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Abstract: Crystalline metals generally exhibit good deformability but low strength and poor irradia-
tion tolerance. Amorphous materials in general display poor deformability but high strength and
good irradiation tolerance. Interestingly, refining characteristic size can enhance the flow strength
of crystalline metals and the deformability of amorphous materials. Thus, crystalline–amorphous
nanostructures can exhibit an enhanced strength and an improved plastic flow stability. In addition,
high-density interfaces can trap radiation-induced defects and accommodate free volume fluctuation.
In this article, we review crystalline–amorphous nanocomposites with characteristic microstructures
including nanolaminates, core–shell microstructures, and crystalline/amorphous-based dual-phase
nanocomposites. The focus is put on synthesis of characteristic microstructures, deformation behav-
iors, and multiscale materials modelling.
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1. Introduction

Strong, ductile, thermally stable, and irradiation tolerant materials are in urgent
demand for improving the safety and efficiency of advanced nuclear reactors [1–3]. Ma-
terials that employ microstructure features to manage radiation damage and maintain
high-temperature mechanical properties are especially desirable [3]. For crystalline mate-
rials, high strength is usually achieved by refining crystal size or introducing dispersed
reinforcement precipitates/particles, corresponding to grain boundary/interface strength-
ening or second phase strengthening [4–7]. However, microstructural stability and plastic
deformability of materials with high density interfaces are facing great challenges. Me-
chanically and/or thermally driven grain coarsening usually occurs due to the excess grain
boundary (GB) free energy, resulting in softening behavior [8,9]. Due to the fine grain
size, dislocations are most likely to nucleate at GBs, propagate across grains, and then
be absorbed at the opposite GBs [10]. Dislocation accumulation at GBs and limited slip
transmission across GBs results in strain localization at GBs and then promotes plastic flow
instability along GBs and even facilitates crack initiation at GBs, leading to premature fail-
ure [11,12]. Thus, there are extensive efforts to improve mechanical properties of materials
by tailoring structures and properties of GBs [13–15]. As for second phase strengthened
metallic materials, intermetallic or covalent crystalline precipitates are intrinsically brittle
at room temperature (RT). The significant difference in elasticity and plasticity between
precipitates and matrix results in deformation incompatibility which leads to precipitate
cracking or interface de-cohesion [16–18]. Thus, there is an urgent demand to improve
co-deformability between matrix and second phase, such as reducing dimension of second
phase [19–21]. In addition to mechanical properties, crystalline materials have issues due to
incomplete defect self-repairing of interstitials and vacancies under irradiation, which leads
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to embrittlement and swelling from defect clustering [22,23]. Experimental and modeling
studies demonstrated that interfaces including interphase boundaries, twin boundaries
and grain boundaries can play roles in absorbing, trapping, and promoting reassembly of
radiation-generated defects [24,25].

In contrast, amorphous materials generally exhibit superior resistance to wear and
corrosion, and unique mechanical and chemical properties due to the absence of GBs and
crystalline structures [26–29]. Especially high-crystallization-temperature amorphous mate-
rials could be very promising candidates for high radiation tolerance at high temperatures
since they do not contain conventional crystal defects such as vacancies, interstitials, or
dislocations which evolve in crystalline materials under irradiation [28,30–32]. With respect
to the bonding mechanisms, amorphous materials can be classified into metallic glass, oxide
ceramics and non-oxide ceramics. Metallic glasses (MGs) are composed of multiple princi-
ple metal elements that form metallic bonding. Recrystallization of a glassy phase occurs at
annealing or elevated temperature. Under ion or neutron irradiation, thermal spikes form
due to damage cascade formation. However, whether localized recrystallization occurs or
not is complicated and controlled by the cooling rate of damage cascade region [33,34]. This
complexity leads to unique radiation tolerance of MGs. Amorphous ceramic is an inorganic,
non-metallic, solid material comprising non-metal or metalloid atoms primarily held in
ionic and covalent bonds. Non-metallic-bonded structures tend to have rather high melting
points and high strength but poor deformability and low fracture toughness [35–37]. Plastic
deformation in amorphous materials is generally accommodated discretely by the so-called
shear transformation zones (STZ) and/or localized shear banding (flow instability) [38–41].
The STZ mechanism is connected to microstructural heterogeneities. The formation and
propagation of shear bands is ascribed to statistically occurring, spatially homogeneous
nucleation of STZs and their coalescence [41–44]. Experimental and modelling studies re-
vealed that amorphous materials exhibit high strength without strain hardening capability
and “brittle-like” behavior [45,46].

Improving the strength and plasticity of crystalline and amorphous materials can be
realized through composition engineering and microstructural engineering [47–51]. In
contrast, microstructural engineering shows more promise, such as NC materials with ther-
mally stabilized amorphous GBs or crystal–amorphous nanolaminates [52–55]. Compared
to ordered crystal–crystal interface, amorphous boundary layers can effectively reduce
interface energy, block the motion of dislocations, trap/absorb and smear accumulated
dislocations away along crystal–amorphous interfaces (CAIs) [56,57]. More importantly,
refined/constrained nanosized amorphous phase shows plastic flow ability [58,59]. In
contrast to the brittle intermetallic compound, the amorphous nanoparticles as second
phase can co-deform with metallic matrix, enhancing strength while maintaining large
deformability [60]. In addition, the ductile nanosized crystal or dendrites in amorphous
matrix can inhibit nucleation/propagation of shear bands and co-deformed with amor-
phous matrix, improving plasticity of amorphous materials [47,61–63]. Given the superior
radiation tolerance exhibited in amorphous ceramic alloys, crystalline metal/amorphous
ceramic composites have potential applications in extreme irradiation environments due to
better heat conductivity and improved thermo-mechanical properties [64–66]. CAIs can
act as defect sink because amorphous phase can trap and relax away conventional crystal
defects (such as vacancies and interstitials) that are generated in crystalline phase. In the
Fe-SiOC nanolaminates [65,67] and Ni-SiOC nanocomposites [68], the CAIs act as stable
and efficient sinks for defects, mitigating irradiation damage and suppressing void swelling
during irradiation. In addition, the interface could suppress crystallization of amorphous
layer within the interface-affected zones, as observed in Fe/Y2O3 nanolayers with indi-
vidual layer thicknesses of 10 and 50 nm [69], because interfaces absorb radiation-induced
defects and produce interfacial stress to mitigate radiation-induced crystallization.

Based on characteristic microstructures, the reported crystalline–amorphous dual-
phase nanocomposite system includes crystalline–amorphous nanolaminates [55,56,70,71],
crystal–amorphous core–shell structures [13,14,53,72] and crystal- or amorphous-based
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dual-phase nanocomposites [60,62,63,73]. In this article, we briefly review crystalline–
amorphous dual-phase nanocomposites with the three typical microstructures. The focus
is put on synthesis of characteristic microstructures, deformation behaviors, and multiscale
materials modelling.

2. Characteristic Microstructures
2.1. Nanolaminates

Crystalline–amorphous nanolaminates are composed of alternatively crystalline and
amorphous nanolayers. Compared to a liquid-to-solid melting/casting routine, physi-
cal vapor deposition (PVD) such as magnetron sputtering allows for the deposition of
crystalline–amorphous layer with a wide range of composition, thickness and volume
fraction [74,75]. A typical sputtering process entails the condensation of gaseous particles
into a solid state at a cooling rate as fast as ~1010–1012 K/s. The control of thickness of
the crystalline–amorphous nanolayer is usually realized by changing the input power,
deposition time and substrate–target distance. The deposition selection of crystalline vs.
amorphous layer is controlled by switching shutter of individual evaporation cells. Amor-
phous layers including metallic glasses (MGs) [56,70,74], amorphous ceramics [66,69,76],
and carbon or silicon family elemental glasses [71,77,78] have been successfully fabricated
in multi-layered crystalline–amorphous composites, as shown in Figure 1. Due to the
non-equilibrium fabrication process, crystalline–amorphous nanolaminates may exhibit
poor thermal stability under heating, which can be attributed to grain growth/coarsening
of NC metals in the crystal nanolayer [79], crystallization of amorphous layers [80], and
chemical reaction between crystalline and amorphous layers [81]. Hence, the composition
selection and layer morphology control need to be optimized.
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Figure 1. Transmission electron microscope (TEM) images of crystalline–amorphous multilayers
synthesized by physical vapor deposition techniques: (a) crystalline Cu layers and amorphous CuNb
(metallic glass) layers [74], (b) crystalline Al layers and amorphous Si layers [71], and (c) crystalline
Fe layers and amorphous SiOC layers [67].

