣ. The linearity and arbitrariness of ∇R θ̇, Ḧ, Ë, θ̇ imply that

∂∇R θφR = 0, ∂ḢHHφR = 0, ∂ĖφR = 0, η = −∂θφR.

Moreover, the arbitrariness of W implies

T + µ0H⊗M ∈ Sym

and hence, by (18), T RR ∈ Sym. The remaining inequality, divided by θ, reads

1
θ
(T RR − ∂EφR) · Ė−

1
θ
(µ0MMM+ ∂HHHφR) · Ḣ−

1
θ

∂MMMφR · ṀMM−
1
θ

∂∇RHHHφR · ∇R Ḣ

− 1
θ2 qR · ∇R θ +∇R · kR = ρRγ ≥ 0. (58)

The identity

−1
θ

∂∇RHHHφR · ∇R Ḣ = −∇R · (1
θ

∂∇RHHHφRḢ) + [∇R · (1
θ

∂∇RHHHφR)] · Ḣ

allows (58) to be written in the form

1
θ
(T RR − ∂EφR) · Ė−

1
θ
(µ0MMM+ δHHHφR) · Ḣ− ∂MMMφR · ṀMM−

1
θ2 qR · ∇R θ

+∇R · (kR −
1
θ

∂∇RHHHφRḢ) = ρRγ ≥ 0.

where
δHHHφR = ∂HHHφR − θ∇R · (1

θ
∂∇RHHHφR)

is the variational derivative of φR with respect to H. Hence, we let

kR =
1
θ

∂∇RHHHφRḢ.

The remaining inequality is multiplied by θ to read

(T RR − ∂EφR) · Ė− (µ0MMM+ δHHHφR) · Ḣ− ∂MMMφR · ṀMM−
1
θ

qR · ∇R θ = ρRθγ ≥ 0. (59)

Equation (59) is strictly analogous to (23), with the differences being that ∂HHHφR is
replaced by δHHHφR and the constitutive functions depend also on ∇R H. The analysis of (23)
in Section 5 remains formally unchanged for (59). We only notice that, by

(µ0MMM+ δHHHφR) · Ḣ+ ∂MMMφR · ṀMM = −ρRθγH, (60)

the hysteretic properties are affected by the dependence on ∇R H.
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10. Relation to Other Models

The literature gives evidence of the Jiles–Atherton model, which in fact has been
established in different versions. Here we look at the model described in [12,25].

Denote by Manh the anhysteretic part of M and let

Manh = MsatL (He/a),

where He = H − αM denotes the effective magnetic field, a, α are constants, and L is the
Langevin function defined as L (x) = coth(x)− 1/x. The magnetization M is partitioned
into reversible and irreversible parts:

M = Mrev + Mirr. (61)

The connection between Manh, Mrev, and Mirr is assumed in the form [12]

Mrev = c(Manh −M), (62)

where c is a nonnegative constant also called the domain-wall-bowing parameter.
The irreversible part Mirr is assumed to obey

M′irr =
Manh(H)−M

k sgn Ḣ − α(Manh(H)−M)
, (63)

where a prime ′ denotes the derivative with respect to H and k is a microstructural parame-
ter accounting for pinning and domain-wall motion. In view of (61)–(63), we obtain the
evolution equation of M in the form

M′ =
1

1 + c
Manh(H)−M

k sgn Ḣ − α(Manh(H)−M)
+

c
1 + c

M′anh. (64)

Here, the factor c/(1 + c) represents the coefficient of reversibility. If k = 0, then

M′ = − 1
α(1 + c)

+
c

1 + c
M′anh(H) =

c
1 + c

[
M′anh(H)− 1

αc

]
,

which means that no hysteresis occurs. The right-hand side is a function of H, and we let

c
1 + c

[
M′anh(H)− 1

αc

]
:= χ0(H).

Hence, the anhysteretic function Manh is given by

M′anh(H) =
1 + c

c
χ0(H) +

1
αc

.

If χ0 is chosen, then Manh is determined by integration. In particular, as c → ∞,
we have

M′(H)→ M′anh(H)→ χ0(H).

Instead, if c = 0, then (64) reduces to

M′ =
M−Manh(H)

α(Manh(H)−M)− k sgn Ḣ
. (65)

11. Conclusions

Models of ferromagnetic hysteresis are established by following a thermodynamic
approach. The class of constitutive properties is required to obey the second law, expressed
by the Clausius–Duhem inequality, and the Euclidean invariance. Based on the invariance
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we have considered H = FTH and MMM = JF−1M as the appropriate magnetic field and
magnetization in the constitutive equations. It is worth emphasizing that the selection of
material invariant fields is non-unique. The selected pair H, MMM arises from two features.
One is the representation of the standard magnetic power:

ρRH · ṁ = (C−1H⊗ MMM) · Ė + J(H⊗M) ·W +H · ṀMM.

The other one is that the condition

T + µ0H⊗M ∈ Sym,

expressing the balance of angular momentum is assured by the dependence on H, M
through H, MMM. The magnetization field MMM is a Lagrangian counterpart of M; alternatively,
the Lagrangian counterpart of M may be defined as FTM [26].

By applying the representation Formula (39), we have established the model of hypo-
and hyper-magnetoelastic materials.

Ferromagnetic hysteresis is modeled through the thermodynamic condition

(∂HHHφR + µ0MMM) · Ḣ− ∂MMMφR · ṀMM = −ζ|Ḣ|,

and next with the one-dimensional approximation for small deformations, thereby letting
H ' H, MMM ' M. Moreover, H and M are assumed to be collinear, with H, M being the
significant components. The thermodynamic condition∮

M dH ≤ 0

denotes the classical property that the hysteresis curve in the H −M plane is run in the
counterclockwise sense. The free energy in the form (48) has the feature that, through
the factor α(θ), the ferromagnetic behavior approaches the paramagnetic one as θ →
θC. Hysteresis is shown to be modeled by Equation (54), where χ1 is the paramagnetic
susceptibility and χ2 affects the slope changes depending on the sign of Ḣ. Hence, in
general, hysteresis is governed by free energy φR and a hysteretic function ζ.

Two definite models have been established for the soft iron. In the first one, the free
energy φR and the hysteretic function ζ, are quadratic functions; the resulting constitutive
equation is similar to Equation (1.1) of [6]. As shown by Figure 3, the saturation does
not occur. In the second model, φR and ζ are not in polynomial forms, and the saturation
property was obtained (see Figure 4).

After discussing the dependence of the hysteresis loss on the quantities involved in an
alternating magnetic field, some generalizations of these models were introduced: First,
a rate-dependent generalization where hysteresis and frequency-dependent dissipation
occur jointly. Second, a generalization to materials within non-uniform fields by allowing a
dependence of the energy on the gradient of the magnetization or of the magnetic field.

A future improvement to the theory would be modeling materials where the mechani-
cal hysteresis occurs in connection with the ferromagnetic hysteresis.
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