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Abstract: To address the randomness of lateral ballast resistance in the field and its effect on the
force-deformation behavior of Continuous Welded Rail (CWR) with small-radius curves, field tests
were first conducted to investigate longitudinal and lateral ballast resistance on a 250 m-radius curve.
It was found that the lateral ballast resistance follows a normal distribution based on the Shapiro–Wilk
test. A finite element model of a small-radius curve CWR track was then established based on actual
field conditions, and the force-deformation characteristics were analyzed under thermal loading. The
results showed that it is of great significance to incorporate the randomness of the lateral ballast
resistance as the deformation mode is closer to the actual field situation. In particular, attention
should be given to areas where the lateral ballast resistance is weak. The research presented here has
significant implications for railway maintenance practice.

Keywords: Shapiro–Wilk test; lateral ballast resistance; finite element model; continuous welded rail

1. Introduction

Transportation infrastructures represented by railways and roads contribute greatly
to economic development. The characteristics of granular material including ballast and
aggregates, concrete, asphalt, steel, and so on, as well as their interactions, directly affect
the mechanical properties and service performance of transportation infrastructure [1–3].
The problems related to the use of seamed tracks especially on small-radius curves have
become progressively more serious, comprising joint deterioration, train swaying, elevated
maintenance expenses, and jeopardized running safety. As a result, continuous welded
rail (CWR) has been replacing seamed tracks over the past few decades and continues
to do so today due to its superior performance, which includes reduced maintenance
costs, extended service life, and improved passenger comfort. CWR tracks, especially for
small-radius curves, however, have certain drawbacks including buckling and broken
failure. Therefore, its use is regulated by various railroad administrations and international
organizations. For instance, before 2014, the National Railway Administration of China did
not permit the laying of CWR tracks on curves with a radius smaller than 300 m. Therefore,
a comprehensive study was conducted in Hebei province to investigate the CWR laying
of 250 m-radius curves for understanding and controlling the drawbacks [4]. A potential
drawback of CWR is track buckling in the lateral plane, which is the most significant issue
that needs to be understood and controlled [5]. Aside from significant deflection buckling,
CWR tracks can also experience issues such as lateral shifting and radial breathing [6]. In
summer, compressive loads in the rails cause the track to move outward; the compressive
forces caused by thermal loads can be described based on the following relation [7]:

N = EAα∆T (1)

where N is a compressive force;
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E denotes elastic modulus;
A denotes a cross-sectional area;
α denotes the thermal expansion coefficient;
∆T denotes the temperature difference between rail and neutral temperature.
Compared with a tangent section or curved section with a larger radius, the buckling

issue, lateral shifting, and radial breathing are more severe in smaller radius curves since the
radial thermal force and deformation in CWR increase as the curvature radius decreases [8].
This has negative consequences for the track as it reduces the lateral resistance and can
create localized lateral misalignments, even leading to buckling. Particularly, when there
is weak lateral restraint and high thermal forces, this movement is rarely nonuniform [9],
which is the main source of rail irregularity that may affect passenger comfort [10–13] and
vehicle-overhead infrastructure interaction [14]. In the worst-case scenario, it could even
pose a safety risk, e.g., a vehicle derailment [15]. Hence, it is of great significance to monitor
displacement for CWR tracks of small-radius curves [16].

To maintain the stability and alignment of CWR, lateral ballast resistance is considered
to be the most important factor [17] and contributes 60% and even up to 70% to the lateral
strength [18,19]. Other influencing factors include track curvature, initial misalignment,
and longitudinal and torsional stiffness. To measure the lateral ballast resistance, Single
Tie Push Test (STPT) and Lateral Track Panel Loading Test (LTPT) [20,21] are generally
adopted, and various factors are found to affect lateral ballast resistance, including ballast
consolidation [22], sleeper type [23–25], maintenance practice [19,26], etc. These factors
mentioned may exhibit variations along the track and lead to the variability of the lateral
ballast resistance [27–30]. However, existing studies have not adequately addressed the
overall randomness of lateral ballast resistance in the field or its effect on the actual force-
deformation behavior of the CWR track.