2.2. Core–Shell Nanostructures

Dual-phase core–shell nanostructures are usually composed of crystalline phase as the
core surrounded by amorphous phase as the shell. The shell is generally a few nanometers
thick. Such characteristic microstructures can be synthesized through GB complexion [52,82]
or spontaneous phase separation [14,53]. GB segregation by dopant elements during high
temperature annealing can promote formation of amorphous intergranular thin film (AIF), i.e.,
amorphous GB complexion, as demonstrated in a variety of binary and ternary metallic alloys
such as Ni-W, Ni-Mo, Ni-Zr, Cu-Zr, Cu-Zr-Hf and Al-(Mg, Fe, Ni)-Y [83–88]. The formation
of AIF is compositionally selective under the thermodynamic and kinetic constraints, i.e.,
encouraging the segregation of dopants to interfaces and lowering the formation energy
for a glassy structure [82,89–91]. Correspondingly, Schuler and Rupert [85] proposed that
dopant elements with a positive enthalpy of segregation and negative enthalpy of mixing
promote the formation of amorphous GB complexions. The thickness and stability of
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AIF are mainly dependent on chemical complexity at GB, i.e., increasing the chemical
complexity can increase the thickness and stability of AIF. For example, the AIF thickness in
Cu-Zr-Hf ternary alloy is larger than that in Cu-Zr binary alloy (Figure 2) [86,92]. It is worth
mentioning that the crystalline–amorphous nanocomposites synthesized by amorphous
GB complexion generally exhibit high thermal stability [93,94], because amorphous GB
complexion can extensively inhibit grain growth of NC metals by reducing GB energy and
kinetically slowing GB migration based on solute drag. More importantly, the amorphous
GB complexion is usually formed under high-temperature annealing.
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Figure 2. High-angle annular dark-field scanning TEM (STEM) images and STEM-EDS line scans
of GB regions for (a,b) Cu-Zr alloy and (d,e) Cu-Zr-Hf alloy. Strong segregation of the dopants
occurs at GB region. (c,f) HRTEM images of GBs in Cu-Zr alloy and Cu-Zr-Hf alloy [86]. The bold
yellow line in (a) and (d) indicates the scanning position. The yellow dashed lines in (f) show the
crystalline-amorphous interfaces.

Sputtering deposition is another method to synthesize core–shell nanostructures,
corresponding to a self-assembly process associated with phase separation [14,53,72,95].
When Al-based alloy target with higher Al content (e.g., 95 at.%) is used for sputtering
deposition, Al nanocrystals nucleate in the matrix of Al-based MG, forming a crystalline–
amorphous core–shell nanostructure [14]. Since MGs usually show low thermal stability,
fast crystallization will occur in MGs shell under heating, leading to low thermal stability
of crystal–MGs nanostructures [14,96]. In contrast, amorphous ceramic has much higher
thermal stability and can form along GBs of nanocrystalline metals during sputtering [53,72].
Recently, amorphous SiOC ceramic with a wide range of compositions was synthesized by
co-sputtering SiC and SiO2 targets and exhibit superb thermal stability with crystallization
temperature above 1300 ◦C [28]. When Si-O-C were co-sputtered with metal elements (Fe
or Ni), the bonding energy difference between metallic and non-metallic elements promotes
phase separation [53,72,97]. With increasing the content of metallic element up to 70–80 at.%,
the core–shell nanostructures form (Figure 3) [53,72]. The as-deposited Fe(80 at.%)-SiOC
film is composed of crystalline Fe nanocolumns and nanoscale shell of amorphous ceramic
SiOC, exhibiting a core–shell nanocolumnar structure [72], while the as-deposited Ni(75
at.%)-SiOC film comprises crystalline Ni nanocrystals and nanoscale grain boundaries
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of amorphous ceramic SiOC, exhibiting a core–shell nanocrystalline structure [53]. High-
temperature annealing experiments demonstrated that the Fe(80 at.%)-SiOC and Ni(75
at.%)-SiOC core–shell nanostructures display excellent thermo-mechanical stability up
to annealing temperature of 600 ◦C [60,72]. The high thermal stability is ascribed to the
high crystallization temperature of amorphous SiOC and its kinetically pinning effect on
inhibiting grain growth of NC metals.
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(b) HRTEM image showing nanocrystalline Ni and amorphous SiOC GBs [53]. (c) TEM image
of the as-deposited Fe(80 at.%)-SiOC core–shell nanocolumnars and (d) the schematic diagram of the
core–shell nanocolumnar structures [72].

It is worth mentioning that cellular structure associated with chemical segregation
at cellular boundary was widely observed in laser-assisted manufacturing and process-
ing processes [98–100]. With the “right” chemical segregation, the amorphous shell can
form [100,101]. As shown in Figure 4a,b, Sun et al. [101] fabricated a heterogeneous gradi-
ent nanostructured layer (600 µm-thick) by laser surface remelting an austenitic Hadfield
manganese steel. The nanostructured layer exhibits a nanocrystalline–amorphous core–
shell microstructure. In addition, a core–shell microstructure shown in Figure 4c,d is widely
observed in austenitic 316 L stainless steels fabricated by a laser powder-bed-fusion (L-PBF)
technique [100]. Although the shell is not an amorphous phase, the composition is generally
different from the core due to segregation of alloying elements, such as segregation of Mo
and Cr to the solidification cellular walls and formation of amorphous nanoparticles along
low-angle grain boundaries. This could provide a strategy to fabricate bulk core–shell
crystal–amorphous nanocomposites by advanced laser-assisted manufacturing technique
with high efficiency, low cost, and high flexibility.
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Figure 4. (a) A TEM image of laser-processed austenitic Hadfield manganese steel, showing
crystalline–amorphous core–shell nanostructure. (b) An HRTEM image showing nanocrystals and
amorphous GBs [101]. (c) A TEM image of solidification cells in austenitic 316 L stainless steels fabri-
cated by L-PBF technique. (d) HAADF-STEM image of the solidification cells showing nanoparticles
segregated to the cell walls [100,102].

2.3. Dual-Phase Nanocomposites

Analogous to metallic alloy with precipitates, crystalline or amorphous nanopar-
ticles can form in amorphous or crystalline matrix, producing crystalline–amorphous
dual-phase nanocomposites [60,62,63,73]. Since the non-equilibrium fabrication process of
MGs requires fast cooling during rapid solidification or sputtering deposition, nanocrys-
talline phase can form and grow in MG matrix via manipulating cooling rate, annealing
temperature/time and adjusting composition [62,103–105]. Ming et al. [62] synthesized
TiZr-based crystalline–amorphous composites by melt spinning with a mediate cooling rate
of ~106 K/s, which consists of micro-sized equiaxed grains and nano-width amorphous
grain boundary. Notably, each grain displays crystalline–amorphous nanostructure com-
prising nanosized metastable crystalline (~36 nm) and amorphous (~25 nm) phases that are
arranged in the form of 3D-interconnected nano-bands (Figure 5). In situ micromechanical
tests (tension and compression) of the TiZr-based dual-phase composites revealed the
enhanced ductility and strain hardening capability than both amorphous and crystalline
phases. The crystalline–amorphous nanostructure exhibits an ultra-high yield strength of
~1.80 GPa, an ultimate tensile strength of ~2.3 GPa, and a large uniform strain of ~7.0%. By
finite element analysis, the authors claimed the synergetic deformation mechanisms be-
tween amorphous phase and crystalline phase. The amorphous phase constrains crystalline
domains, imposing extra strain-hardening to crystalline domains, while crystalline domains
plastically deform on certain slip planes, preventing the premature shear localization in the
amorphous phases.
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Figure 5. TiZr-based crystalline–amorphous composite [62]: (a) A BF-TEM image showing the
polycrystalline structure with average grain size of 3 um; (b) A TEM image showing amorphous
grain boundary, bicontinuous bcc-β (bright) and amorphous (dark) nano-bands; (c) A 3D-networked-
bicontinuous nanoarchitecture of a grain according to the Ti and Cu distribution maps.

