Review # Recent Advances of Indium Oxide-Based Catalysts for CO₂ Hydrogenation to Methanol: Experimental and Theoretical Dongren Cai *, Yanmei Cai, Kok Bing Tan and Guowu Zhan * Integrated Nanocatalysts Institute (INCI), College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, China * Correspondence: 15506@hqu.edu.cn (D.C.); gwzhan@hqu.edu.cn (G.Z.) **Abstract:** Methanol synthesis from the hydrogenation of carbon dioxide (CO₂) with green H₂ has been proven as a promising method for CO2 utilization. Among the various catalysts, indium oxide (In₂O₃)-based catalysts received tremendous research interest due to the excellent methanol selectivity with appreciable CO₂ conversion. Herein, the recent experimental and theoretical studies on In₂O₃-based catalysts for thermochemical CO₂ hydrogenation to methanol were systematically reviewed. It can be found that a variety of steps, such as the synthesis method and pretreatment conditions, were taken to promote the formation of oxygen vacancies on the In_2O_3 surface, which can inhibit side reactions to ensure the highly selective conversion of CO₂ into methanol. The catalytic mechanism involving the formate pathway or carboxyl pathway over In₂O₃ was comprehensively explored by kinetic studies, in situ and ex situ characterizations, and density functional theory calculations, mostly demonstrating that the formate pathway was extremely significant for methanol production. Additionally, based on the cognition of the In₂O₃ active site and the reaction path of CO₂ hydrogenation over In₂O₃, strategies were adopted to improve the catalytic performance, including (i) metal doping to enhance the adsorption and dissociation of hydrogen, improve the ability of hydrogen spillover, and form a special metal-In₂O₃ interface, and (ii) hybrid with other metal oxides to improve the dispersion of In₂O₃, enhance CO₂ adsorption capacity, and stabilize the key intermediates. Lastly, some suggestions in future research were proposed to enhance the catalytic activity of In₂O₃-based catalysts for methanol production. The present review is helpful for researchers to have an explicit version of the research status of In₂O₃-based catalysts for CO₂ hydrogenation to methanol and the design direction of next-generation catalysts. **Keywords:** CO₂ hydrogenation; methanol; indium oxide-based catalysts; oxygen vacancies; hydrogen dissociation Citation: Cai, D.; Cai, Y.; Tan, K.B.; Zhan, G. Recent Advances of Indium Oxide-Based Catalysts for CO₂ Hydrogenation to Methanol: Experimental and Theoretical. *Materials* **2023**, *16*, 2803. https://doi.org/10.3390/ma16072803 Academic Editor: Juan M. Coronado Received: 26 February 2023 Revised: 20 March 2023 Accepted: 23 March 2023 Published: 31 March 2023 Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). # 1. Introductions The greenhouse effect caused by excessive CO_2 emission has seriously threatened the survival of human beings and other organisms [1–4]. In order to cope with the current grim situation, many countries have established a target timeline to reach the peak of CO_2 emission and achieve carbon neutrality. For example, China has promised to realize a carbon peak by 2030 and carbon neutrality by 2060 [5–8]. Therefore, CO_2 capture and utilization (CCU) technology has attracted much attention [9–13]. In particular, the use of "green hydrogen" produced with renewable energy to convert waste CO_2 into methanol is not only able to effectively reduce CO_2 emission but also can store renewable energy in liquid fuel, which is an important method to realize resource utilization of CO_2 [14–19]. CO_2 hydrogenation to methanol mainly includes CO_2 to methanol reaction (1), reverse water gas shift reaction (RWGS, 2), and CO to methanol reaction (3), respectively [20–23]. Reactions (1) and (3) are exothermic; thus, low temperature is conducive to the formation of methanol but hinders the activation of CO_2 . On the contrary, competitive reaction (2) is an endothermic reaction, which is significantly promoted at high temperatures, Materials **2023**, 16, 2803 2 of 22 resulting in a sharp decrease in methanol selectivity [24–26]. Therefore, the development of efficient catalysts with the aim to decrease CO_2 activation energy and promote methanol formation at a suitable temperature is the key to realizing the industrial application of CO_2 hydrogenation to methanol. $$CO_2 + 3H_2 \leftrightarrows CH_3OH + H_2O \quad \Delta H_{298 \text{ K}} = -49.5 \text{ kJ/mol}$$ (1) $$CO_2 + H_2 \stackrel{\leftarrow}{\rightarrow} CO + H_2O \quad \Delta H_{298 K} = 41.2 \text{ kJ/mol}$$ (2) $$CO + 2H_2 \leftrightarrows CH_3OH \quad \Delta H_{298 \text{ K}} = -90.7 \text{ kJ/mol}$$ (3) Currently, several types of materials have been used as the catalysts for CO₂ hydrogenation to methanol, including Cu [15,27-29], noble metals (Pt, Pd, Ru, etc.) [30-33], M_a ZrO_x (M_a = Ga, Zn, etc.) solid solution [34–37], and indium oxide (In_2O_3) [21,38–40]. Among them, Cu-based catalysts have been widely investigated in CO₂ hydrogenation to methanol [41]. However, they are prone to the Ostwald ripening effect and particle migration under high temperatures and water surroundings, which results in catalyst deactivation [42-44]. By comparison, noble metals exhibit high stability and resistance to sintering and poisoning, so they are regarded as an alternative to Cu-based catalysts. Nevertheless, these catalysts are not able to efficiently catalyze the reaction and regulate the product distribution due to the weak binding with CO₂ molecules [45,46]. Our previous research also confirmed this conclusion, which reveals that when Pt catalyzes CO2 hydrogenation alone, no methanol generates, and the selectivity of CO is as high as 100% [5,47]. Moreover, M_aZrO_x solid solution, particularly $ZnZrO_x$, is a potential catalyst for CO_2 hydrogenation to methanol [35,48-50]. In ZnZrO_x, Zn is doped into ZrO₂ lattice by replacing Zr (Zn-Zr-O_x), and the solid solution structure provides reaction sites of Zn and adjacent Zr for activating H₂ and CO₂, respectively (synergistic effect), thus producing methanol with high selectivity [51]. However, the low activity and the mobility of ZnO still limit the applications of the catalysts [36]. To our knowledge, In₂O₃ has been regarded as a