Although this 250-m-radius-curve CWR has been successfully laid in Hebei province,
certain technical challenges persist in terms of daily maintenance. Empirical knowledge
about the characterization of lateral ballast resistance randomness is not clear. Moreover,
the uncertainty introduced by the randomness to the real force-deformation behavior of
CWR with this small-radius curve is still lacking.

In this article, field tests are firstly conducted on a 250-m radius curve, followed by
characterization of the randomness of lateral ballast resistance through Shapiro–Wilk (SW)
testing. Subsequently, a numerical study is performed to examine the force-deformation
characteristics, which serves as a crucial foundation and initial step for further buckling
analysis. The nomenclature employed in this study can be found in Table A1.

2. Field Tests

The test was conducted at a curved section of the CWR track with a radius of 250 m
and a design speed of 120 km/h. The region has a maximum rail temperature difference of
84.8 ◦C. A total of 13 sleepers were randomly sampled for longitudinal ballast resistance
testing, and 15 sleepers were randomly sampled for lateral ballast resistance testing. The
distance between random samples was maintained at 6–10 sleeper spacing to prevent any
possible disturbances. The track under test is composed of standard Type III concrete
sleepers and standard 60 kg/m rail in China [31]. The spacing of the sleeper is 0.6 m, and
the track gauge is 1.435 m. The ballast layer in normal conditions consists of first-class
granite and has a shoulder width of 500 mm and a height of 150 mm, with a slope of
1:1.75. Longitudinal ballast resistance is crucial to resisting longitudinal forces generated
by thermal gradient, dynamic braking, and rail creep offered by sleepers and ballast to the
rails. As previously stated, the lateral deformation characteristics of CWR are significantly
influenced by lateral ballast resistance, which is considered the most important factor in
maintaining CWR alignment and stability. For random sampling purposes, a widely-used
method STPT is utilized to characterize the force-displacement relationship, in which the
displacement is determined by measuring sleeper displacement, and the force is determined
by measuring the pushing force.
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2.1. Testing Method

To determine longitudinal resistance, the fasteners on the measured sleeper were
loosened, and the rail pad was removed. A hydraulic jack was used to apply longitudinal
thrust, and its value was recorded by a digital instrument display. A pressure sensor
was placed between the hydraulic jack and the digital instrument display while reacting
equipment provides the longitudinal reaction force. The location for installing the reacting
equipment was determined based on the range of the hydraulic jack and the thickness of
the pressure sensor. The displacement of the rail sleeper was recorded using a dial gauge.
The test schematic and field test diagrams are presented in Figures 1 and 2, respectively.
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Figure 2. Field tests of longitudinal ballast resistance.

To conduct the lateral ballast resistance force test, the fasteners of the sleeper being
measured were loosened, and the rail pad was removed. Then, the sleeper was pushed
using a force loading and reading system that includes a hydraulic jack, a sensor, reacting
equipment, and a digital instrument display. The lateral displacement of the rail sleeper
was also measured using a dial gauge. The schematic and field test diagram are shown in
Figures 3 and 4.
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dial gauge.

2.2. Testing Results

The force-displacement relationship for longitudinal and lateral ballast resistance is
presented in Figures 5 and 6, respectively. As the testing is focused on small displacement
(less than 8 mm), no softening or drooping behavior is observed in this test. Within the
measurement range, it can be observed that the longitudinal ballast resistance displays
significant variability, whereas the lateral ballast resistance exhibits relatively low variability.
For both longitudinal and lateral ballast resistance, the tangent stiffness increases rapidly
at first and then tends to increase more slowly.
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Figure 5. Longitudinal ballast resistance versus displacement.
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2.3. SW Test for Normality of Lateral Ballast Resistance

To provide a reference for generating random lateral ballast resistance, the SW test for
normality is conducted, as it is suitable for a small sample size, i.e., 15, in this case, [32]. Its
general procedures are as follows:

Given n sample observations in ascending order x(1) 6 x(2) 6 · · · 6 x(i) 6 · · · 6 x(n)
Then calculate di, which is defined as

di = x(n−i+1) − x(i), 1 6 i 6 k =

{
n = 2k

n = 2k + 1
(2)
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The test statistic W (between 0 and 1) for normality is defined by

W =

(
k
∑

i=1
aidi

)2

n
∑

i=1
(xi − x)2

(3)

where x represents the sample mean value.
ai = (a1, · · · , an) =

mTV−1

(mTV−1V−1m)
1
2

m = (m1, · · · , mn) is composed of the expected values of the order statistics of inde-
pendent and identically distributed random variables sampled from the standard normal
distribution.