Amorphous-to-crystalline transition occurs when highly correlated atomic movements
are allowed. Heating is the most obvious example of crystallization. Correspondingly,
annealing the amorphous precursor is another approach to form nanocrystals in amorphous
matrix based on partial crystallization [73,103]. Notably, the size and volume fraction of
nanocrystals can be modified by adjusting the annealing temperature and/or time. Li et al.
fabricated a series of Fe-based crystal–amorphous nanocomposites through nanocrystal-
lization in Fe-based amorphous ribbons via annealing [103]. The diameter and volume
fraction of Fe(Si) nanocrystals increase with increasing annealing time, for example, amor-
phous feature size is reduced from 10 nm to less than 0.5 nm as the volume fraction of
nanocrystals increases from 16% to 95%. Xu et al. [106] reported that bulk amorphous
Al2O3-ZrO2-Y2O3 remain a fully amorphous structure when hot pressed at 350 ◦C, while
change to amorphous matrix composite with nanocrystallite when hot pressed was con-
ducted at 400 ◦C or 450 ◦C. In addition to annealing, amorphous phase may experience
irradiation-induced amorphous-to-crystalline transition under high energy particle irradi-
ation [107–109]. Nanocrystals were observed in Ni52.5Nb10Zr15Ti15Pt7.5 amorphous alloy
(Figure 6a) after the alloy was subject to 1 MeV Ni ion irradiation [108]. Three distinctive
regions are marked in the irradiated specimen (Figure 6b), including amorphous matrix
with bright contrast (Region 1), irregular precipitates with relatively darker contrast (Region
2), and nanocrystals (Region 3) within region 2, as evidenced from dark field TEM image in
Figure 6c. Composition analysis shows that regions 2 and 3 share the same composition,
but they are different from region 1. Correspondingly, it is speculated that irradiation in-
duces formation of nanocluster, then nanocrystallization occurs within these nanoclusters.
Alternatively, it is possible that nanocrystals form first, diffuse and then agglomerate into
region 2, followed by re-arrangement of nanocrystals and crystal growth in region 3. The
two-stage growth is further supported by a two-step irradiation test of Cu50Zr45Ti5 metallic
glass, precipitation in the first irradiation step and nanocrystallization within the precipi-
tates in second irradiation step [109]. Figure 6d shows formation of darker precipitates of
typical size of 10 nm after 2 keV Ar ion irradiation [109]. The corresponding diffraction
pattern collected from the dark contrast region shows these precipitates still maintain glassy
states. In the second-step irradiation, the Ar-irradiated sample is re-irradiated by 200 keV
electron beams in a TEM chamber. Figure 6e shows that the electron irradiation induces
formation of even smaller nanometer features within the large precipitates. A few such
nanometer features are marked by arrows. The diffraction pattern suggests nanocrystals
begin to form. As marked by arrows in the dark-field TEM micrograph in Figure 6f, the
nanometer size features appear as white dots, suggesting their nanocrystal nature.
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(such as Si, O, C, and N), when metal elements (such as Cu, Fe, and Ni) are co-sputtered 
with Si-O-C elements, metallic atoms decorate amorphous SiOC ceramic associated with 
the formation of nanosized metal-rich clusters or metal nanocrystals in amorphous ce-
ramic matrix, as shown in Figure 7, depending on the type of metal element and its atomic 
fraction [53,60,63,72,111]. The as-deposited Fe-SiOC films with the Fe concentrations of 4–
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Figure 6. TEM images and corresponding diffraction patterns of (a) as-spun Ni52.5Nb10Zr15Ti15Pt7.5,
(b) ion-irradiated specimen, and (c) the corresponding dark-field TEM image [108]. (d) Bright-field
TEM image of Cu50Zr45Ti5 metallic glass irradiated by 2 keV Ar ions without cooling and the
corresponding diffraction pattern. (e) Bright-field TEM image of the specimen in (d) after exposure
to high-fluence electron beam and the corresponding diffraction pattern [109]. Arrows indicate
radiation-induced nanocrystals. (f) Dark-field TEM image of the specimen shown in (d).

Sputtering deposition also provides a convenient route for in situ formation of dual-
phase nanocomposites by regulating composition. With increasing the atomic fraction of
Mo in Al-Mo binary system [110], microstructures of the as-deposited Al-Mo binary alloy
change from polycrystalline Al to Al-rich crystalline matrix with local amorphous regions,
and to a full amorphous alloy when the atomic fraction of Mo increases up to 32 at.%.
Owing to the bonding energy difference between metallic and non-metallic elements (such
as Si, O, C, and N), when metal elements (such as Cu, Fe, and Ni) are co-sputtered with
Si-O-C elements, metallic atoms decorate amorphous SiOC ceramic associated with the
formation of nanosized metal-rich clusters or metal nanocrystals in amorphous ceramic
matrix, as shown in Figure 7, depending on the type of metal element and its atomic
fraction [53,60,63,72,111]. The as-deposited Fe-SiOC films with the Fe concentrations
of 4–34 at.% exhibit amorphous structure with spatially distributed Fe-rich amorphous
nanoclusters, referred to as dual amorphous nanocomposites (Figure 7a,b). Further high
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temperature annealing can tune Fe-rich amorphous nanoclusters into Fe nanocrystals,
forming crystalline–amorphous nanocomposites (Figure 7c,d). With increasing the content
of Fe up to 70–80 at.%, the as-deposited Fe-SiOC film exhibits a core–shell nanocolumnar
structure (Figure 3) comprising crystalline Fe nanocolumns surrounded with nanoscale
amorphous ceramic SiOC [63,72]. Compared with Fe-SiOC, the as-deposited Cu-SiOC
films show quite a different microstructure where large numbers of Cu nanocrystals are
non-uniformly distributed in the amorphous ceramic matrix, referred to as crystalline–
amorphous nanocomposites (Figure 7e) [111]. Compared with the formation of Fe-rich
amorphous nanoclusters, the relatively low bond energy between Cu and non-metallic
elements Si, O and C atoms (Cu-Si/Fe-Si: 224/310 kJ/mol; Cu-O/Fe-O: 287/407 kJ/mol, Cu-
C/Fe-C: 45/390 kJ/mol) facilitates clustering Cu atoms and then nucleating Cu nanocrystals
during deposition [97,112].
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be thinner while thicken at the triple junctions of Ni nanograins (Figure 8a). As annealing 
temperature increases to 600 °C, Ni crystals grow and amorphous SiOC nanoparticles 
form and grow up along GBs, especially at the triple junctions of Ni nanograins (Figure 
8b). Moreover, amorphous SiOC phase was occasionally observed along GBs (Figure 8g). 
When further increasing the annealing temperature up to 800 °C and 1000 °C, both Ni 
crystals and SiOC amorphous particles grew up, especially Ni grains coarsen and engulf 
amorphous particles (Figure 8c,h). It is noted that there are no intermetallic or compounds 
in annealed samples as evidenced by the distribution of Ni atoms which are separated 
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Figure 7. (a,b) Cross-sectional HRTEM images of the as-deposited Fe(34 at.%)-SiOC dual amorphous
composite. The dashed circles indicate Fe-rich amorphous nanoclusters with the diameter of d [63].
(c,d) Cross-sectional HRTEM images of the 800 ◦C annealed Fe(34 at.%)-SiOC dual-phase nanocom-
posite with Fe nanocrystals in amorphous SiOC matrix. The red short lines indicate Fe nanocrystals.
(e) Cross-sectional HRTEM image of the as-deposited Cu(22 at.%)-SiOC dual-phase composite with
Cu nanocrystals in amorphous SiOC matrix [111].