highly selective catalyst for CO₂ hydrogenation to methanol in recent years [52]. It is generally believed that CO₂ can be adsorbed and activated by oxygen vacancies on the In₂O₃ surface, which are periodically generated and annihilated to inhibit the occurrence of side reactions, therefore hydrogenating CO₂ to methanol with high selectivity [53–55]. Not only does In₂O₃ show higher methanol selectivity than Cu and noble metals, but it also exhibits higher catalytic activity than ZnO [21]. Additionally, In₂O₃ can be further supported and modified to promote the activation of CO₂ and H₂, and stabilize the key reaction intermediates, thus presenting great potential to become an excellent catalyst for the sustainable and efficient production of methanol. Herein, we gave a comprehensive overview of the recent advances of In₂O₃based catalysts for CO₂ hydrogenation to methanol. The active site and mechanism of pure In₂O₃ catalyst for CO₂ hydrogenation were stated at first. Then, the discussion was concentrated on two important strategies, namely metal doping and hybrid with other metal oxides, to enhance the catalytic activity of In₂O₃ by promoting the dissociation of hydrogen to hydrogenate intermediates and the formation of oxygen vacancies to activate CO₂ and stabilize the key intermediates. Some suggestions in the future study were finally proposed to improve the performance of In₂O₃-based catalysts for CO₂ hydrogenation to methanol from the experimental and theoretical aspects. This review focused on the regulation and modification of active sites of In₂O₃-based catalysts to facilitate the activation of reactants and stabilization of intermediates in CO₂ hydrogenation, which is conducive to the design of more efficient In₂O₃-based catalysts in future studies. Materials **2023**, 16, 2803 3 of 22 # 2. In₂O₃-Based Catalysts for CO₂ Hydrogenation to Methanol ### 2.1. Pure In₂O₃ Catalyst The idea of In₂O₃ as the catalyst for CO₂ hydrogenation to methanol stems from its excellent CO₂ selectivity in methanol steam reforming (MSR) reactions [56,57]. Based on density functional theory (DFT), Ge et al. [53] predicted the feasibility of CO₂ hydrogenation to methanol catalyzed by In₂O₃ (110) with oxygen vacancies. They proposed that In₂O₃ would inhibit RWGS reaction, and methanol was the major product on the surface of defective In₂O₃ (110). As shown in Figure 1, the reaction process obeys the mechanism of periodic generation and annihilation of oxygen vacancies, including adsorption and activation of CO₂ on oxygen vacancies, CO₂ hydrogenation to form intermediate species, methanol desorption, and regeneration of oxygen vacancies. To confirm the research results of DFT, Liu et al. [38] used commercial In₂O₃ activated at a high temperature (500 °C) as the catalyst for CO₂ hydrogenation. The experimental results demonstrated that methanol yield increased with the increase in reaction pressure; however, due to the limitation of thermodynamics, it increased first and then decreased as the temperature increased. In addition, 2.82% of methanol yield and 3.69 mol h⁻¹ kg_{cat}⁻¹ of methanol production rate were obtained at 330 °C and 4 MPa, which was superior to many other catalysts. In 2016, Pérez-Ramírez et al. [58] revealed that nano In₂O₃ can efficiently catalyze CO₂ hydrogenation to methanol, obtaining more than $0.18 \text{ g}_{\text{MeOH}} \text{ h}^{-1} \text{
g}_{\text{cat}}^{-1}$ of space-time yield. They also found that compared to Cu/ZnO/Al₂O₃, the highest methanol yield of In₂O₃ was achieved at 300 °C, indicating that In₂O₃ can maintain high methanol selectivity at higher temperatures. Two years later, they reported the mechanism and microkinetics of methanol synthesis from CO₂ hydrogenation over In₂O₃ [59]. The results indicated that the apparent activation energy experimentally determined for CO₂ hydrogenation to methanol (103 kJ mol⁻¹) was lower than that of the RWGS reaction (117 kJ mol⁻¹), which explains the superior methanol selectivity over In₂O₃. In₂O₃ (111) was experimentally and theoretically proved to be the most exposed surface termination, indicating CO₂ can be activated by oxygen vacancies surrounded by three indium atoms. In addition, the most favorable pathway to methanol comprises three consecutive additions of hydrides and protons, which features CH₂OOH* and CH₂(OH)₂* as intermediates. In 2019, by an operando examination, Müller et al. [60] proved that In₂O_{3-x} was the active phase of methanol synthesis, while In⁰ led to the deactivation of the catalyst. **Figure 1.** The active site and catalytic mechanism of CO₂ hydrogenation to methanol over defective In₂O₃ (110). Reproduced with permission from ref. [53]. Copyright 2013 American Chemical Society. Materials 2023, 16, 2803 4 of 22 Liu et al. [61] prepared an In₂O₃ catalyst by precipitation method for CO₂ hydrogenation to methanol. The results showed that under the operating conditions (H₂/CO₂ molar ratio of 4, the volume space velocity of 21,000 cm 3 h $^{-1}$ g_{cat} $^{-1}$, reaction pressure of 5 MPa, and reaction temperature of 300 °C), the CO₂ conversion and methanol space-time yield were 9.4% and 0.335 g_{MeOH} h⁻¹ g_{cat} ⁻¹. Guo et al. [62] investigated the catalytic activity of cubic bixbyite-type indium oxide (c-In₂O₃) and rhombohedral corundum-type indium oxide (r-In₂O₃) in CO₂ hydrogenation to methanol. Due to the impressive reducibility and reactivity, c-In₂O₃ was higher than r-In₂O₃ in CO₂ conversion; however, r-In₂O₃ possessed higher methanol selectivity because of weaker methanol and stronger CO adsorption. Moreover, the in situ DRIFTS experiments revealed that CO₂ could be reduced to CO via redox cycling and hydrogenated to methanol via the formate pathway. In addition, Sun et al. [63] successfully designed an In_2O_3 nanocatalyst with higher catalytic activity under the guidance of theoretical calculation, which suggested that the hexagonal In₂O₃ (104) surface had a far superior catalytic performance. As shown in Figure 2, the experimental results also confirmed that compared to cubic In₂O₃ (c-In₂O₃), a novel hexagonal In₂O₃ (h-In₂O₃-R) with a high proportion of the exposed (104) surface exhibited higher catalytic activity and possessed high stability. Moreover, Li et al. [54] investigated the dissociative adsorption of H₂ during CO₂ hydrogenation over cubic and hexagonal In₂O₃ by DFT, and they found that the oppositely charged In and O pair sites on the reduced In₂O₃ surfaces played a significant role in facilitating the heterolytic dissociation of H₂, which contributed to the formation of anionic hydride around the In sites to promote CO₂ hydrogenation to methanol. Additionally, h-In₂O₃ (104) surface is considered the best surface for CO₂ hydrogenation to methanol due to the facile formation of the oxygen vacancies at low coverage and the favorable formation of the hydride adsorbate at the In sites. In the last two years, the research topic of CO₂ hydrogenation to methanol over In₂O₃ has still attracted considerable interest. Based on the solvothermal method, Wu et al. [64] successfully fabricated mixed-phase indium oxide with controllable cubic and hexagonal phases to enhance catalytic performance in CO₂ hydrogenation to methanol. Due to its enhanced textural properties and oxygen vacancies, mixed-phase c/h-In₂O₃ catalysts demonstrated higher CO₂ conversion and space-time yield of methanol and kept stable in the reaction. To understand the structure–activity relationship, Nørskov et al. [65] systematically studied the methanol synthesis over In_2O_3 (111) and In_2O_3 (110) by combining DFT calculations with microkinetic modeling. The theoretical activity volcano shown in Figure 3 suggested that catalytic activity was closely related to the number of reduced In layers on In₂O₃ surfaces, specifically, for In₂O₃ (110), a surface oxygen vacancies between 0.17 and 1 ML (ML: the top layer, from surface to interior) possessed the highest catalytic activity, while for In₂O₃ (111), the number of oxygen vacancies should be increased to 1~5 ML to obtain the optimal activity. Similarly, Gao et al. [66] revealed the structureperformance relationship of cubic In₂O₃ catalyst in CO₂ hydrogenation via the study of reaction mechanism and catalytic activities at all the different surface oxygen vacancy sites on stable (111) flat surface, (110) flat surface, and (110) step surface. The conclusion was that the rate-determining step of methanol synthesis for a given oxygen vacancy site can be determined by the stability of H₂COO* and CH₂O* intermediates along with the formation energy of the oxygen vacancy sites, and tri-coordinated oxygen vacancy sites were beneficial to the formation of methanol, whereas bi-coordinated oxygen vacancy sites favor CO formation. CO₂ hydrogenation to methanol on indium-terminated In₂O₃ (100), defective In₂O₃ (110), and In₂O₃ (111) surfaces were also deeply investigated by Zhang et al. [67]. It was found that the adsorbed CO₂ was preferable to form HCOO* compared with CO* and COOH* and underwent HCOO*, H₂CO*, and H₃CO* intermediates due to the lowest energy barriers. The defective In₂O₃ (110) was proven to be the optimal surface for CO₂ hydrogenation to methanol, while the indium-terminated In₂O₃ (100) surface displayed the lowest catalytic activity. In addition, Creaser et al. [39] proposed a kinetic model based on Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism for CO₂ hydrogenation to methanol over In₂O₃ catalyst. The model revealed that RWGS Materials **2023**, 16, 2803 5 of 22 was obviously enhanced at high temperatures, causing methanol synthesis to reverse (methanol steam reforming, MSR). Apparent activation energies for CO₂ hydrogenation to methanol and RWGS were 90 and 110 kJ mol⁻¹, respectively, over In₂O₃ derived from the experimental data. The results obtained from these detailed investigations were conducive to the development of reliable reactor and process designs. **Figure 2.** The catalytic activity of different In_2O_3 nanomaterials in CO_2 hydrogenation: (**A**) CO_2 conversion and methanol selectivity over In_2O_3 with different crystal phases and morphologies. (**B**) Effect of temperature on conversion of CO_2 and selectivity of methanol over c- In_2O_3 -S and h- In_2O_3 -R. (**C**) Effect of temperature on space-time yield (STY) over c- In_2O_3 -S and h- In_2O_3 -R. (**D**) Effect of H_2/CO_2 molar ratio over h- In_2O_3 -R. (**E**) Catalytic stability of h- In_2O_3 -R. Reproduced with permission from ref. [63]. Copyright 2020 American Association for the Advancement of Science. Although In_2O_3 exhibited excellent methanol selectivity in CO_2 hydrogenation, the low CO_2 conversion limited the methanol yield. Therefore, based on the cognition of the In_2O_3 active site and the reaction pathway of CO_2 hydrogenation over In_2O_3 , two strategies shown in Figure 4 were adopted to enhance the performance of In_2O_3 , including (I) introducing other metal elements into In_2O_3 and (II) combining In_2O_3 with other metal oxides. The catalytic performance of In_2O_3 -based catalysts is summarized in Table 1. Materials 2023, 16, 2803 6 of 22 Figure 3. (a) Theoretical activity volcano of methanol synthesis from CO_2 hydrogenation over In_2O_3 and transition-metal (211) surfaces. (b) The relationship between methanol formation and OH binding energy (fixed CO adsorption energy: -0.1 eV). Reproduced with permission from ref. [65]. Copyright 2021 American Chemical Society. **Figure 4.** Two representative strategies for improving the performance of In₂O₃. Materials **2023**, *16*, 2803 7 of 22 **Table 1.** Catalytic performance of In₂O₃-based catalysts in previous study. | Strategies | Catalysts | P (MPa) | <i>T</i> (°C) | H ₂ /CO ₂
Molar
Ratio | CO ₂
Conversion
(%) | Methanol
Selectivity
(%) | STY $(g_{MeOH} \\ h^{-1} g_{cat}^{-1})$ | Ref. | |--|---------------------------------------|---------|---------------|---|--------------------------------------|--------------------------------|---|------| | Introducing other metal elements into In ₂ O ₃ | In ₂ O ₃ | 4 | 330 | 3:1 | 7.1 | 39.7 | ~0.12 | [38] | | | In_2O_3 | 5 | 300 | 4:1 | a | 100 | ~0.18 | [58] | | | In_2O_3 | 5 | 300 | 4:1 | 9.4 | ~62.5 | ~0.34 | [61] | | | c-In ₂ O ₃ | 4 | 340 | 4:1 | ~12.0 | ~19.0 | ~0.09 | [62] | | | rh-In ₂ O ₃ | 4 | 340 | 4:1 | ~5.0 | ~30.0 | ~0.05 | [62] | | | c-In ₂ O ₃ | 3 | 300 | 3:1 | ~4.0 | ~70.5 | 0.06 | [64] | | | h-In ₂ O ₃ | 3 | 300 | 3:1 | ~4.7 | ~71.0 | 0.07 | [64] | | | c/h-In ₂ O ₃ -1 | 3 | 300 | 3:1 | ~5.7 | ~72.3 | 0.09 | [64] | | | c/h-In ₂ O ₃ -2 | 3 | 300 | 3:1 | ~6.2 | ~73.0 | 0.10 | [64] | | | c/h-In ₂ O ₃ -3 | 3 | 300 | 3:1 | ~5.0 | ~72.1 | 0.08 | [64] | | | $Pd-P/In_2O_3$ | 5 | 300 | 4:1 | ~20.0 | ~70.0 | 0.89 | [68] | | | h-In ₂ O ₃ /Pd | 3 | 300 | 3:1 | ~10.5 | 72.4 | 0.53 | [69] | | | Pd/MnO/In ₂ O ₃ | 3 | 280 | 3:1 | 4.5 | 71.3 | 0.24 | [70] | | | Pt/In_2O_3 | 5 | 300 | 4:1 | 17.3 | ~54.0 | 0.54 | [61] | | | Pt/In_2O_3 | 4 | 300 | 3:1 | 5.7 | ~71.5 | ~0.75 | [71] | | | Rh/In_2O_3 | 5 | 300 | 4:1 | 17.1 | 56.1 | 0.54 | [72] | | | $Rh-5-In_2O_3$ | 5 | 270 | 4:1 | 10.0 | 71.0 | 0.52 | [73] | | |
