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Abstract: In order to improve the detection accuracy of the surface defect detection of industrial hot
rolled strip steel, the advanced technology of deep learning is applied to the surface defect detection
of strip steel. In this paper, we propose a framework for strip surface defect detection based on a
convolutional neural network (CNN). In particular, we propose a novel multi-scale feature fusion
module (ATPF) for integrating multi-scale features and adaptively assigning weights to each feature.
This module can extract semantic information at different scales more fully. At the same time, based
on this module, we build a deep learning network, CG-Net, that is suitable for strip surface defect
detection. The test results showed that it achieved an average accuracy of 75.9 percent (mAP50) in
6.5 giga floating-point operation (GFLOPs) and 105 frames per second (FPS). The detection accuracy
improved by 6.3% over the baseline YOLOv5s. Compared with YOLOv5s, the reference quantity and
calculation amount were reduced by 67% and 59.5%, respectively. At the same time, we also verify
that our model exhibits good generalization performance on the NEU-CLS dataset.

Keywords: deep learning; hot rolled strip steel; YOLOv5; attention mechanism; surface defect detection

1. Introduction

Steel surface defects have a great adverse effect on the quality of steel products. In
practice, steel surface defects will cause a bad appearance, weak strength, corrosion, friction
increases and other problems, causing economic losses to the forging industry. Therefore,
metal surface defect detection has attracted more and more attention in recent years, and
positive improvements have been made in quality control in industrial applications [1].
However, the detection of metal surface defects is easily affected by many environmental
factors such as illumination, light reflection and metal materials. These factors greatly
increase the difficulty of surface defect detection [2]. Therefore, it is essential for the steel
industry to be able to accurately detect and discover defects in real time [3].

Since 1990, some scholars at home and abroad have been studying defect detection
and classification. The main detection methods are magnetic flux leakage detection and
manual visual inspection, which are time-consuming, labor-intense and expensive. In the
past two decades, surface defect detection technology based on machine vision has been
widely used in industrial production [4,5], gradually replacing manual detection.

According to different feature extraction methods, detection methods based on ma-
chine vision are generally divided into two categories, namely, traditional machine learning
methods and deep learning methods. The former generally extract defect features through
manual design parameters [6]. Commonly used handmade features include LBP (Local Bi-
nary Patterns), HOG (Histogram of Oriented Gradients), GLCM (Gray Level Co-occurrence
Matrix) and other statistical features [7,8]. These detection methods are a great improve-
ment for the detection of various surface defects. However, traditional image processing
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methods usually require complex threshold settings for defect recognition and are sensitive
to some environmental factors such as lighting conditions and the background, so they
cannot be directly applied in reality. Although researchers have developed a series of target
detection models based on various strategies, artificially designed features extracted from
shallow layers cannot effectively characterize images with complex backgrounds [9].

With the development of artificial intelligence and big data technology, convolutional
neural networks (CNN) with powerful feature extraction ability show their unique applica-
tion in surface defect detection. Tang M et al. [10] proposed a defect detection method based
on an attention mechanism and multi-scale maximum pooling (MSMP). Li Z et al. [11] pro-
posed a two-stage industrial defect detection framework based on Improved-YOLOv5 and
Optimation-Inception—resnetv2, which completes the localization and classification tasks
through two specific models. Liu T et al. [12] proposed an adaptive image segmentation
network (AIS-Net) for the pixel-level segmentation of surface defects. In order to achieve
the balance between accuracy and speed, Shi X et al. [13] proposed an improved network
based on Faster R-CNN for the detection of steel surface defects. Tian R et al. [14] used
key point estimation to locate the central point and regression of all other defect attributes.
Secondly, an extended feature enhancement model is proposed to enlarge the receiving
domain of the detector. Wang H et al. [15] proposed the first framework for the detection of
defects in fewer shots. By pre-training the model using data related to the target task, the
proposed framework can generate well-trained networks using a small number of labeled
images. Deep learning has been successfully applied to defect classification. However, deep
learning-based models still have some bottlenecks [16,17]. First, training a well-performing
deep learning model relies on a large number of high-quality markup samples, but there
are usually few defect samples available in practice. Second, architecture design and hy-
perparameter tuning are difficult. In addition, training depth models is time-consuming,
especially when the architecture and hyperparameters need to be determined by trial and
error [18].