Analogous to nanocrystals embedded in amorphous matrix, amorphous nanoparti-
cles can also be introduced in polycrystalline metals. Wei et al. [60] demonstrated that
the as-deposited Ni(75 at.%)-SiOC sample with a core–shell microstructure can be fur-
ther tuned to amorphous particles embedded in polycrystalline Ni by high-temperature
annealing at 600 ◦C, 800 ◦C and 1000 ◦C under vacuum for 1 h, respectively (Figure 8).
Corresponding to the high crystallization temperature of amorphous SiOC, SiOC maintains
a stable amorphous structure, ensuring crystal–amorphous dual-phase structures while the
core–shell microstructure is weakened and even diminished with increasing the annealing
temperature. The core–shell nanostructure remains stable up to 400 ◦C. Although there is
no obvious growth of Ni nanograins, grain boundaries of amorphous SiOC phase tend to
be thinner while thicken at the triple junctions of Ni nanograins (Figure 8a). As annealing
temperature increases to 600 ◦C, Ni crystals grow and amorphous SiOC nanoparticles form
and grow up along GBs, especially at the triple junctions of Ni nanograins (Figure 8b).
Moreover, amorphous SiOC phase was occasionally observed along GBs (Figure 8g). When
further increasing the annealing temperature up to 800 ◦C and 1000 ◦C, both Ni crystals and
SiOC amorphous particles grew up, especially Ni grains coarsen and engulf amorphous
particles (Figure 8c,h). It is noted that there are no intermetallic or compounds in annealed
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samples as evidenced by the distribution of Ni atoms which are separated from Si, O and
C amorphous elements. Figure 8d–f schematically illustrate microstructure evolution of
Ni-SiOC nanocomposites, respectively. Correspondingly, the feature dimensions of crys-
talline Ni and amorphous SiOC grew up from 13 nm Ni nanograins and 2 nm thick SiOC
boundary layers in the as-deposited and 400 ◦C annealed samples to ~22 nm Ni nanograins
and ~9 nm SiOC nanoparticles in the 600 ◦C annealed sample, to ~220 nm Ni nanograins
and ~110 nm SiOC nanoparticles in the 800 ◦C annealed sample and to ~500 nm Ni grains
and ~200 nm SiOC particles in the 1000 ◦C annealed sample.
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can act as sources associated with pre-existing interface defects for nucleating plastic de-
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Figure 8. TEM images of Ni(75 at.%)-SiOC nanocomposites after the as-deposited sample was
annealed at (a) 400 ◦C, (b) 600 ◦C and (c) 800 ◦C for 1 h [60]. (d–f) Schematics of characteristic
microstructures corresponding to (a–c). (g) A HRTEM image of the 600 ◦C annealed nanocomposite
showing amorphous GBs. (h) A TEM image of 1000 ◦C annealed Ni(75 at.%)-SiOC nanocomposite.
The white arrows indicate amorphous Gbs, and the red arrows indicate amorphous particles.

Note that amorphous nanoparticles can also be introduced into metallic matrix
(Figure 4d) by laser-assisted manufacturing [100,102]. However, their density is relatively
low and the feature size of metallic matrix is usually in micron scale.

3. Deformation Behaviors and Mechanisms

Plastic deformation is generally accommodated by dislocation motion in crystalline
materials [113,114], while in amorphous materials it is accommodated by formation and
propagation of STZs and shear banding [38,40,41]. Interfaces as a planar defect hold
different atomic structures and thermodynamic properties from adjacent phases, and thus
can act as sources associated with pre-existing interface defects for nucleating plastic
deformation carriers (such as dislocations, twins, and phase transformation bands in
crystalline phase or STZs and shear bands in amorphous phase) [5,115–117], strong barriers
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for blocking and impeding the motion of plastic deformation carriers [118–122], and sinks
for absorbing, trapping and reassembly (that may lead to recovery) of defects [3,25,56,123].
For crystalline–amorphous nanocomposites, dislocations nucleated at CAIs will propagate
across crystals, generating plastic deformation. Due to the lack of slip systems in amorphous
phase, dislocations gliding in crystal phase will be blocked by and deposited at CAIs.
Dislocations piled up at interfaces create stress/strain concentrations, facilitating nucleation
of STZs and promoting localized shearing in amorphous phase. Since there is no strain
hardening capability in amorphous phase, shear banding propagates quickly once it forms.
In what follows, we review plastic deformation behaviors and mechanisms with respect to
characteristic microstructure of dual-phase crystalline–amorphous composites.

3.1. Crystal–Amorphous Nanolaminate

Interface spacing or layer thickness is the key microstructural parameter in chang-
ing dominant deformation mechanisms of each constitutive layer and correspondingly
determining mechanical properties of laminated composites [70,124]. For crystalline layers,
plastic deformation is realized through dislocations that propagate in the confined layer.
Consequently, interfaces acting as strong barriers block dislocation motion, resulting in
dislocations accumulation at interfaces. Correspondingly, these accumulated dislocations
generate local stress/strain concentrations, facilitating plastic deformation in amorphous
layers. Take Cu-CuZr nanolaminate as an example [70]; decreasing the amorphous CuZr
layer thickness leads to a transition from shear banding to homogenous plastic deforma-
tion. The lack of shear banding is ascribed to the intrinsic small size effect of amorphous
phase and dislocation–interface interaction. When the feature size of amorphous material
is refined into nanoscale, amorphous structure deforms via STZs which is activated by
dislocation–interface interactions, because shear banding by coalescence of STZs will be
inhibited due to the fine thickness [58,59]. The additional shear stress produced by plastic
incompatibility between Cu and CuZr layers and deposited dislocations on CAIs facilitates
STZs in thinner amorphous CuZr layer, promoting co-deformation between crystal and
amorphous layers.

The detailed deformation mechanism can be rationalized with respect to layer thick-
ness as follows. Disregarding layer thickness, dislocations first nucleate and propagate
in crystalline layer (Cu layers) under applied loading and these dislocations propagate
in crystalline layers and are deposited at CAIs (Cu-CuZr interfaces). Correspondingly,
plastic deformation develops in crystalline layers (Cu layers) while amorphous layers still
elastically deform. As consequence, plastic incompatibility between crystalline layers and
amorphous layers is accommodated by elastic deformation, resulting in high stress in
amorphous layers. In addition to the stress associated with plastic incompatibility, another
stress contribution is associated with the deposited dislocation arrays at CAIs, and the
stress magnitude associated with the dislocation arrays is proportional to the layer thick-
ness ratio of hCu/hCuZr [125]. The higher stress (tension or compression is opposite to the
applied loading) is thus generated for the thinner amorphous layer. More importantly,
the deposited dislocations on the two adjacent CAIs interact and generate the shear stress
on the plane non-parallel to amorphous layers. Putting all these stress contributions to-
gether, the shear stress on a plane non-parallel to the amorphous layer includes the stress
associated with plastic incompatibility, the shear stress due to dislocation interaction, and
the applied stress. Corresponding to the variation of stress field of a dislocation with the
distance, the shear stress due to dislocation interaction increases with reducing amorphous
layer thickness. When the layer is refined into a few nanometers, the shear stress becomes
a significant contributor [126]. Thus, for the thinner amorphous layers, the larger shear
stress on the plane non-parallel to the amorphous layers will facilitate the activation of
STZs and promote the propagation of STZs through the layer, achieving plastic deforma-
tion of amorphous layers, as illustrated in Figure 9a. The Cu-CuZr crystal–amorphous
nanolaminate with thin amorphous layer thus show uniform plastic deformation. Note
that interfaces of crystal–amorphous nanolaminate exhibit no specific crystallographic
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orientations, activation of STZs in amorphous layer is thus omnidirectional, which can
effectively reduce stress concentration. However, the stress in amorphous layers decreases
with increasing the thickness of amorphous layers even if crystalline layers experience the
same plastic formation. Even though STZs are activated by local stress at interfaces, these
STZs slowly propagate across the entire CuZr layer due to the reduced shear stress on the
plane non-parallel to the amorphous layers. When the applied stress consciously increases,
shear bands form by gathering STZs in the amorphous layers and propagate towards the
adjacent interfaces, consequently triggering plastic deformation in the crystalline layers by
slip bands, as illustrated in Figure 9b.
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Figure 9. Schematics of plastic deformation modes with respect to the amorphous layer thickness [70].
(a) Plastic co-deformation in the thin amorphous layers, showing dislocation slips in the crystal
Cu layers and the formation and reaction of STZs in the amorphous CuZr layers. The red ellipses
represent STZs. (b) Shear banding in the thick CuZr layers where shear bands propagate into the Cu
layers via the formation of slip bands on {111} planes.