Ru/In_2O_3 | 5 | 300 | 4:1 | 14.3 | 69.7 | 0.57 | [74] | | | Au/In_2O_3 | 5 | 300 | 4:1 | 11.7 | 67.8 | 0.47 | [75] | | | Ir/In ₂ O ₃ | 5 | 300 | 4:1 | 17.7 | ~70.0 | ~0.77 | [76] | | | Ni/In_2O_3 | 5 | 300 | 4:1 | 18.4 | ~54.0 | 0.55 | [77] | | | Ni/In_2O_3 | 3 | 250 | 3:1 | 3.0 | ~52.0 | ~0.25 | [78] | | | Co/In_2O_3 | 4 | 300 | 3:1 | ~9.0 | ~40.0 | ~0.31 | [79] | | | $In_2O_3@Co_3O_4$ | 5 | 250 | 4:1 | 8.3 | ~87.0 | 0.65 | [80] | | | $Cu_{11}In_9$ - In_2O_3 | 3 | 260 | 3:1 | 10.3 | 86.2 | ~0.19 | [81] | | Combining In ₂ O ₃ with other metal oxides | In_2O_3/ZrO_2 | 5 | 300 | 4:1 | а | ~100 | ~0.31 | [58] | | | In_2O_3/m - ZrO_2 | 3 | 280 | 3:1 | 12.1 | 84.6 | а | [82] | | | $In_{2.5}/ZrO_2$ | 5 | 280 | 4:1 | а | 60.0 | ~0.07 | [83] | | | $Ga_{0.4}In_{1.6}O_3$ | 3 | 320 | 3:1 | ~12.0 | ~28.0 | a | [84] | | | InCe oxides | 0.1 | 290 | 3:1 | а | ~10.0 | ~0.12 ^b | [85] | | | In_2O_3/Al_2O_3 | 5 | 280 | 4:1 | a | а | ~0.04 | [86] | $^{^{}a}$ Not available. b μmol_{MeOH} s $^{-1}$ g_{In}^{-1} . # 2.2. Metal/In₂O₃ Composite Catalysts The abundant oxygen vacancies in In_2O_3 can adsorb and activate CO_2 , and the periodic generation and annihilation of oxygen vacancies can inhibit the side reactions, leading to the highly selective conversion of CO_2 to methanol. However, the weak hydrogen adsorption and dissociation of In_2O_3 limit the hydrogenation of carbon species, so CO_2 conversion is very low. Accordingly, the introduction of a noble metal or transition metal (M) could improve CO_2 conversion due to the synergistic catalysis of M and In_2O_3 . As shown in Figure 5, the H_2 molecule was adsorbed and activated on the M surface to generate H active species (step ①) and then combined with lattice oxygen of In_2O_3 via spillover (step ②) to create the oxygen vacancies (step ③). CO_2 molecule was adsorbed and activated by the obtained oxygen vacancies (step ④) and finally hydrogenated to methanol by combining with H active species (step ⑤). Materials 2023, 16, 2803 8 of 22 Figure 5. The synergistic catalysis effect of M and In₂O₃ in CO₂ hydrogenation to methanol. #### 2.2.1. Noble Metal/In₂O₃ Catalysts Pd/In₂O₃ catalyst. Many investigations have been concentrated on Pd/In₂O₃ catalyst for CO₂ hydrogenation to methanol in recent years. Ge et al. [87] studied methanol synthesis from CO₂ hydrogenation over Pd/In₂O₃ by the DFT method. They found that the HCOO* route competes with the RWGS route over Pd/In₂O₃ in the reaction process, and $H_2COO^* + H^* \leftrightarrows H_2CO^* + OH^*$ and cis-COOH* + $H^* \leftrightarrows CO^* + H_2O^*$ were their rate-limiting steps, respectively. The HCOO* route was the major pathway for methanol synthesis from CO₂ hydrogenation. Moreover, the H adatom activated by the Pd cluster and H₂O on the In₂O₃ substrate was extremely significant for the promotion of methanol production, and the adsorbed hydroxyl on the interface of Pd/In₂O₃ can induce the transformation of the Pd₄ cluster, which caused the change in final hydrogenation step. According to the guidance of the theoretical study, they prepared Pd/In₂O₃ with high dispersion of Pd nanoparticles by thermal treatment of Pd-peptide composite/In₂O₃ for methanol synthesis from CO₂ hydrogenation [68]. The prepared catalyst exhibited much more excellent activity than that of pure In₂O₃ due to the better ability to adsorb and dissociate H₂ for hydrogenation steps and the formation of oxygen vacancies. As a result, such a catalyst was able to demonstrate 20% of CO₂ conversion, 70% of methanol selectivity, and 0.89 $g_{MeOH} h^{-1} g_{cat}^{-1}$ of space-time yield (STY), respectively. Huang et al. [69] from our group detailly investigated the effect of strong metalsupport interaction between Pd and In₂O₃ on the catalytic performance of CO₂ hydrogenation to methanol by adjusting the morphology of In₂O₃. The results indicated that the combination of Pd and hollow In₂O₃ nanotubes derived from MIL-68(In) nanorod was more conducive to the methanol production compared with other morphologies of In₂O₃, which was due to more formation of Pd2+ via electron transfer from Pd to the curved In₂O₃ (222) to enhance H₂ adsorption and formation of surface oxygen vacancies. In addition, to prevent the formation of the In-Pd bimetallic phase that led to the quick deactivation of the catalyst, our group further developed TCPP(Pd)@MIL-68(In) as precursors to prepare Pd/In₂O₃ [88]. Compared to PdCl₂, TCPP(Pd) (metalloporphyrins) can be served as a capping agent for the growth of MIL-68(In) and a shuttle for transporting the Pd²⁺, thereby improving the dispersion of Pd during the process of calcination and reduction, and preventing excessive reduction to form In-Pd bimetallic phase. Both theoretical and experimental results indicated that the prepared Pd/In₂O₃ possessed excellent thermodynamic selectivity for methanol. For the same purpose of reducing the formation of In-Pd alloy, Zhan et al. [89] from our group adopted rape pollen pretreated by hydrochloric acid as the biological template to fabricate hierarchically structured bio-In₂O₃ and bio-In₂O₃/Pd, as shown in Figure 6. The results suggested that the pollen template with acid etching possessed a hollow cage-like structure and abundant functional groups (viz., -COOH and -NH₂) on the surface, which was conducive to the growth of In₂O₃ with abundant superficial oxygen vacancies. Compared to the sample without acid pretreatment (bio-In₂O₃-0/Pd), bio-In₂O₃-15/Pd demonstrated a better ability to inhibit the formation of In-Pd alloy due to the more Materials **2023**, 16, 2803 9 of 22 uniform In_2O_3 spatial distribution to reduce the interaction between Pd and In_2O_3 . In the following research, our group further developed bifunctional catalyst $Pd/In_2O_3/H$ -ZSM-5 for dimethyl ether synthesis from CO_2 hydrogenation, whereby Pd/In_2O_3 prepared by carbonized alginate templating favored CO_2 hydrogenation into methanol, and H-ZSM-5 favored methanol dehydration into dimethyl ether. Compared to commercial Pd/In_2O_3 (Com-PdIn), microspherical-confined nano In_2O_3 possessed more excellent texture properties to disperse the Pd nanoparticles, thus obtaining more than 450 g_{MeOH} kg_{cat}^{-1} h^{-1} of STY, whereas Com-PdIn only achieved 50.8450 g_{MeOH} kg_{cat}^{-1} h^{-1} of STY [90]. **Figure 6.