V is the covariance matrix of those normal order statistics.
Based on the significance level and sample size, the value of the quantile value Wα

is determined. If the test statistic W is less than Wα, the normality hypothesis is rejected,
implying that the data does not conform to a normal distribution. Otherwise, the null
hypothesis is accepted, indicating that the data follows a normal distribution.

The SW method is then used to test the normality of lateral ballast resistance. Typi-
cally, ballast resistance is factored into calculations when the displacement of the sleeper
concerning the ballast reaches a value of 2 mm [22]. However, due to the discrete nature of
the data, direct acquisition of lateral ballast resistance at 2 mm from the scatter plot is not
feasible. In such cases, linear interpolation is applied to calculate lateral ballast resistance
at 2 mm; the results are shown in Figure 7.
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The mean, variance, and standard deviation of the resulting values are 8.72, 2.49, and
1.58, respectively. The null hypothesis, H0, is that the overall distribution of the lateral
ballast resistance samples follows a normal distribution. The test results, given a 5% level
of significance, are shown in Table 1.
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Table 1. Distribution test of ballast lateral resistance at 2 mm through the SW test.

Data x(i) x(n−i+1) di ai aidi (xi−
¯
x)

2

6.025 6.025 10.71958 4.694577 0.515 2.417707 5.701912
6.877692 6.877692 10 3.122308 0.3306 1.032235 2.356763
6.933333 6.933333 9.689655 2.756322 0.2495 0.687702 2.189022
7.036061 7.036061 9.576923 2.540862 0.1878 0.477174 1.895597
7.334783 7.334783 9.420492 2.085709 0.1353 0.282196 1.162267

7.46 7.46 9.354516 1.894516 0.088 0.166717 0.907957
7.544828 7.544828 9.296154 1.751326 0.0433 0.075832 0.753493

8.924 0.261256
9.296154 0.780195
9.354516 0.886702
9.420492 1.015307
9.576923 1.355025
9.689655 1.630187

10 2.518989
10.71958 5.32091

After calculation

b =
k

∑
i=1

aidi = 5.14
n

∑
i=1

(xi − x)2 = 28.74

W =
b2

n
∑

i=1
(xi − x)2

= 0.919 Wα = 0.881

W > Wα, therefore accepting H0, is indicating that the data follows a normal distribu-
tion. Knowledge of lateral ballast resistance, including its characteristics and determination,
is crucial for ensuring the safety and performance of CWR. On the other hand, the statistical
distribution of lateral ballast resistance can provide a reliable input parameter for further
numerical investigation of this 250-m radius curve.

3. Numerical Study
3.1. Finite Element (FE) Model of CWR Track

An FE model has been developed for a small-radius curve CWR track based on actual
field conditions in Ansys. The track length considered in the model is approximately
600 m, including a certain length of tangent track, circular curve, and transition curve (see
Figure 8a). The model encompasses rail, sleeper, and fastener, as well as the effect of ballast
resistance, whose bottom and two ends are both fixed. The two-node beam elements based
on Timoshenko’s theory are used to model the sleepers and rails. The original shape of the
standard 60 kg/m rail is adopted for the section, and a simplified rectangle shape is set for
the sleeper in FE modeling. Linear spring elements are used to simulate the fasteners which
are placed between the rail and the sleeper. The beam elements to model rail and sleeper
are assumed to be homogeneous, isotropic, and linearly elastic, and the spring element
to model fasteners is linearly elastic. Based on field tests, the bilinear spring element and
nonlinear spring element have been implemented to replicate the lateral ballast resistance
and longitudinal ballast resistance, respectively. The input parameters for each component
are reasonably adopted through relevant literature sources; refer to Table 2. The element
size of the rail mesh is 0.1 m, and the element size of the sleeper mesh is from 0.58 to 1.66,
as depicted in Figure 8b.