Therefore, it is necessary to design a practical surface detection method with fewer
parameters and a higher efficiency for practical industrial applications, which is the mo-
tivation of our research. This paper proposes a new CG-Net network model based on
the YOLOv5 algorithm model, which not only exhibits better performance but also has
fewer parameters and a higher efficiency. The main contributions of this paper can be
summarized as follows:

• This paper proposes an ATPF (Attention Pyramid-Fast) module which can fully extract
features. This module can integrate features of different scales, pay attention to a large
range of location information without too much computation and extract more useful
feature information.

• Based on the ATPF module, a precise and fast model framework of strip surface defect
detection, CG-Net, is designed to realize the automatic, rapid and high-precision
detection of strip surface defects.

• On the NEU-DET dataset, the detection average accuracy (mAP50) reaches 75.9%,
mAP@0.5: 0.95 reaches 39.9% and the detection speed reaches 105 frames (FPS).

• On the NEU-CLS dataset, the detection average accuracy (mAP50) reaches 59.6%,
mAP@0.5: 0.95 reaches 32.6% and the detection speed reaches 110 frames (FPS), which
is higher than that of some advanced networks such as YOLOv5s, YOLOv3-tiny, etc.

2. Related Work
2.1. YOLOV5

The YOLO series is a representative first-level target detection technology [19]. The
fifth generation of YOLO (YOLOv5) [20] was proposed in 2020 and is known as a cutting-
edge object detection algorithm based on deep learning. YOLOv5 is further improved on
the basis of the YOLOv4 algorithm, and the detection performance is further improved.
Although the performance of the YOLOv5 algorithm was not compared and analyzed with
that of the YOLOv4 algorithm, the test effect of YOLOv5 on the COCO dataset was quite
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good. A large number of tests are carried out on some commonly used techniques in deep
learning, and some useful techniques are selected to achieve good experimental results. On
the Tesla V100, the real-time detection speed of the COCO2017 dataset reaches 156 FPS,
and the accuracy rate is 56.8% AP. At present, YOLOV5 is widely used in many different
application scenarios, such as agriculture [21,22], industry [23,24] and other industries. In
this paper, YOLOV5s is selected as the basic algorithm, taking into account the balance
between the target detection accuracy and speed. The structure of YOLOv5 consists of four
parts, as shown in Figure 1. The four parts are as follows:

• Input part: The input part preprocesses data training, including data preprocess-
ing, including concatenation data enhancement [25] and adaptive image filling. To
accommodate different datasets, YOLOv5 incorporates an adaptive anchor frame
calculation on the input, which automatically sets the initial anchor frame size when
the dataset changes.

• Main trunk: a cross-stage partial network (CSP) [26] and spatial pyramid pooling
(SPPF) [27] are mainly used to extract feature graphs of different sizes from input
images through multiple convolution and pooling. The bottleneck CSP is used to
reduce the amount of calculation and improve the reasoning speed. The SPPF structure
can realize the feature extraction of different scales from the same feature map and can
generate a three-scale feature map, which is helpful in improving the detection accuracy.

• Neck: The structure combining FPN and PAN is adopted, combining the conventional
FPN [28] layer with the bottom-up feature pyramid (PAN) [29] and integrating the
extracted semantic features with the positional features. At the same time, the back-
bone layer and the detection layer are fused to make the model obtain more abundant
feature information. The two structures together enhance the features extracted from
different network layers in the backbone network fusion and further improve the
detection capability.

• Head: The head output is mainly used to predict targets of different sizes on the
feature map. YOLOV5 inherits the multi-scale prediction header of YOLOv4 and inte-
grates three-layer feature mapping to improve the detection performance of different
target sizes.
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2.2. Lightweight Network

In order to find the best balance between computational cost and detection efficiency,
the researchers explored different methods for reducing the scale and computational cost
of neural networks. Some studies focus on reducing the bit accuracy of weights to make
the model more compact [30]. Other works are based on the distillation of knowledge [31],
which dissolves large architectures into smaller ones. In addition, more attempts have
been made to reduce the number of less influential parameters in the pruning training
model [32,33].

Lan R et al. [34] proposed a dense lightweight network, called MADNet, for stronger
multi-scale feature expression and feature correlation learning. Shin Y G [35] proposed
a new parallel extended decoder path semantic patching network structure to reduce
hardware costs and improve semantic patching performance. Zhou Q et al. [36] designed
a lightweight encoder–decoder network for the real-time semantic segmentation of au-
tonomous driving images. Liu C et al. [37] constructed a network with extended convo-
lution and attention modules as the backbone network for feature extraction and used
pooling operations of different sizes to encode the surrounding semantic information on the
extended pyramid pooling module ASPP. Liang H et al. [38] proposed a lightweight end-
to-end road damage detection network, which can quickly, automatically and accurately
identify and classify various types of road damage.