** Fabrication routes of supported bio- In_2O_{3-x}/Pd catalysts. Reproduced with permission from ref. [89]. Copyright 2021 Elsevier. Pérez-Ramírez et al. [91] reported an effective coprecipitation method to incorporate isolated palladium atoms into an In_2O_3 lattice for forming low-nuclearity palladium clusters, which can overcome the selectivity and stability limitations associated with palladium nanoparticles. Additionally, to disperse the active components highly, Zhang et al. [92] employed the citric acid method to load In_2O_3 and Pd on SBA-15, respectively. It can be found that oxygen vacancies were promoted with increasing Pd amount. The as-prepared catalyst possessed excellent performance with 12.9% of CO_2 conversion, 83.9% of methanol selectivity, and $1.1 \times 10^{-2} \, \text{mol}_{MeOH} \, \text{h}^{-1} \, \text{g}_{\text{cat}}^{-1}$ of STY, which was due to the high dispersion of In_2O_3 and Pd nanoparticles on SBA-15, and the synergetic effect of H_2 dissociation on Pd species and CO_2 activation on In_2O_3 . Moreover, Wu et al. [70] introduced Mn and Pd into In_2O_3 to improve the methanol selectivity and CO_2 conversion. The results showed that Pd species were highly dispersed on the MnO/ In_2O_3 due to the strong metal–support interactions, and 1 wt% Pd/MnO/ In_2O_3 exhibited excellent activity (240.6 $g_{MeOH} \, kg_{cat}^{-1} \, h^{-1}$ of STY) and stability in CO_2 hydrogenation. Pt/In_2O_3 catalyst. The combination of Pt and In_2O_3 for CO_2 hydrogenation to methanol has also been reported. For instance, Li et al. [71] adopted the coprecipitation method to synthesize Pt/In_2O_3 and investigated the effect of Pt content on the catalytic performance. Materials **2023**, 16, 2803 10 of 22 They found that as Pt content increased, CO₂ conversion increased, whereas methanol selectivity increased first and then decreased. The highly dispersed Ptn+ was embedded into the In2O3 lattice to promote the formation of oxygen vacancies and contribute to CO₂ activation. In the reaction process, the unstable Ptⁿ⁺ was reduced to Pt nanoparticle, and the stable Ptⁿ⁺ kept the high dispersion. Both Ptⁿ⁺ and Pt can activate H₂, but the effect on the reaction was quite different; specifically, the highly dispersed Ptn+ was used as the Lewis acid site to promote H₂ dissociation for CO₂ hydrogenation to methanol, while Pt nanoparticles induced the RWGS reaction to decrease the methanol selectivity. Similarly, Liu et al. [61] supported Pt on In₂O₃ to improve the methanol yield. The results showed that the CO₂ conversion and methanol yield over Pt/In₂O₃ were 17.3% and $0.542 \text{ g}_{\text{MeOH}} \text{ h}^{-1} \text{ g}_{\text{cat}}^{-1} \text{ at } 300 \,^{\circ}\text{C}$, respectively (In₂O₃: 9.4% and 0.335 g_{MeOH} h⁻¹ g_{cat}⁻¹). As compared to In₂O₃, Pt/In₂O₃ possessed more excellent catalytic stability, which was mainly due to the high dispersion of Pt nanoparticles and strong interaction between Pt and In_2O_3 to inhibit the excessive reduction in In_2O_3 . In addition, to keep the high dispersion of Pt, Pan et al. [93] synthesized Pt/film/In₂O₃ catalyst shown in Figure 7 via the cold-plasma/peptide-assembly (CPPA) method. The prepared Pt/film/In₂O₃ obtained 37.0% of CO₂ conversion and 62.6% of methanol selectivity at 30 °C and 0.1 MPa in a dielectric barrier discharge (DBD) plasma reactor. The film of the catalyst played significant roles in the improvement of catalytic performance, namely inhibiting the agglomeration of Pt nanoparticles and transferring the electrons from the catalyst to CO₂. The
results of this work provided a valuable reference for CO₂ hydrogenation to methanol at room temperature and pressure. Pérez-Ramírez et al. [94] highlighted flame spray pyrolysis as a synthesis platform to assess metal (Pt, Ni, Au, etc.) promotion in In₂O₃-based catalysts for CO₂ hydrogenation. Compared to Ni clusters or Au nanoparticles, the atomically dispersed and well-stabilized Pt had a more obvious promoting effect on In₂O₃ for CO₂ hydrogenation to methanol. Moreover, DFT simulations further revealed that the high concentration of isolated Pt atoms could greatly enhance homolytic H₂ splitting and increase the availability of hydrides for C-H hydrogenation due to the formation In₃Pt and In₂Pt₂ ensembles, therefore facilitating methanol production. **Figure 7.** (a) The structure model of $Pt/film/In_2O_3$. (b) SEM image of $Pt/film/In_2O_3$. (c) HRTEM image of $Pt/film/In_2O_3$. Reproduced with permission from ref. [93]. Copyright 2019 Elsevier. Materials 2023, 16, 2803 11 of 22 Other noble metal/ In_2O_3 catalyst. In addition to Pd and Pt, other noble metals were also introduced into In_2O_3 to promote catalytic performance. Shrotri et al. [73] found that methanol STY over In_2O_3 -based catalyst can be improved from 0.18 g_{MeOH} h⁻¹ g_{cat}^{-1} to 1.0 g_{MeOH} h⁻¹ g_{cat}^{-1} after doping of Rh. This was because, on the one hand, Rh promoted the dissociation of H_2 to lead to the formation of more oxygen vacancies on the In_2O_3 surface. On the other hand, Rh was related to the production of formate species with a low activation barrier confirmed by DFT. Similarly, Liu et al. [72] also investigated the influence of Rh addition to In_2O_3 on methanol production from CO_2 hydrogenation. They demonstrated that the existence of Rh can enhance the dissociative adsorption and spillover of hydrogen, which was instrumental in surface oxygen vacancies formation of In_2O_3 and CO_2 activation, so the STY of 0.5448 g_{MeOH} h⁻¹ g_{cat}^{-1} over Rh/ In_2O_3 was obtained while it was only 0.3402 g_{MeOH} h⁻¹ g_{cat}^{-1} over In_2O_3 . In addition, they also supported Ru [74], Au [75], Ir [76], and Ag [95] on the In_2O_3 for CO_2 hydrogenation to methanol, and the results indicated that the catalytic