3.2. Core–Shell Nanostructures

Crystal–amorphous nanocomposite with amorphous GBs has been proven to exhibit
both high strength and excellent plastic deformation stability. Take the Ni(75 at.%)-SiOC
nanocomposite as an example [53]; in situ micropillar compression tests in a scanning
electron microscope (SEM) (Figure 10) demonstrated that the dual-phase core–shell nanos-
tructure exhibited high flow strengths of 2.5 GPa at RT, about 1.6 GPa at 400 ◦C and an
uniform plastic strain of 35% without shear instability. The contribution of amorphous GBs
to plastic deformation can be summarized as follows. Firstly, amorphous GBs inhibit grain
coarsening during deformation and thus prevent strain localization and localized softening
in the shear path, as amorphous GBs can stabilize grain size by decreasing the driving force
for GB migration and isolating nanograins from coalescence. Secondly, amorphous GBs
impede the motion of dislocations and shear bands, leading to dislocation accumulation at
CAIs. Due to low migration and formation energies for defects at CAIs, these accumulated
dislocations can be smeared away along CAIs.
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Figure 10. (a) The true stress–strain curves of as-deposited Ni(75 at.%)-SiOC nanocomposite at
deformation temperatures of RT, 200 ◦C, 300 ◦C, and 400 ◦C [53]. (b–e) SEM snapshots of the
micropillars at different strains.

For crystalline nanograins, plastic deformation is mainly carried over by dislocations
that nucleated at GBs and glide across the entire grain. Corresponding to the fine grain
size, dislocations intersect rarely. For fcc metals, high flow strength and fine grain size
promote Shockley partial dislocations; consequently, stacking faults are often observed
in nanograins. Regardless of the types of dislocations, these dislocations nucleate at GBs
and are blocked by GBs. Corresponding to the core–shell nanostructure, dislocations
hardly pile up on the same glide plane, and are instead discretely distributed along the
CAIs, as illustrated in Figure 11a. Due to low migration and formation energies for
defects at CAIs, these blocked dislocations can rearrange easily along CAIs to reduce local
stress–strain concentration, thus preventing localized shear associated with planar slips.
Furthermore, like the crystal–amorphous nanolaminates, the accumulated dislocations
on the two CAIs of the amorphous GB enable the formation and propagation of STZs
in the amorphous GBs, achieving plastic co-deformation between amorphous GBs and
nanograins. In addition, the random misorientation of NC metals in core–shell crystal–
amorphous nanocomposite also contributes to uniform plastic deformation. Compared to
crystalline–amorphous nanolaminates synthesized by sputtering, the two neighbouring
nanograins often hold well-defined orientation, such as the cube-on-cube orientation
relationship or small angle tilt or small angle twist orientation relations (ORs). The good
slip continuity across the amorphous layer between two grains (Figure 11b) facilitates
deformation compatibility but may lead to crystallographic shear instability, as observed in
crystalline–amorphous nanolaminates (Figure 11d,e) [70]. In contrast, in two neighbouring
grains with a generally larger angle tilt or twist and tilt–twist coupling ORs, the poor slip
continuity (Figure 11c) imparts a strong barrier on slip transmutation across amorphous
grain boundaries, preventing crystallographic shear instability. The improved strength
by amorphous GBs can be attributed to two aspects: (1) higher strength of amorphous
structure than NC metal; (2) reduced GB energy, which may make it more difficult for
dislocation nucleation.
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Figure 11. (a) A schematic of deformation mechanisms for core–shell nanostructures. Dislocations
carried over plastic deformation in nanograins and are blocked at CAIs [53]. (b) Good slip conti-
nuity for two neighbouring nanograins. (c) Poor slip continuity for two neighbouring nanograins.
(d,e) TEM images showing shear banding in Cu/CuZr nanolaminate due to slip continuity in Cu
layers [70].

3.3. Dual-Phase Nanocomposites

For amorphous matrix dual-phase nanocomposites, the nature of plasticity improve-
ment is that the nanocrystal phases can effectively impede the rapid propagation of shear
bands while promoting nucleation of multiple fine shear bands or even suppressing the
nucleation of shear bands in amorphous matrix. Moreover, ductile nanocrystal phase
can co-deform with amorphous matrix, contributing to uniform plastic deformation. For
example, Fe(34 at.%)-SiOC amorphous ceramic nanocomposites with self-clustered Fe-rich
nanocrystals show a large uniform compressive strain of 55% without plastic flow insta-
bility and cracking (Figure 12a,b) [63]. TEM characterization after compression revealed
that the spatially distributed Fe nanocrystals plastically co-deform with amorphous SiOC
matrix and discretize STZs in amorphous ceramics, thus preventing the shear-banding
instability and significantly enhancing compressive plasticity. As shown in Figure 12c,d,
Fe nanocrystals exhibit irregular shape and some of them were compressed into stipes
in the highly strained region, which provides direct evidence for occurrence of plastic
deformation. In addition, no crack or interface decohesion existed in the severely strained
regions, indicating the good compatibility of plastic deformation between Fe nanocrystals
and the amorphous SiOC matrix. Note that the amorphous-based crystal–amorphous
nanocomposites usually show decreased strength with increasing the volume fraction
of ductile crystal phase since the NC metals are normally softer than amorphous solid.
When nanocrystals are strong or rigid, for example, oxides nanocrystals in bulk amorphous
Al2O3-ZrO2-Y2O3, an unusual behavior of brittle–plastic–brittle transition with increasing
crystallinity in amorphous matrix has been reported [106]. Xu et al. [106] discovered that
bulk amorphous oxides comprising 3.65 mol% nanocrystallite exhibit a significant plastic
strain of 10.5% under compression compared with no plastic deformation occurring in fully
amorphous sample at 500 ◦C, while the plasticity degrades as the crystallinity increases to
24.8 mol%. The plastic deformation was mainly accommodated by shear bands and further
densification. The formation of shear bands and the brittle–plastic–brittle transition were
explained in terms of free volume theory [127].
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Figure 12. SEM images of Fe(34 at.%)-SiOC micropillar (a) before compression and (b) after compres-
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amorphous SiOC matrix [63].

For metal matrix dual-phase nanocomposites, amorphous nanoparticles were proved
to play an important role in enhancing both strength and plasticity of NC metals. Firstly,
the amorphous nanoparticles act as strengthening second phase to impede dislocation
motion, pin GBs and prevent grain coarsening, contributing to high strength. Secondly, the
nanosized amorphous phase can co-deform with NC metals by STZs or viscoplastic flow
to accommodate the shape change in NC metals, achieving superb plastic flow stability.
Such a deformation mechanism was demonstrated in 600 ◦C annealed Ni(75 at.%)-SiOC
nanocomposite, which exhibited a characteristic microstructure of 9 nm amorphous SiOC
nanoparticles embedded in NC Ni matrix [60]. In situ SEM micropillar compression tests
at deformation temperatures ranging from RT to 400 ◦C revealed that nanograined Ni
composite containing amorphous ceramic nanoparticles exhibits high strength of 3 GPa
at RT and 2 GPa at 400 ◦C with compressive strain of up to 50% (Figure 13). The co-
deformation mechanism was verified by post mortem TEM characterization. Figure 14a
shows a representative TEM bright field image of micropillar after compression. Clearly,
both Ni nanograins and amorphous ceramic SiOC particles were compressed into stripes
perpendicular to the loading direction. It is also noticed that plastic co-deformation ability
decreases with increasing grain size. The 800 ◦C annealed Ni(75 at.%)-SiOC nanocomposite
comprising ~220 nm Ni nanograins and ~110 nm SiOC nanoparticles exhibits low flow
strength of 1.5 GPa and no strain hardening. TEM characterizations reveal a slight change
in the shape of amorphous SiOC particles associated with deformation, and local interface
decohesion between Ni and SiOC particles (Figure 14b). Thus, the softening behavior
associated with interface decohesion and the strain hardening behavior associated with
dislocations interactions in Ni submicron grains could be counteracted, leading to the
absence of strain hardening behavior.
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Due to the lack of strain hardening ability in amorphous phase, amorphous phase
does not exhibit any ductility. Consequently, cracking often occurs in amorphous phase or
amorphous–crystal interfaces when amorphous phase or the interfaces are subject to an
effective tension loading [128]. As demonstrated in dual-phase structures with either the
core–shell microstructure or metal matrix with amorphous nanoparticles or amorphous
matrix with nanocrystals, significantly enhanced compression plasticity is commonly
achieved while they exhibit low tensile strength and brittle failure associated with cracking
in amorphous phase and de-cohesion of CAIs [128].