However, these methods are often achieved by compressing pre-trained networks
or directly training small networks that pay close attention to model size rather than
their overall performance. On the premise of considering the performance, the network
proposed in this paper effectively reduces the amount of computation and the scale of the
model and truly realizes the lightweight and high efficiency.

3. Method

The YOLOV5 network with C3 as the backbone can recognize more complex features.
Therefore, based on the structure of C3, the CG2 module is proposed in this paper. At
the same time, a new feature fusion method, ATPF, is proposed, which can carry out
adaptive weighting according to the contribution to the space and channel so that the
network is more sensitive to useful channels or spatial information and can improve the
multi-scale recognition ability of the network to chip defects. Since the training calculation
and reasoning speed cost of the YOLOv5s model is much lower than that of the other
four models, in order to pursue the balance between detection speed and accuracy, we
choose to use YOLOv5s as our identification network for improvement. Therefore, based
on the network structure of YOLOv5s combined with the CG2 module and ATPF module, a
network, CG-Net, for strip surface defect detection is proposed in this paper. The network
structure is shown in Figure 2. Next, the CG2 module and ATPF module proposed in this
paper will be introduced in detail.



Materials 2023, 16, 2811 5 of 15

Materials 2023, 16, x FOR PEER REVIEW 5 of 16 
 

 

reasoning speed cost of the YOLOv5s model is much lower than that of the other four 
models, in order to pursue the balance between detection speed and accuracy, we choose 
to use YOLOv5s as our identification network for improvement. Therefore, based on the 
network structure of YOLOv5s combined with the CG2 module and ATPF module, a net-
work, CG-Net, for strip surface defect detection is proposed in this paper. The network 
structure is shown in Figure 2. Next, the CG2 module and ATPF module proposed in this 
paper will be introduced in detail. 

 
Figure 2. Network structure diagram of CG-Net. 

3.1. CG2 Module 
The structure of the C3 module in Yolov5 is a bottleneck composed of three general 

convolutions and a bottleneck, while the CG2 module changes its bottleneck to Ghost-
Conv on the basis of C3 and its general convolution on the branch to GhostConv. In order 
to solve the problems caused by an overly deep network depth, such as gradient disap-
pearance, gradient explosion and overfitting, the Concat operation is changed to residual 
connection, and the last common convolution is removed. 

Deep neural networks generate many similar redundant feature maps when extract-
ing features. Although they are important for deep neural networks to understand data 
characteristics, generating them in convolution operations requires a lot of computation. 
Inspired by GhostNet [39], GhostNet is a neural architecture designed to verify the effec-
tiveness of GhostConv. We introduced GhostConv in the process of feature space expan-
sion to generate more feature graphs from cheap operations, thus reducing the memory 
consumption in the process of intermediate expansion. At the same time, in order to en-
sure the effective extraction of our feature information and improve the stability of our 
network, we introduce residual connection into the CG2 module. At the same time, in 
order to ensure the effective extraction of our feature information and improve the stabil-
ity of our network, we introduce residual connection into the CG2 module. The structure 
of GhostConv is shown in Figure 3: 

Figure 2. Network structure diagram of CG-Net.

3.1. CG2 Module

The structure of the C3 module in Yolov5 is a bottleneck composed of three general
convolutions and a bottleneck, while the CG2 module changes its bottleneck to GhostConv
on the basis of C3 and its general convolution on the branch to GhostConv. In order to solve
the problems caused by an overly deep network depth, such as gradient disappearance,
gradient explosion and overfitting, the Concat operation is changed to residual connection,
and the last common convolution is removed.