activity could be enhanced to a great extent. #### 2.2.2. Base Metal/In₂O₃ Catalysts Ni/In₂O₃ catalysts. Recently, Ni/In₂O₃ catalysts have also attracted wide attention in methanol production from CO₂ hydrogenation. In 2020, Liu et al. [77] prepared an In₂O₃supported nickel catalyst (Ni/In₂O₃) by a wet chemical reduction for CO₂ hydrogenation, and the results suggested that the highly dispersed Ni species can be used as active sites for hydrogen dissociation and spillover to contribute to the formation of oxygen vacancies and hydrogenation process. Therefore, the effective synergy of Ni sites and In₂O₃ support resulted in superior catalytic performance, specifically, 18.47% of CO₂ conversion, more than 54% of methanol selectivity, and 0.55 g_{MeOH} h⁻¹ g_{cat} ⁻¹ of STY at 300 °C and 5 MPa. Subsequently, to further understand the superior catalytic performance of Ni/In₂O₃, they investigated the synergistic effect of the metal-support interaction and interfacial oxygen vacancies on methanol synthesis via DFT calculation [96]. It was found that the interfacial oxygen vacancies were beneficial for boosting the CO2 adsorption and charge transfer between the nickel species and indium oxide, synergistically promoting the selectivity of methanol. Simultaneously, among the three reaction pathways examined (formate pathway, CO hydrogenation, and RWGS pathway, respectively), the RWGS pathway was proven to be the most theoretically favored for methanol synthesis from CO₂ hydrogenation over Ni/In_2O_3 , as shown in Figure 8. In addition to the above research work, they also introduced ZrO₂ into Ni/In₂O₃ catalyst (Ni/In₂O₃-ZrO₂) for CO₂ hydrogenation to methanol [97]. The solid solution formed by ZrO₂ and In₂O₃ can optimize and stabilize the oxygen vacancies of In₂O₃ to avoid the excessive reduction in the bulk indium oxide, thus possessing a 43.2% increase in STY of methanol. Different from the traditional synthesis method, Hensen et al. [78] combined Ni with In₂O₃ using flame spray pyrolysis (FSP) synthesis. The obtained NiO-In₂O₃ catalyst possesses high specific surface areas and block morphology. When NiO loading is 6 wt%, \sim 0.25 g_{MeOH} h⁻¹ g_{cat} ⁻¹ of STY can be obtained over the corresponding catalyst at the conditions of 250 °C and 30 bar. The comprehensive characterizations revealed the strong interactions between Ni cations and In₂O₃ when NiO loading is lower 6 wt%, which contributed to the promotion of surface density of oxygen vacancies. Additionally, DFT calculation suggested that the introduction of Ni species lowered the energy barrier of H₂ dissociation to facilitate hydrogenation of adsorbed CO₂ on oxygen vacancies. Other metal/In₂O₃ catalysts. To improve the performance of In₂O₃, Qi et al. [79] prepared In_x-Co_y oxides catalysts for CO₂ hydrogenation to methanol. It was found that the methanation activity catalyzed by Co species was suppressed, and the best catalyst (In₁-Co₄) exhibited nearly five times methanol STY compared to that of pure In₂O₃ at conditions of 300 °C and 4 MPa. Several in situ and ex situ characterizations suggested that CO₂ hydrogenation over Co species and In_x-Co_y oxides all followed the formate pathway, and much stronger adsorbed capacity of CO₂ and carbon-containing intermediates on In_x-Co_y oxides catalyst contributed to a feasible surface C/H ratio, therefore facilitating CH₃O* Materials **2023**, *16*, 2803 to produce methanol instead of being over-hydrogenated to methane. Gascon et al. [80] explored metal-organic framework (MOF) mediated synthetic approaches to prepare a Co₃O₄-supported In₂O₃ catalyst for CO₂ hydrogenation to methanol. Compared to the traditionally coprecipitated In@Co catalytic system, the induction period in the hydrogenation process over MOF-derived In@Co catalyst could be tuned because ZIF-67(Co) support provided better In dopant distribution. In addition, the sequential pyrolysis-calcination steps could promote the formation of mixed-metal carbide (Co₃InC_{0.75}) to stabilize high In distribution and prevent the formation of large individual oxide domains, thus leading to a faster induction period. The prepared catalyst (used 3In@8Co(300)) showed nanoparticles featuring core-shell morphologies (Co-In oxides shell over Co₃InC_{0.75} core) shown in Figure 9 and could obtain $0.65 \text{ g}_{\text{MeOH}} \text{ h}^{-1} \text{ g}_{\text{cat}}^{-1}$ of maximum STY with methanol selectivity of 87% at conditions of 250 °C and 50 bar. Additionally, based on ZIF-67(Co), Zhang et al. [98] obtained a Co/C-N catalyst through the pyrolysis method and then mixed it with In₂O₃ in different methods to prepare In₂O₃/Co/C-N for CO₂ hydrogenation to methanol. It was found that the proximity of Co/C-N and In₂O₃ played a significant role in the synergetic catalysis for methanol synthesis from CO₂ hydrogenation. Moreover, the obvious difference in placement of separate Co/C-N and In₂O₃ in catalytic performance also indicated CO₂ might be adsorbed and activated on the surface of In₂O₃ to form carbon intermediates and then were further hydrogenated into methanol or byproducts over Co/C-N surface. Furthermore, the existence of the N element could improve the electron interaction of Co and In₂O₃ and prevent the sintering of In₂O₃ particles, thereby increasing the catalytic activity and stability for CO₂ hydrogenation to methanol. **Figure 8.** Catalytic mechanism investigation of methanol synthesis via RWGS pathway over Ni_4/In_2O_3 catalyst: (a) calculated Gibbs free energy profile; (b) surface configurations of Ni_4/In_2O_3 _D model at each elementary step. Reproduced with permission from ref. [96]. Copyright 2019 Elsevier. Materials **2023**, *16*, 2803 **Figure 9.