4. Multiscale Modelling of Mechanical Behaviors

Mechanistic models incorporating deformation mechanisms related to microstruc-
ture characters are urgently demanded in order to accelerate the design and discovery of
nanostructured composites with specific properties. Given the structural characteristics
of dual-phase nanostructures, which include a significant volume fraction of boundaries
and nanosized crystalline–amorphous constituents, a multiscale perspective of mechan-
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ical behavior is crucial, including but not limited to atomic-scale studies using atomistic
simulations and the development of models at different length scales.

4.1. Atomistic Modelling

Atomistic models offer valuable insight into the deformation mechanisms of defect–
interface interactions, including GB sliding/shear/migration [129], slip transmission [130,131],
and dislocation nucleation [132,133], thus shedding light on the underlying deformation
processes. In amorphous and crystalline NCs, plastic deformation arises from the cou-
pling between two distinct deformation defects across the CAIs. Dislocations carry the
plasticity in the crystalline phase, while the STZ, which is a local shear among a small
cluster of atoms, acts as the plasticity carrier in the amorphous phase. Consequently, CAIs
exhibit unique inelastic shear transfer properties that are more diffuse, effectively delay-
ing decohesion and fracture initiation near interfaces [56,134]. Figure 15a,b demonstrate
the plasticity transfer across the Cu/amorphous-CuNb interfaces simulated by molecular
dynamics (MD) simulations [74]. During compression, numerous dislocations nucleate
from CAIs, propagate within the Cu layer, and then deposit on the two interfaces that
confine the layer. Shear deformation in amorphous CuNb reduces the dislocation content
at CAIs, contrasting with the reduction in dislocations at the interface via slip transmission
in crystalline metallic multilayers [118]. Figure 15c,d also depict the evolution of atomic
structures in the amorphous CuNb layer before and after compressive loading. Deforma-
tion distorts the sharp CAIs, indicated by the black dotted lines representing the position
of the original layer interfaces and the red dotted lines indicating the location of layer
interfaces after 8% compression. More importantly, the plastic deformation induces promi-
nent local shears, evidenced by high-density shear-deformed regions (denoted by three
ellipses) across the amorphous CuNb layer. The CAIs can act as strong barriers and traps
for impeding and capturing dislocations, thus strengthening the NCs and promoting plastic
co-deformation between the crystal and amorphous phases. The accumulated dislocations
are distributed along the CAIs, preventing the formation of localized shear bands across
multiple nanograins [135–137]. The insights gained from atomistic modelling can serve as
a guide for the development of mesoscopic and macroscopic continuum models.
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Figure 15. Molecular dynamics simulations of co-deformation in Cu/amorphous CuNb multilayers.
(a,b) The deformed multilayers containing glide dislocations in Cu layers under uniaxial compression.
The atomic structures around one amorphous CuNb layer before (c) and after (d) 8% of compressive
strain. The curved CAIs are denoted by the red dotted lines, and local shears of atomic clusters are
highlighted by three ellipses [74].
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4.2. Microscale Models

Microscale models with the presumed deformation mechanisms and corresponding
physical parameters and functions are able to capture the influence of microstructure char-
acteristics on mechanical responses of NCs [138–141]. Figure 16 illustrates a quantized
crystal plasticity model that was developed to study the distinctive mechanical behav-
iors of nanocrystalline metals resulting from grain size reduction [142,143]. This model
was motivated by molecular dynamics simulations of dislocation loop propagation across
nanograins, which showed that the grain-averaged plastic strain jumps by discrete amounts.
The activation of the plastic units was based on probability distribution functions related
to dislocation nucleation at grain boundaries. The model was used to capture several
unique mechanical responses of dislocation plasticity in nanocrystalline metals, including
enhanced flow stress, extended plastic transition strain, and a different evolution of inter-
granular stress with plastic deformation than in coarse-grained counterparts [138,142,143].
Furthermore, a crystal plasticity model for nanolaminates was developed to understand
their buckling behavior, as shown in Figure 17 [144]. The model was informed by atomic-
level studies of deformation mechanisms [145] and experimental observations [146]. It
employed the confined layer slip mechanism, where dislocations propagated within the
layer and were deposited at the interfaces. Plastic deformation was assumed to be uniform
through the layer thickness, while the variation of elastic deformation through the thickness
was captured by dividing each lamella into three or more elements. The model was used to
investigate the effect of layer thickness on the buckling behavior of an Al-Al2Cu eutectic
alloy. The simulated stress–strain responses indicated that the buckling strength and critical
strain decreased with increasing layer thickness.

Materials 2023, 16, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 16. (a,b) The microscale quantized crystal plasticity model for nanocrystalline metals. (c) The 
modelled stress–strain response along with the stress redistribution in nanocrystalline Ni measured 
via in situ X-ray diffraction tests [138]. 

 
Figure 17. (a) A confined layer slip-based crystal plasticity model for predicting the bulking behav-
ior of nanolaminates. (b) Effects of the layer thickness on stress–strain curves under parallel com-
pression, and a fine size has good plastic co-deformation and high resistance to compression bulking 
[144]. 

In contrast to the deformation of crystalline phases, amorphous materials can be 
modelled using isotropic shear transformation. To capture the diverse deformation be-
haviors of amorphous metals, a mesoscale STZ dynamics modelling framework has been 
developed [40,41]. This model considered the STZ as the fundamental unit of deformation 
and used finite element analysis and a kinetic Monte Carlo algorithm to coarse-grain an 
amorphous collection of atoms into an ensemble of STZs on a mesh. This modelling tech-
nique was capable of simulating glass processing and deformation on time and length 
scales beyond those typically attainable by atomistic modelling. Moreover, it predicted 
the influence of nanoscale structural heterogeneity on the deformation behavior of amor-
phous alloys [147,148]. Micromechanical models generally fit empirical functions for fun-
damental physical quantities and functions to describe constitutive relations of defects, 
such as the activation energy of STZ, dislocation nucleation rate, and dislocation mobility. 
However, bridging atomic-level deformation mechanisms and corresponding physical 
quantities to microscale mathematical and mechanistic descriptions is necessary. 

Figure 16. (a,b) The microscale quantized crystal plasticity model for nanocrystalline metals. (c) The
modelled stress–strain response along with the stress redistribution in nanocrystalline Ni measured
via in situ X-ray diffraction tests [138].



Materials 2023, 16, 2874 19 of 26

Materials 2023, 16, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 16. (a,b) The microscale quantized crystal plasticity model for nanocrystalline metals. (c) The 
modelled stress–strain response along with the stress redistribution in nanocrystalline Ni measured 
via in situ X-ray diffraction tests [138]. 

 
Figure 17. (a) A confined layer slip-based crystal plasticity model for predicting the bulking behav-
ior of nanolaminates. (b) Effects of the layer thickness on stress–strain curves under parallel com-
pression, and a fine size has good plastic co-deformation and high resistance to compression bulking 
[144]. 