Deep neural networks generate many similar redundant feature maps when extracting
features. Although they are important for deep neural networks to understand data charac-
teristics, generating them in convolution operations requires a lot of computation. Inspired
by GhostNet [39], GhostNet is a neural architecture designed to verify the effectiveness
of GhostConv. We introduced GhostConv in the process of feature space expansion to
generate more feature graphs from cheap operations, thus reducing the memory consump-
tion in the process of intermediate expansion. At the same time, in order to ensure the
effective extraction of our feature information and improve the stability of our network, we
introduce residual connection into the CG2 module. At the same time, in order to ensure
the effective extraction of our feature information and improve the stability of our network,
we introduce residual connection into the CG2 module. The structure of GhostConv is
shown in Figure 3:

The residual connection can effectively solve a series of problems caused by the
increase in the network depth, such as gradient disappearance, gradient explosion and
the easy overfitting of the model. We added residual connection in the CG2 module to
avoid the overfitting problem caused by the increase in network layers so as to effectively
improve the stability of our network. The input and output of the first layer are defined as
x and y respectively, and the nonlinear change in the input is defined as F(x, {Wi}). Then,
the formula for calculating residual connection is as follows:

y = F(x, {Wi}) + x, (1)

The introduction of the GhostConv module and residual structure in the CG2 module
can greatly reduce the amount of computation and obtain enough feature graphs to ensure
the stability of the network.
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3.2. ATPF Module

In order to make better use of different scale features, this paper proposes a new spatial
scale fusion module (ATPF), whose structure is shown in Figure 4. The ATPF consists
of spatial scale fusion and attention modules, and the feature map is processed by these
two blocks in turn. Spatial scale fusion usually adopts SPPF, which focuses on spatial
information and consists of four parallel branch connections: three maximum pooling
operations (kernel size 5 × 5, 9 × 9, 13 × 13) and the input itself. After a convolution
operation of the input features, three maximum pooling operations (convolution kernel
size is 5 × 5, 9 × 9, 13 × 13) are adopted, respectively, to receive the feature information
of different scales. Then, the feature graphs after convolution and maximum pooling are
superimposed on the dimension of the channel to ensure that the feature information is
not lost. Then, the number of 4c (channels) is reduced to c by 1 × 1 convolution. At the
same time, after the input is convolved with another line, it is spliced again with the output
after the dimension reduction in the channel. The spliced feature chart shows the number
of channels (2c). Finally, the CA attention mechanism module is introduced in the series.
Again, the number of channels is converted from 2c to c.
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The spatial scale fusion part of the ATPF module uses the SPPF module, and the other
part is the attention mechanism module. The attention weighting block is an adaptive
regulator whose function is to learn the importance of the spatial information of each
channel, to save resources by focusing limited attention on the key information and, thus,
to show which scale features are more significant. Although multi-scale information is the
basis of effective feature maps, different scales contribute different results. Therefore, the
attention weighting block adaptively assigns weight to different scales in the process of
network learning. The more significant the information, that is, the more meaningful the
scale features, the more weight they assign.

Currently, the commonly used attention mechanisms include the SE, CBAM, ECA
and CA modules, among which SE is to increase the attention mechanism in the channel
dimension. This module obtains the importance of each channel in the feature graph
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through automatic learning and uses the importance obtained to improve the features
and suppress the features that are not important to the current task. CBAM automatically
acquires the importance of each feature channel through learning, similar to SE. In addition,
the importance of each feature space is automatically obtained through a similar learning
method. The importance is used to promote features and suppress features that are not
important to the task at hand. The ECA module avoids dimension reduction and effectively
captures cross-channel interactions. The module only adds a few parameters but can obtain
an obvious performance gain. The CA module can encode the horizontal and vertical
location information into the pass so that the mobile network can pay attention to a large
range of location information without too much computation.

In general, the proposed ATPF module improves the context representation ability of
feature graphs by integrating more information sources and adaptively weighting them
according to their importance.

3.3. CARAFE

Feature up-sampling is a key operation of many modern convolutional network ar-
chitectures developed for tasks such as object detection, instance segmentation and scene
resolution. There are two main up-sampling methods used. One is the linear difference
method: the nearest neighbor difference algorithm and bilinear difference, which mainly
focus on subpixel space and cannot capture rich semantic information. The other is deconvo-
lution, which achieves dimension expansion through convolution. However, deconvolution
uses the same convolution kernel for the whole image, which limits the perception ability of
local changes, and it cannot have a good response ability to local changes. It also increases
the number of parameters. Wang et al. proposed a CARAFE [40] up-sampling operator. In
this paper, we use content-aware feature recombination (CARAFE) to sample the feature
map. At each location, CARAFE can use the underlying content information to predict
the reassembled kernel and reassemble features within a predefined neighborhood. The
CARAFE up-sampler has made remarkable progress with only a few extra parameters and
computation work. Because of the content information, CARAFE can use adaptive and
optimized reassembled kernels in different locations and achieve better performance than
mainstream up-sampling operators such as interpolation or deconvolution. The network
structure of CARAFE is shown in Figure 5:
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3.4. BiFPN