** ADF-STEM imaging and elemental mapping for used 3In@8Co(300): (a) ADF-STEM image, (b) Co map, (c) O map, (d) In map, (e) superimposed Co/In maps, and (f) superimposed Co/In/O maps. Reproduced with permission from ref. [80]. Copyright 2020 American Chemical Society. Additionally, the combination of Cu and In₂O₃ also can be a good choice to improve the catalytic performance. Wu et al. [81] employed the coprecipitation method to fabricate various CuO-In₂O₃ and investigated the effect of the Cu:In molar ratio on the physicochemical properties and catalytic activity for methanol synthesis. The prepared catalyst mainly exhibited in the form of $Cu_{11}In_9$ phase and In_2O_3 at low Cu:In molar ratio ($\leq 1:2$) after reduction treatment or in the reaction process, whereas with the increase in Cu content, Cu₇In₃ phase was continuously weakened, and Cu phase emerged, which resulted in the formation of Cu-Cu₇In₃-In₂O₃. CuIn(1:2) catalyst obtained maximum methanol STY $(5.95 \text{ mmol}_{MeOH} \text{ h}^{-1} \text{ g}^{-1})$ at the conditions of 260 °C and 3.0 MPa due to the highest Cu dispersion and the highest surface oxygen vacancies concentration, and the synergistic effect, Cu₇In₃ phase for H₂ dissociation and In₂O₃ for CO₂ adsorption, were considered as the major contributions for the efficient catalytic efficiency. The interfacial sites between Cu and metal oxides (In, Zn, and Zr) were tuned by Yu et al. for CO₂ hydrogenation to methanol [99]. The results suggested that the introduction of In₂O₃ into Cu/ZrO₂ catalyst can increase the methanol formation rate from 52.7 mmol g_{cat}^{-1} to 60.5 mmol g_{cat}^{-1} . This was because, on the one hand, the formation of Cu_xIn_y surface species inhibited the RWGS reaction on the Cu surface. On the other hand, ZrO₂ stabilized the In₂O₃ and generated additional In-Zr mixed oxide sites for CO₂ conversion to methanol. #### 2.3. *In*₂O₃/*Metal Oxides Composite Catalysts* Combining In_2O_3 with other
metal oxides is also a significant strategy, which can improve the dispersion of In_2O_3 , increase the content of oxygen vacancies for CO_2 adsorption, and stabilize the key intermediates to facilitate methanol formation from CO_2 hydrogenation. Supporting In_2O_3 on ZrO_2 is the most common and effective method Materials **2023**, 16, 2803 14 of 22 because the electronic structure effect and crystal lattice mismatching between In₂O₃ and ZrO₂ are beneficial to CO₂ activation for the formation of methanol. The research results by Pérez-Ramírez et al. proved that combining In₂O₃ with ZrO₂ can enhance the catalytic activity and stability of CO₂ hydrogenation to methanol [58]. On the one hand, the reduced Zr centers can attract oxygen atoms from the active phase in the reaction process, therefore increasing oxygen vacancies for CO₂ adsorption and activation. On the other hand, ZrO₂ support effectively improved the dispersion of In₂O₃ nanoparticles. Next, they explored the electronic, geometric, and interfacial phenomena between In₂O₃ and ZrO₂ [86]. The results suggested that the catalytic performance of mixed In-Zr oxides could not be improved by coprecipitation, thereby excluding the primary role of electronic parameters. The epitaxial growth of In₂O₃ was permitted on both monoclinic and tetragonal ZrO₂; however, the more obvious lattice mismatching contributes to the lower dispersion of In₂O₃ on monoclinic ZrO₂. Detailed characterizations and kinetic analyses revealed two major facilitation of monoclinic ZrO_2 support for In_2O_3 performance. One is that the epitaxial alignment of In₂O₃ on monoclinic ZrO₂ ensured the high dispersion of the oxide to prevent sintering. The other is that the less favorable lattice matching between In₂O₃ and monoclinic ZrO₂ produces tensile strain more easily, favoring the formation of oxygen vacancies on In₂O₃. The strong electronic oxide–support interaction between In₂O₃ and ZrO₂ for CO₂ hydrogenation to methanol was investigated by Gong et al. through quasi-in situ XPS experiments and DFT calculation [82]. Compared to the combination of In₂O₃ and tetragonal ZrO₂ (In₂O₃/t-ZrO₂), In₂O₃/m-ZrO₂ (m-: monoclinic) exhibits more excellent catalytic performance (CO₂ conversion up to 12.1% with methanol selectivity of 84.6%) due to the stronger interaction to lead to the high dispersion of In-O-In over m-ZrO₂. Methanol synthesis from CO₂ hydrogenation over In₂O₃/m-ZrO₂ follows the formate pathway. It was confirmed that the electron was transferred from m-ZrO₂ to In₂O₃ to generate electron-rich In₂O₃, which can facilitate the dissociation of H₂ and help HCOO* transform into CH_3O^* by hydrogenation. Blum et al. [100] paid important attention to the support effect and surface reconstruction of In₂O₃/m-ZrO₂ in the process of CO₂ hydrogenation to methanol. They proposed that the modifying effects of m-ZrO₂ on In₂O₃ mainly had two aspects: (I) m-ZrO₂ serves as a reservoir for partially reduced In_2O_3 (InO_x , 0 < x < 1.5) due to the fact that InO_x can semireversibly migrate in and out of the subsurface of m-ZrO₂ under reaction conditions (623 K). The decrease in surface InO_x concentration at high temperatures resulted in the low selectivity toward methanol and a rapid increase in RWGS reaction. (II) The interaction that Zr centers attracted the O atom of In₂O₃ led to the activation of the In-O bond at the In₂O₃-m-ZrO₂ interface to generate oxygen vacancies, and the high dispersion of In₂O₃ nanoparticles on m-ZrO₂ prevented the over-reduction of In₂O₃ under catalytic conditions compared to the bare In₂O₃. Based on their work, they also summarized the reaction mechanism pathway on the bare In_2O_3 and In_2O_3/m - ZrO_2 , as exhibited in Figure 10. Witoon et al. [101] studied the effect of the calcination temperature of ZrO₂ support on the physicochemical properties and catalytic activities of In₂O₃/ZrO₂ for converting CO₂ and H₂ into methanol at a high reaction temperature. As the calcination temperature increased (from 600 to 1000 °C), the crystal of ZrO₂ support gradually changed from an amorphous phase to a tetragonal phase. The high calcination temperature of ZrO₂ support can decrease the reduction degree of In₂O₃, indicating the better interaction between In₂O₃ and tetragonal ZrO₂ compared to amorphous ZrO₂. In addition, the adsorption capacity of prepared In₂O₃/ZrO₂ catalysts for CO₂ and H₂ was enhanced with the increase in calcination temperature of ZrO₂ support, which promoted the highly selective conversion of CO₂ and H₂ into methanol instead of methane, whereas it did not have a significant impact on the formation of CO. Materials **2023**, *16*, 2803 15 of 22 **Figure 10.