In contrast to the deformation of crystalline phases, amorphous materials can be 
modelled using isotropic shear transformation. To capture the diverse deformation be-
haviors of amorphous metals, a mesoscale STZ dynamics modelling framework has been 
developed [40,41]. This model considered the STZ as the fundamental unit of deformation 
and used finite element analysis and a kinetic Monte Carlo algorithm to coarse-grain an 
amorphous collection of atoms into an ensemble of STZs on a mesh. This modelling tech-
nique was capable of simulating glass processing and deformation on time and length 
scales beyond those typically attainable by atomistic modelling. Moreover, it predicted 
the influence of nanoscale structural heterogeneity on the deformation behavior of amor-
phous alloys [147,148]. Micromechanical models generally fit empirical functions for fun-
damental physical quantities and functions to describe constitutive relations of defects, 
such as the activation energy of STZ, dislocation nucleation rate, and dislocation mobility. 
However, bridging atomic-level deformation mechanisms and corresponding physical 
quantities to microscale mathematical and mechanistic descriptions is necessary. 
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In contrast to the deformation of crystalline phases, amorphous materials can be
modelled using isotropic shear transformation. To capture the diverse deformation be-
haviors of amorphous metals, a mesoscale STZ dynamics modelling framework has been
developed [40,41]. This model considered the STZ as the fundamental unit of deforma-
tion and used finite element analysis and a kinetic Monte Carlo algorithm to coarse-grain
an amorphous collection of atoms into an ensemble of STZs on a mesh. This modelling
technique was capable of simulating glass processing and deformation on time and length
scales beyond those typically attainable by atomistic modelling. Moreover, it predicted the
influence of nanoscale structural heterogeneity on the deformation behavior of amorphous
alloys [147,148]. Micromechanical models generally fit empirical functions for fundamental
physical quantities and functions to describe constitutive relations of defects, such as the
activation energy of STZ, dislocation nucleation rate, and dislocation mobility. However,
bridging atomic-level deformation mechanisms and corresponding physical quantities to
microscale mathematical and mechanistic descriptions is necessary.

The application of microscale models to predict macroscale behaviors is crucial for
the use of large-scale nanostructured materials. While analytical micromechanics methods
with reduced orders can provide high efficiency in bridging the gap and homogenizing the
heterogeneous material behaviors, they generally lose accuracy or require extensive model
calibration when irregular complex morphologies, nonlinear history-dependent properties,
or large deformation are present. Consequently, the advancement of machine learning
models, such as artificial neural networks and deep neural networks, has emerged as a
promising alternative to train surrogate models. As illustrated in Figure 18, the multiscale
modeling process can be approximated using a general function f to describe the change in
the state at a material point with I as the input from the macroscale model and O as the
output from the model. The basic idea of using machine learning models to accelerate multi-
scale modeling is to replace the micromechanics model with a surrogate model constructed
from data. The surrogate model can be used to approximate the mechanical behavior of
nanocomposites, which is based on the data computed from a series of microscale analyses
with various microstructural features. Previous work has demonstrated the feasibility
of using neural networks to model constitutive materials, such as hyper-elasticity [149],
viscoelasticity [150], elasto-plasticity [151,152], and crystal plasticity [153,154]. These ad-
vanced machine learning models are capable of learning complex relationships, thereby
eliminating the need for extra calibration of the constitutive laws and micro-mechanical
assumption of homogenization. These intelligent modelling methods provide a practical ap-
proach to obtain high-fidelity constitutive relations in nanocomposites, where the nanoscale
characteristic dimension, non-equilibrium interfacial structure, and complex morphology
impart new material laws that require interface-related behaviors to be considered.
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scales. Training machine learning surrogate model based on data generated by micromechanics
models for prediction of macroscale mechanical behavior of nanocomposite with various nano/micro-
structural features.

5. Perspectives

The mechanical behaviors and properties of the crystalline–amorphous dual-phase
nanostructures could be optimized by tailoring the morphology, characteristic dimen-
sion, and misorientation of nanosized constituents that determine deformation accom-
modation mechanisms in adjacent constituents and the characteristic size, structure and
properties of amorphous phase boundaries that determine the deformation mechanisms
within/at/across boundaries. Accelerating the design and discovery of such nanostruc-
tured composites with desired properties is thus urgently demanding mechanistic models
that can capture microstructure-dominated deformation mechanics and predict the me-
chanical behaviors and properties. Multiscale material modelling has been extensively
employed to understand the mechanical behaviors of nanostructured materials. Atomistic
modelling and microscopies at the atomic level can elucidate deformation processes occur-
ring within/at/across boundaries but cannot predict macroscopic properties. Micro-scale
mechanistic models have been developed for some characteristic nanostructures (such as
nanolaminates) to predict the microstructure-mechanical property relations, but a general
approach for the development of microscale models is still missing. More importantly,
atomic-level studies and micro-scale mechanistic models cannot directly predict the me-
chanical response of NCs. This calls for a breakthrough in materials modelling to bridge
the length-scale gap from atomic-scale to macro-scale. Machine learning techniques can
offer the potential to uncover underlying physics quantities and functions associated with
deformation events across different length-scale models and accelerate the development of
these constitutive laws.

Author Contributions: B.W. prepared the first draft on synthesis and microstructure, L.L. prepared
modeling section, L.S. prepared irradiation-related parts, J.W. organized the whole manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: The research was financially supported by the US National Science Foundation (NSF)
(CMMI- 2132336/2132383).

Informed Consent Statement: Not applicable.



Materials 2023, 16, 2874 21 of 26

Data Availability Statement: No new data were created.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Allen, T.; Busby, J.; Meyer, M.; Petti, D. Materials challenges for nuclear systems. Mater. Today 2010, 13, 14–23. [CrossRef]
2. Zinkle, S.J.; Busby, J.T. Structural materials for fission & fusion energy. Mater. Today 2009, 12, 12–19.
3. Zhang, X.; Hattar, K.; Chen, Y.; Shao, L.; Li, J.; Sun, C.; Yu, K.; Li, N.; Taheri, M.L.; Wang, H.; et al. Radiation damage in

nanostructured materials. Prog. Mater. Sci. 2018, 96, 217–321. [CrossRef]
4. Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556.

[CrossRef]
5. Wang, J.; Zhou, Q.; Shao, S.; Misra, A. Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 2017, 5, 1225321.

[CrossRef]
6. Tian, L.; Li, L. A review on the strengthening of nanostructured materials. Int. J. Curr. Eng. Technol. 2018, 8, 236–249. [CrossRef]
7. Kostryzhev, A.G. Strengthening Mechanisms in Metallic Materials. Metals 2021, 11, 1134. [CrossRef]
8. Schiøtz, J.; Di Tolla, F.D.; Jacobsen, K.W. Softening of nanocrystalline metals at very small grain sizes. Nature 1998, 391, 561–563.

[CrossRef]
9. He, X.; Zhu, L.; Liu, J.; An, L. Grain growth-induced strain softening in nanocrystalline magnesium: Experiments and modelling.

Mater. Res. Express 2019, 6, 108002. [CrossRef]
10. Van Swygenhoven, H.; Weertman, J.R. Deformation in nanocrystalline metals. Mater. Today 2006, 9, 24–31. [CrossRef]
11. Pan, Z.; Rupert, T.J. Damage nucleation from repeated dislocation absorption at a grain boundary. Comput. Mater. Sci. 2014, 93,

206–209. [CrossRef]
12. Rupert, T.J. Strain localization in a nanocrystalline metal: Atomic mechanisms and the effect of testing conditions. J. Appl. Phys.