In the YOLOv5 algorithm, the FPN+PAN structure is used in the neck part, which
achieves good results in multi-scale fusion. However, its calculation is complicated, the
current task image is easily affected by environmental factors and the scale is diverse, so
the structure has insufficient feature extraction and utilization, resulting in large loss errors.
Therefore, the bidirectional feature fusion structure BiFPN [41] is introduced in the neck
part, and the BiFPN structure is shown in Figure 6.
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The BiFPN structure is based on PAN. Compared with the original neck structure,
BiFPN removes nodes without feature fusion and contributes little, and it adds new chan-
nels between input nodes and output nodes at the same level, thus combining more feature
information while saving resource consumption. At the same time, a cross-scale connection
method is proposed, and an extra edge is added to integrate the features in the feature
extraction network directly with the features relative to the size in the bottom-up path so
that the network can retain more superficial semantic information without losing too much
relatively deep semantic information. BiFPN enhances the information extraction capa-
bility of the network so that the low-level location information can be combined with the
high-level semantic information, which further improves the target detection performance
of the network.

4. Experimental Simulation and Analysis

In order to demonstrate the superiority of the frame in the surface defect identifica-
tion of hot rolled steel strip, experimental results and analysis are given in this section.
In this section, we first introduce datasets, experimental parameter settings and evalua-
tion metrics. Ablation studies then confirmed the contribution of the GhostConv, CG2,
ATPF and CARAFE and BiFPN modules. Specifically, the ablation study was designed to
demonstrate the necessity and to visualize the weight values to demonstrate the weight
allocation mechanism described above. Finally, the proposed method is compared with
other advanced methods for the task of defect identification.

4.1. Dataset
4.1.1. NEU-DET Dataset

In order to verify the effectiveness of the proposed method, the public dataset NEU-
DET [42] was introduced in our experiment to evaluate the performance of CG-Net and
some recent models. There are six defect types in the NEU-DET dataset: scratches, patches,
pitted surface, inclusion, crazing and rolled oxide scale. Each defect type has 300 images
with a resolution of 200 by 200 pixels. There are 1800 grayscale images in total. The NEU-
DET dataset was divided into a training set and a test set in a ratio of 90% and 10%, so
1620 samples were used for training and 180 samples were used for testing. The training set
is used to train network parameters to minimize the loss function. The test set was used to
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evaluate the accuracy of the trained network in identifying surface defects. Figure 7 shows
samples of six typical surface defects.
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4.1.2. NEU-CLS Dataset

The NEU surface defect (NEU-CLS) dataset published by Song et al. [42] was mainly
used in our experiments to evaluate the performance of CG-Net and some state-of-art
models. The NEU-CLS dataset contains six types of defects in total, i.e., scratch (Sc), patch
(Pa), pitted surface (Ps), inclusion (In), crazing (Cr) and rolled-in scale (Rs). Each defect type
has 300 images with a resolution of 200 × 200 pixels. A total of 1800 grayscale images are
present. The NEU-CLS dataset was divided into a training set and a test set in a ratio of 90%
and 10%, so 1620 samples were used for training and 180 samples were used for testing.

4.2. Experimental Parameter Setting

This experiment was carried out on the PyTorch deep learning framework. This
experiment used an NVIDIA GeForce RTX 3090 graphics card with 24 gigabytes of video
memory and an Interl 3.00 GHz i9-10980XE CPU. The network training process consisted
of 150 epochs. The random gradient (SGD) descent optimizer was used, the batch size
was 8 and the linear attenuation learning rate scheduling strategy was adopted, with an
initial learning rate of 0.01 and a final learning rate of 0.0001. The momentum parameters
and weight attenuation are 0.937 and 0.0005, respectively. The input image was uniformly
transformed to a size of 640 × 640 and normalized.