In the developed FE model, there are 1003 sleepers in total; hence, the lateral ballast
resistance is discretized into n (n = 1003) units. To generate a set of random numbers that
conform to a normal distribution with a mean of 8.72 and variance of 2.49, 1003 uniformly
distributed random numbers are generated and then transformed using the Box–Muller
method [33]. The distribution of generated lateral ballast resistance along the CWR track
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is presented in Figure 9. It is worth noting that the original input lateral ballast resistance
along the CWR track undergoes smoothing techniques to indicate its trend more clearly.
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Figure 8. FE model of CWR track (a) Whole model; (b)FE model details of CWR track.

Table 2. Component properties of FE model of CWR track.

Rail

Height 176 mm
Cross-sectional area 77.45 cm2

Moment of inertia about the
lateral axis 3217 cm4

Moment of inertia about the
vertical axis 524 cm4

Elastic modulus 2.06 × 1011 N/m2

Poisson’s ratio 0.3

Fastener

Lateral stiffness 9 × 106 N/m
Longitudinal stiffness 5 × 106 N/m

Horizontal torsional stiffness 207 N·m/rad
Torsion moment 150N·m

Sleeper
Length 2.6 m

Elastic modulus 3.6 × 1010 N/m2

Sleeper spacing 0.6 m
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Figure 9. Generated normally distributed lateral ballast resistance. (a) Histogram of generated
normally distributed lateral ballast resistance; (b) Randomly distributed lateral ballast resistance
along the CWR track.
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The nonlinear force-displacement curve of longitudinal ballast resistance is generated
by curve-fitting using the least squares method, the fitted formula is:

rlo = 1.63 − 18.79dlo + 35.42d3/4
lo (4)

in which
rlo—longitudinal ballast resistance, kN/sleeper;
dlo—longitudinal deflection, mm.

3.2. Force-Deformation Characteristic Analysis

Under the action of the thermal load caused by a temperature increase above the
neutral temperature, the force-deformation characteristic will be analyzed. The FE model
is first validated by applying a 14 ◦C temperature increase. The curve versine, measured
using a chord length of 10 m, is compared with the field observation data, as shown in
Figure 10.
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Figure 10. Versine distribution comparison measured by a chord length of 10 m.

A temperature difference of 50 ◦C above the neutral temperature is then considered a
possible loading condition at risk. Therefore, the later investigation is conducted under
thermal loading of 50 ◦C increase. The comparison of lateral deformation before and after
the temperature increase is shown in Figure 11. Figure 12 presents the comparison of lateral
deflection after a 50 ◦C temperature increase between input uniform and random lateral
ballast resistance.
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Figure 11. Comparison of lateral track deformation before and after 50 ◦C temperature increase.
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Figure 12. Lateral deflection after 50 ◦C temperature increase.

To explore the correlation between the smoothed lateral ballast resistance and lateral
deformation, a scatter plot of lateral ballast resistance versus lateral deflection is further
provided in Figure 13.
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Figure 13. Scatterplot of lateral ballast resistance versus lateral deflection.

As the most concerning to maintenance is the region with maximum displacement,
Figure 14 displays a contrast between the smoothed lateral ballast resistance and the lateral
deformation along the CWR track.
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Figure 14. Smoothed lateral ballast resistance versus the lateral deformation along the track.

When temperature increases, a thermal axial force is produced inside the rail. Figure 15
illustrates the distribution of the thermal axial force at 50 ◦C above the neutral temperature.
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Figure 15. Thermal force after 50 ◦C temperature increase.

Within this framework, a parametric study is carried out to examine the effect of
variations in the mean and variance of the normally distributed lateral ballast resistance.
First, the standard deviation of 1.58 for the lateral ballast resistance remains constant, while
the mean values are adjusted to 10, 8.72, 7.5, and 6, respectively. Figure 16 shows the lateral
deflection along the CWR track under each mean value. Figure 17 presents the maximum,
minimum, mean, and standard deviation of output lateral deflection under different mean
values of input lateral ballast resistance.
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Figure 16. Lateral deflection under different mean values.