2013, 114, 033527. [CrossRef]
13. Khalajhedayati, A.; Pan, Z.; Rupert, T.J. Manipulating the interfacial structure of nanomaterials to achieve a unique combination

of strength and ductility. Nat. Commun. 2016, 7, 10802. [CrossRef]
14. Wu, G.; Liu, C.; Sun, L.; Wang, Q.; Sun, B.; Han, B.; Kai, J.-J.; Luan, J.; Liu, C.T.; Cao, K.; et al. Hierarchical nanostructured

aluminum alloy with ultrahigh strength and large plasticity. Nat. Commun. 2019, 10, 5099. [CrossRef] [PubMed]
15. Ming, K.; Li, L.; Li, Z.; Bi, X.; Wang, J. Grain boundary decohesion by nanoclustering Ni and Cr separately in CrMnFeCoNi

high-entropy alloys. Sci. Adv. 2019, 5, eaay0639. [CrossRef]
16. Li, Y.; Yang, M.; Li, K.; Ma, C.; Yang, T.; Wang, J.; Lu, Q.; Zhang, Y.; Li, G.; Zhang, S.; et al. In-situ study of effects of heat treatments

and loading methods on fracture behaviors of a cast Al–Si alloy. Mater. Today Commun. 2021, 28, 102680. [CrossRef]
17. Liu, Y.; Kang, M.; Wu, Y.; Wang, M.; Li, M.; Yu, J.; Gao, H.; Wang, J. Crack formation and microstructure-sensitive propagation

in low cycle fatigue of a polycrystalline nickel-based superalloy with different heat treatments. Int. J. Fatigue 2018, 108, 79–89.
[CrossRef]

18. Wang, C.; Luo, K.; Wang, J.; Lu, J. Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420
stainless steel during laser shock peening. Int. J. Plast. 2022, 150, 103191. [CrossRef]

19. Han, L.; Rao, Z.; Souza Filho, I.R.; Maccari, F.; Wei, Y.; Wu, G.; Ahmadian, A.; Zhou, X.; Gutfleisch, O.; Ponge, D.; et al. Ultrastrong
and Ductile Soft Magnetic High-Entropy Alloys via Coherent Ordered Nanoprecipitates. Adv. Mater. 2021, 33, 2102139. [CrossRef]

20. Wang, Z.; Lu, W.; Zhao, H.; Liebscher, C.H.; He, J.; Ponge, D.; Raabe, D.; Li, Z. Ultrastrong lightweight compositionally complex
steels via dual-nanoprecipitation. Sci. Adv. 2020, 6, eaba9543. [CrossRef]

21. Ming, K.; Bi, X.; Wang, J. Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized,
coherent precipitates. Int. J. Plast. 2018, 100, 177–191. [CrossRef]

22. Chopra, O.K.; Rao, A.S. A review of irradiation effects on LWR core internal materials—IASCC susceptibility and crack growth
rates of austenitic stainless steels. J. Nucl. Mater. 2011, 409, 235–256. [CrossRef]

23. Dai, Y.; Odette, G.; Yamamoto, T. The effects of helium in irradiated structural alloys. Compr. Nucl. Mater. 2012, 1, 141–193.
24. Beyerlein, I.J.; Caro, A.; Demkowicz, M.J.; Mara, N.A.; Misra, A.; Uberuaga, B.P. Radiation damage tolerant nanomaterials. Mater.

Today 2013, 16, 443–449. [CrossRef]
25. Han, W.; Demkowicz, M.J.; Mara, N.A.; Fu, E.; Sinha, S.; Rollett, A.D.; Wang, Y.; Carpenter, J.S.; Beyerlein, I.J.; Misra, A. Design of

Radiation Tolerant Materials Via Interface Engineering. Adv. Mater. 2013, 25, 6975–6979. [CrossRef] [PubMed]
26. Scully, J.R.; Gebert, A.; Payer, J.H. Corrosion and related mechanical properties of bulk metallic glasses. J. Mater. Res. 2007, 22,

302–313. [CrossRef]
27. Stachurski, Z.H. On Structure and Properties of Amorphous Materials. Materials 2011, 4, 1564–1598. [CrossRef]
28. Nastasi, M.; Su, Q.; Price, L.; Colón Santana, J.A.; Chen, T.; Balerio, R.; Shao, L. Superior radiation tolerant materials: Amorphous

silicon oxycarbide. J. Nucl. Mater. 2015, 461, 200–205. [CrossRef]
29. Zhao, Z.; Niu, M.; Wang, H.; Gao, H.; Peng, K.; Zang, H.; Ma, M. Preparation and the effects of ion irradiation on bulk SiOC

ceramics. J. Eur. Ceram. Soc. 2019, 39, 832–837. [CrossRef]
30. Wang, Y.X.; Pan, Z.Y.; Ho, Y.K.; Xu, Y.; Du, A.J. The structural and dynamical properties of Al clusters adsorbed on Ni surface.

Nucl. Instrum. Methods Phys. 2001, 180, 251–256. [CrossRef]

http://doi.org/10.1016/S1369-7021(10)70220-0
http://doi.org/10.1016/j.pmatsci.2018.03.002
http://doi.org/10.1016/j.pmatsci.2005.08.003
http://doi.org/10.1080/21663831.2016.1225321
http://doi.org/10.14741/ijcet/v.8.2.7
http://doi.org/10.3390/met11071134
http://doi.org/10.1038/35328
http://doi.org/10.1088/2053-1591/ab3e8e
http://doi.org/10.1016/S1369-7021(06)71494-8
http://doi.org/10.1016/j.commatsci.2014.07.008
http://doi.org/10.1063/1.4815965
http://doi.org/10.1038/ncomms10802
http://doi.org/10.1038/s41467-019-13087-4
http://www.ncbi.nlm.nih.gov/pubmed/31704930
http://doi.org/10.1126/sciadv.aay0639
http://doi.org/10.1016/j.mtcomm.2021.102680
http://doi.org/10.1016/j.ijfatigue.2017.10.012
http://doi.org/10.1016/j.ijplas.2021.103191
http://doi.org/10.1002/adma.202102139
http://doi.org/10.1126/sciadv.aba9543
http://doi.org/10.1016/j.ijplas.2017.10.005
http://doi.org/10.1016/j.jnucmat.2010.12.001
http://doi.org/10.1016/j.mattod.2013.10.019
http://doi.org/10.1002/adma.201303400
http://www.ncbi.nlm.nih.gov/pubmed/24352985
http://doi.org/10.1557/jmr.2007.0051
http://doi.org/10.3390/ma4091564
http://doi.org/10.1016/j.jnucmat.2015.02.039
http://doi.org/10.1016/j.jeurceramsoc.2018.12.027
http://doi.org/10.1016/S0168-583X(01)00425-6


Materials 2023, 16, 2874 22 of 26

31. Chaudhari, P.; Spaepen, F.; Steinhardt, P.J. Defects and atomic transport in metallic glasses. In Glassy Metal II: Atomic Structure and
Dynamics, Electronic Structure, Magnetic Properties; Springer: Berlin/Heidelberg, Germany, 2005; pp. 127–168.

32. Su, Q.; Greaves, G.; Donnelly, S.E.; Mizuguchi, S.; Ishimaru, M.; Nastasi, M. Dual-Beam Irradiation Stability of Amorphous Silicon
Oxycarbide at 300 ◦C and 500 ◦C. JOM 2020, 72, 4002–4007. [CrossRef]

33. Carter, J.; Fu, E.G.; Martin, M.; Xie, G.; Zhang, X.; Wang, Y.Q.; Wijesundera, D.; Wang, X.M.; Chu, W.-K.; Shao, L. Effects of Cu ion
irradiation in Cu50Zr45Ti5 metallic glass. Scr. Mater. 2009, 61, 265–268. [CrossRef]

34. Schroers, J. Processing of Bulk Metallic Glass. Adv. Mater. 2010, 22, 1566–1597. [CrossRef] [PubMed]
35. Ritchie, R.O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822. [CrossRef] [PubMed]
36. Carter, C.B.; Norton, M.G. Ceramic Materials: Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2007; Volume 716.
37. Hasselman, D.P.H. Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics. J. Am. Ceram.

Soc. 1969, 52, 600–604. [CrossRef]
38. Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 2013, 74, 71–132. [CrossRef]
39. Trexler, M.M.; Thadhani, N.N. Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 2010, 55, 759–839. [CrossRef]
40. Homer, E.R.; Schuh, C.A. Mesoscale modeling of amorphous metals by shear transformation zone dynamics. Acta Mater. 2009, 57,

2823–2833. [CrossRef]
41. Li, L.; Homer, E.R.; Schuh, C.A. Shear transformation zone dynamics model for metallic glasses incorporating free volume as a

state variable. Acta Mater. 2013, 61, 3347–3359. [CrossRef]
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