4.3. Evaluation Index

The mean average precision (mAP), Recall (Recall), FLOPs (floating point operation),
Params (parameters) and frames per second (FPS) were used to comprehensively evaluate
the proposed network. In the task of the surface defect detection of hot rolled strip steel,
the intersection ratio (IOU) is used to judge whether the detected result is a true defect. If
the value exceeds the threshold set, it is considered a positive sample; otherwise, it is a
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negative sample. In the target detection task, the accuracy and recall rate are important
indicators in judging the recognition effect of the network, which are defined as follows:

Precision = TP/(TP + FP), (2)

Recall = TP/(TP + FN), (3)

TP, FP and FN are explained as follows:

• true positive (TP): it means the correct prediction was right in the case of the sample;
• false positive (FP): it means the error prediction was right in the case of the sample;
• false negative (FN): it means the sample error prediction for a negative example.

mAP50:95 represents the average mAP at different IoU thresholds (from 0.5 to 0.95,
step size 0.05) (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95). It better represents the
performance of the model. Therefore, MAP50:95 was used to replace mAP50 in evaluating
the performance of our model. In addition, in order to compare the computational com-
plexity of different networks, we chose the computational time complexity (FLOPs) and
computational space complexity Params (parameter number) to represent the differences
between different methods. In addition, during the test phase, FPS was used to represent
the reasoning speed, and the result of FPS was the average of 180 test images.

4.4. Ablation Experiment

We used ablation experiments to verify the advantages of the GhostConv, CG2, ATPF
and CARAFE and BiFPN modules in CG-Net networks. The experimental results are
shown in Tables 1 and 2 below. GhostConv, CG2, ATPF and CARAFE and BiFPN can
improve the detection speed while improving the accuracy and reducing the number of
parameters and the calculation amount, but they are not compatible with the detection
accuracy, the number of parameters, the calculation amount and the detection speed. After
the introduction of five modules in experiment 6, the detection accuracy is 4% higher than
that in experiment 1, the number of parameters and the calculation amount are reduced
by 67% and 59.5%, respectively, and the detection speed is also increased by nine frames.
Similarly, in the NEU-CLS dataset, the experimental results of experiment 6 are significantly
better than those of other experiments. Under the premise of considering the performance,
the calculation amount and model scale are effectively reduced, and the lightweight and
high efficiency are truly realized. In order to detect the surface defects of hot rolled strip
steel in real time and accurately, the combination of experiment 6 is more in line with
the requirements.

The ATPF module introduces the attention mechanism. Currently, the four commonly
used modules of the attention mechanism are SE, CA, CBAM and ECA. As shown in
Tables 3 and 4, after four different attention mechanism modules are introduced into the
ATPF module, the CA detection result is the highest among the four, so we pay more
attention to the improvement of accuracy. Therefore, we adopt CA as the attention module
in ATPF.

Table 1. Ablation experiments of CG-Net (NEU-DET dataset).

Number GhostConv CG2 ATPF CARAFE
+ BiFPN mAP50 mAP50:95 Params(M) GFLOPs(G) FPS

1 — — — — 69.6 35.9 7.0 15.8 96
2

√
— — — 74.1 38.0 3.9 11.4 120

3 —
√

— — 71.5 37.1 2.9 7.7 147
4 — —

√
— 72.2 38.6 4.6 13.1 114

5 — — —
√

72.4 37.9 4.9 13.8 103
6

√ √ √ √
75.9 39.9 2.3 6.5 105
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Table 2. Ablation experiments of CG-Net (NEU-CLS dataset).

Number GhostConv CG2 ATPF CARAFE
+ BiFPN mAP50 mAP50:95 Params(M) GFLOPs(G) FPS

1 — — — — 57.6 30.6 7.0 15.8 99
2

√
— — — 58.6 31 3.9 11.4 120

3 —
√

— — 58.4 30.8 2.9 7.7 145
4 — —

√
— 60.2 32.1 4.6 13.1 113

5 — — —
√

57.9 30.8 4.9 13.8 103
6

√ √ √ √
60.8 32.6 2.3 6.5 110

Table 3. Comparison of effects of different attention mechanisms in the ATPF module (NEU-
DET dataset).

SE CA CBAM ECA P R mAP50 mAP50:95
√

— — — 66.4 67.8 73.5 39.0
—

√
— — 73.4 68.7 75.9 39.9

— —
√

— 71.4 68 73 39.5
— — —

√
67.9 68.2 73.1 38.6

Table 4. Comparison of effects of different attention mechanisms in the ATPF module (NEU-
CLS dataset).