Materials 2023, 16, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 17. The maximum, minimum, mean, and standard deviation of lateral deflection under dif-
ferent mean values. 

In the next step, the mean value of 8.72 is kept constant while the standard deviation 
of the lateral ballast resistance is varied from 1 to 2.5. Figure 18 presents lateral deflection 
under different standard deviations. 

 
Figure 18. Lateral deflection under different standard deviations. 

The maximum, minimum, mean, and standard deviations of lateral deflection are 
presented versus the standard deviation of input lateral ballast resistance in Figure 19. 

6 7 8 9 10

0.7

0.8

0.9

1.0

1.1

1.2

1.3

La
te

ra
l d

ef
le

ct
io

n 
(m

m
)

Mean value of input lateral ballast resistance (kN/sleeper)

 Maximum
 Minimum
 Mean
 Standard deviation

0.00

0.02

0.04

0.06

0.08

0.10

St
an

da
rd

 d
ev

ia
tio

n 
of

 la
te

ra
l d

ef
le

ct
io

n 
(m

m
)

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

ra
l d

ef
le

ct
io

n 
(m

m
)

Location (m)

 μ=8.72,σ=1
 μ=8.72,σ=1.58
 μ=8.72,σ=2
 μ=8.72,σ=2.5

Figure 17. The maximum, minimum, mean, and standard deviation of lateral deflection under
different mean values.

In the next step, the mean value of 8.72 is kept constant while the standard deviation
of the lateral ballast resistance is varied from 1 to 2.5. Figure 18 presents lateral deflection
under different standard deviations.
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Figure 18. Lateral deflection under different standard deviations.

The maximum, minimum, mean, and standard deviations of lateral deflection are
presented versus the standard deviation of input lateral ballast resistance in Figure 19.
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Figure 19. The maximum, minimum, mean, and standard deviations of lateral deflection under
different standard deviations.

4. Discussion

Figure 10 shows that the maximum and minimum values of both the numerical results
and the field measurements are similar, and their randomly distributed patterns agree well.
However, it should be noted that the limited testing sample and hypothetical input for
lateral ballast resistance make it impossible to reproduce the exact versine distribution
observed in the field.

As shown in Figures 11 and 12, the lateral deformation of the track is uniform when
the randomness of lateral ballast resistance is not considered. In contrast, the lateral
deformation of the track becomes random instead of uniform without considering the
randomness. In general, with or without the consideration of randomness, the track as
a whole moves outward laterally during a temperature increase while there is almost no
lateral displacement in the tangent, which is consistent with the breathing phenomenon
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observed in a small-radius curve. The lateral deformation in the transition curve increases
from the transition start (intersection point of tangent-transition curve) to the transition end
(intersection point of circular curve-transition curve). Compared with Figure 11, Figure 12
provides a more detailed comparison of the deformation between the two cases. In the
absence of lateral ballast resistance randomness, the lateral displacement of the track in
the circular curve remains constant at 0.768 mm. In contrast, when the randomness of the
lateral ballast resistance is taken into account, the lateral track deflection in the circular
curve fluctuates around 0.768 mm. The largest value of 0.922 mm is observed at location
440.1 m, while the smallest of 0.709 mm is found at location 404.0 m, representing an
increase of 20.05% and a decrease of 7.68% compared to the value of 0.768 mm. Therefore,
relying solely on deterministic analyses for track safety and maintenance strategies is
insufficient unless worst-case scenarios for all parameters are considered.

The coefficient of determination of the trend line in Figure 13 indicates a low to moder-
ate correlation between the lateral ballast resistance and the lateral deflection. However, it is
not feasible to separate the respective performances of ballast resistance by each sleeper as
they work together to resist deformation. Figure 14 demonstrates that the lateral deforma-
tion of the track is minimized in regions where the lateral ballast resistance is comparatively
stronger, whereas it is higher in regions where the lateral ballast resistance is weaker. As
indicated in Figures 13 and 14, in the process of railway track operation and maintenance,
it is of paramount importance to enhance the monitoring and maintenance of areas with
weaker lateral ballast resistance.