SE CA CBAM ECA P R mAP50 mAP50:95
√

— — — 59.4 63.1 61.1 31.9
—

√
— — 54.3 64.2 60.8 32.6

— —
√

— 58.9 62.2 59.6 32.5
— — —

√
54.8 62.1 58 30.9

4.5. Advanced Model Comparison

To verify the strip surface defect detection performance of our CG-Net, we compared
our approach to a number of recent models, including the networks YOLOv3, Yolov3-tiny,
YOLOv5s and YOLOv7-tiny. In addition, we replaced the default backbone of YOLOv5s
with the lightweight backbone MobileNetV3, ShuffleNetv2 and GhostNet. Table 5 shows
the results of the quantitative comparison of each network on the NEU-DET dataset. Our
CG-Net method achieves 39.9% mAP, which is superior to all other methods, and its com-
plexity is significantly lower than that of all classical network models at only 2.3 M Params
and 6.5 GFLOPs. The YOLOv3-tiny has the highest FPS, but its detection performance is un-
satisfactory, with only 22.4% of the mAP. Our CG-Net has achieved the best results in terms
of the three aspects of detection accuracy, parameter number and computation amount, and
its detection performance is better than that of all lightweight networks and most first-level
networks. We improved the detection speed by 9FPS compared to the baseline YOLOv5s
and reduced the number of parameters and calculations by 67% and 59.5% compared to
YOLOv5s, respectively, and it was 2.6 times faster than YOLOv3. Meanwhile, the detection
speeds of MobileNetv3-YOLOv5, ShuffleNetv2-YOLOv5 and GhostNetS-YOLOv5, which
replaced the backbone, were all lower than that of the baseline YOLOv5s.

Table 6 shows the results of the quantitative comparison of each network on the
NEU-CLS dataset. It can be seen in the table that our network has achieved the optimal
comprehensive performance with the fewest number of parameters and the least amount
of computation.
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Table 5. Comparison with state-of-the-art methods on the NEU-DET dataset.

Method mAP50 mAP50:95 Params(M) GFLOPs(G) FPS

YOLOv3 73.1 37.0 61.5 154.6 40
YOLOv3-tiny 54 22.4 8.6 12.9 172

YOLOv5-s 69.6 35.9 7.0 15.8 96
MobileNetv3-YOLOv5 71.9 36.6 5.0 11.3 72
ShuffleNetv2-YOLOv5 63.7 31.5 3.8 8.0 83

GhostNet-YOLOv5 73.2 36.6 4.7 7.6 74
YOLOv7-tiny 69.3 32.6 6.0 13.1 99

CG-Net 75.9 39.9 2.3 6.5 105

Table 6. Comparison with state-of-the-art methods on the NEU-CLS dataset.

Method mAP50 mAP50:95 Params(M) GFLOPs(G) FPS

YOLOv3 60.1 28.4 61.5 154.6 39
YOLOv3-tiny 38.9 14.1 8.6 12.9 222

YOLOv5-s 57.6 30.6 7.0 15.8 99
MobileNetv3-YOLOv5 57.6 29.1 5.0 11.3 76
ShuffleNetv2-YOLOv5 53.9 24.5 3.8 8.0 83

GhostNet-YOLOv5 58.9 30.9 4.7 7.6 56
YOLOv7-tiny 54 26.1 6.0 13.1 101

CG-Net 60.8 32.6 2.3 6.5 110

The test results of CG-Net are shown in Figure 8. It can be seen that our CG-Net is
capable of processing strip surface defect images under various types and lighting conditions.
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5. Conclusions

In this paper, CG-Net, a lightweight defect detection method based on YOLOv5,
is designed. The CG2 module and ATPF module are designed for six defects of hot
rolled strip steel. The BiFPN structure was adopted to improve the ability of the detector
to adjust objects of different scales through the fusion of different scale characteristics.
Second, this paper proposes using the CARAFE module to replace bilinear interpolation
up-sampling. The CARAFE module can increase the receptive field of up-sampling and is
based on content up-sampling, so it can extract more image features and improve model
performance. Through testing on the NEU-DET dataset, CG-Net achieved 75.9% mAP
at only a 2.3 MB model size and 6.5 GFLOPs, an improvement of 6.3 points over YOLO
v5s, with an FPS of 105. Compared with YOLO v5s, the reference quantity and calculation
amount are reduced by 67% and 59.5%, respectively. At the same time, we also verify that
our model has good generalization performance on the NEU-CLS dataset. In the future, we
will focus on the further optimization of the algorithm to achieve a higher accuracy, faster
detection speed and lower model complexity.
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