As shown in Figure 15, without considering the random lateral ballast resistance, the
actual thermal axial force inside the tangent track is almost identical to the theoretically
calculated thermal axial force of 941.3 kN given in Equation (1), with an error of less
than 1%. The thermal axial force in the transition curve is lower than that in the tangent
track, decreasing linearly from the transition start (intersection point of tangent-transition
curve) to the transition end (intersection point of circular curve-transition curve). When
the random lateral ballast resistance is taken into account, the thermal axial force in the
tangent track and transition curve remains the same as in the uniform case. In the circular
curve, the thermal axial force is not uniform, but the difference in thermal force is less than
1 kN, which does not significantly impact the result.

It is apparent that as the mean value increases, the overall lateral deflection decreases,
as shown in Figure 16. As seen in Figure 17, a reduction in the mean value of lateral ballast
resistance from 10 to 6 kN/sleeper results in an increase in the maximum deflection from
0.825 mm to 1.245 mm, corresponding to a decrease of 50.9%. The same trend applies
to the minimum and mean of lateral deflection. Additionally, a significant lateral ballast
resistance has the ability to mitigate the variation in the lateral deflection of the track.
Therefore, it can be inferred that maintaining a high-quality track alignment requires high
lateral ballast resistance. A stretching of the deflection magnitude can be observed around
a certain value as the standard deviation of the lateral ballast resistance is increased, as
presented in Figure 18. As seen from Figure 19, an increase in the input standard deviation
of lateral ballast resistance from 1.0 to 2.5 kN/sleeper results in an increase in the maximum
deflection from 0.840 mm to 1.172 mm, corresponding to a decrease of 39.5%. The change of
standard deviation of input lateral ballast resistance minimally affects the mean value and
minimum value of lateral deflection, as observed. As the standard deviation of input lateral
ballast resistance is increased from 1.0 to 2.5 kN/sleeper, the minimum deflection/mean
deflection changes from 0.708/0.770 mm to 0.678/0.797 mm, corresponding to a rate of
change of less than 5%.

5. Conclusions

This paper presents an analysis of field test data on the longitudinal and lateral ballast
resistance of a 250 m-radius-curve CWR. The distribution of lateral ballast resistance is
examined using the SW test, and the results indicate that it follows a normal distribution.
Based on the field conditions and testing results, an FE model is developed and validated.
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Under thermal loading of temperature increase, after incorporating the randomness of
lateral ballast resistance, the deformation of the circular curves becomes random, which
more accurately reflects the actual situation and highlights the significance of incorporating
the randomness of ballast resistance in the force-deformation characteristic study. A
negative correlation is revealed along the CWR between input lateral ballast resistance
and output lateral deflection. Regions with stronger lateral ballast resistance exhibit
minimal lateral deformation of the track, while those with weaker resistance have higher
lateral deformation. Consequently, improving monitoring and maintenance in areas with
weaker lateral ballast resistance is of paramount importance during railway track operation
and maintenance. Within this framework, parametric studies have also been conducted
by varying the mean value and standard deviation of input lateral ballast resistance.
High lateral ballast resistance is inferred to be required to maintain high-quality track
alignment. When compared to the mean value of input lateral ballast resistance, varying
its standard deviation appears to have less effect on its deformation pattern when lateral
ballast resistance is maintained high.

It is worth noting that the resistance test is limited to a small displacement range,
which does not include the peak and residual values. As a result, only force-deformation
analysis is conducted in the numerical study. With data and distribution types of ballast
resistance under large deformation conditions, buckling analysis can be further performed.
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Appendix A

Given the nomenclature employed in this work, Table A1 provides a summary of the
key notations adopted in this article.

Table A1. Nomenclature employed in this work.

Nomenclature Description

CWR Continuous welded rail
FE Finite element
A Cross-sectional area of rail
E Elastic modulus of rail
N Compressive force of rail
dlo Longitudinal deflection
rlo Longitudinal ballast resistance
dla Lateral deflection
rla Lateral ballast resistance
n Number of samples
α Thermal expansion coefficient

x(i) Sample observations

x Mean value of sample observations

(·)T Transpose of a matrix

(·)−1 Inverse of a matrix
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