** Reaction mechanism pathway on bare In₂O₃ and different In₂O₃/m-ZrO₂ catalysts. Reproduced with permission from ref. [100]. Copyright 2022 American Chemical Society. Müller et al. [102] investigated the effect of the ZrO₂ phase on the reducibility, local structure, and catalytic performance of In₂O₃/ZrO₂ for CO₂ hydrogenation to methanol by operando X-ray absorption spectroscopy (XAS) and XRD studies. The results suggested that the amorphous ZrO₂ (am-ZrO₂) support could not form a solid solution with In₂O₃, and led to the rapid reduction in In₂O₃ to pure In⁰ under reaction conditions, therefore suffering deactivation within minutes. For tetragonal ZrO₂ (t-ZrO₂) support, although it can inhibit the complete reduction of In₂O₃ into In⁰, the reduction extent was still too great (an average oxidation state of In below +2), resulting in poor catalytic activity. Surprisingly, it was found that the interaction between In₂O₃ nanoparticles and monoclinic ZrO₂ (m-ZrO₂) can impel atomical dispersion of In²⁺/In³⁺ into m-ZrO₂ lattice to form solid solution m-ZrO2:In, which prevented the over-reduction of In species (an average oxidation state of +2.3) and stabilized the active In-oxygen vacancy (V_0)-Zr sites to facilitate CO₂ conversion into methanol. Additionally, the In-Vo-Zr sites were vitally more stable toward reduction than In-V₀-In sites in bixbyite-type In₂O₃, thus exhibiting superior catalytic activity and stability for CO₂ hydrogenation to methanol. Subsequently, they further studied the nature and abundance of sites for the hydrogen dissociation on In₂O₃/ZrO₂-supported catalysts (In₂O₃/m-ZrO₂, In₂O₃/t-ZrO₂, In₂O₃/am-ZrO₂ and m-ZrO₂:In catalysts) in CO₂ hydrogenation to methanol [103]. The results showed that indium hydride species (In-H) and hydroxyl groups (O-H) could be found on the surface of all redox-pretreated catalysts at room temperature when they were exposed to hydrogen, and only a low concentration of hydrogen dissociation sites still existed on the surface of In₂O₃/m-ZrO₂ and m-ZrO₂:In without redox pretreatment. In₂O₃/m-ZrO_{2(redox)} possessed the highest concentration of surface indium sites for heterolytic activation of H₂, and the obtained In-H species can react with CO₂ to form surface formate species (methanol intermediates) at room temperature, indicating the appreciable reactivity of In-H and carbonates on the m-ZrO₂ support. Additionally, the reduction in hydrogen at 400 °C led to the high dispersion of In into m-ZrO₂ to form a m-ZrO₂:In solid solution. Hydrogen dissociation in m-ZrO₂:In solid solution proceeded on In³⁺-O-Zr⁴⁺ sites, obtaining In-H and Zr-OH species. The preparation method of In_2O_3/ZrO_2 also vitally affects the electronic structure effect, thus to optimize the interaction of In_2O_3 and ZrO_2 , and the surface exposure degree of In_2O_3 , four different compositing strategies (liquid-phase coprecipitation, precipitation-coating method, ball milling method, and incipient wetness impregnation, respectively) for the synthesis of In_2O_3/ZrO_2 were compared by Gao et al. [104]. It was found that the exposure area of In_2O_3 prepared by the precipitation-coating method was the highest ($S_{In} = 6.22 \text{ m}^2 \text{ g}^{-1}$), whereas it was lowest ($S_{In} = 1.56 \text{ m}^2 \text{ g}^{-1}$) by the coprecipitation Materials 2023, 16, 2803 16 of 22 method due to the formation of In_2O_3 bulk dispersion with ZrO_2 . The dispersion of In_2O_3 on ZrO_2 can inhibit the over-reduction of In_2O_3 , and the exposure area of In_2O_3 was beneficial for CO_2 adsorption and activation. Furthermore, DRIFTS results and DFT calculation demonstrated that the oxygen vacancy defects of In_2O_3/ZrO_2 would stabilize the key formate intermediates to facilitate the formation of methanol obeying the carbonate–formate–methoxy pathway, as shown in Figure 11: H_2 was adsorbed on the exposed In_2O_3 surface (H*), and subsequently generated $In-H^*$ and $O-H^*$ by hydrogen heterolysis. CO_2 was adsorbed and activated by $In-V_0$ -Zr oxygen vacancies to form carbonate species (CO_2^*), and then it combined with the activated $In-H^*$ to generate the formate intermediate ($ICOO^*$). Later, $ICOO^*$ was further hydrogenated into $ICOO^*$ via the pathway of $ICOO^* \rightarrow ICOO^* \rightarrow$ **Figure 11.** Catalytic mechanism diagram for CO_2 hydrogenation to methanol over In_2O_3/ZrO_2 catalyst prepared by precipitation-coating method. Reproduced with permission from ref. [104]. Copyright 2022 Elsevier. ## 3. Conclusions and Further Directions In summary, In_2O_3 -based catalysts are promising for the industrial application of thermochemical CO_2 hydrogenation to methanol. Various research methods have been adopted to explore the formation process and possible structure of active sites and the reaction mechanism over In_2O_3 -based catalysts for CO_2 hydrogenation to methanol. Furthermore, research has been ongoing to further understand the structure–activity relationship and identify the key factors affecting the catalytic performance. It is commonly accepted that methanol synthesis from CO_2 hydrogenation over In_2O_3 -based catalysts follows a formate pathway, where CO_2 adsorbed on the oxygen
vacancy of In_2O_3 passes through the route of $CO_2^* \rightarrow HCOO^* \rightarrow H_2CO^* \rightarrow H_3CO^* \rightarrow CH_3OH$. The phase state of In_2O_3 plays a key role in determining CO_2 conversion and methanol selectivity, and compared to cubic bixbyite-type In_2O_3 ($c-In_2O_3$), hexagonal In_2O_3 ($h-In_2O_3$) with a high proportion of the exposed (104) surface exhibited the higher catalytic activity and possessed high stability, which is mainly due to the facile formation of the oxygen vacancies at low coverage and the favorable formation of the hydride adsorbate at the In sites on (104) surface. The factors dictating Materials **2023**, 16, 2803 17 of 22 performance improvement of In₂O₃-based catalysts include (1) the ability for dissociation and spillover of hydrogen, (2) the number of oxygen vacancies for CO₂ activation, (3) the dispersion of In₂O₃ nanostructures, and (4) the stability of key intermediates. Two different strategies, metal doping and hybrid with other metal oxides, respectively, are utilized to optimize the above factors for enhancing the catalytic performance of In₂O₃-based catalysts. For the facilitation of dissociation and spillover of hydrogen, the most effective strategy is introducing the metal element (M, M = Pd, Pt, Ni or Co, etc.) into In_2O_3 . The existence of M nanostructures sharply promotes the dissociative adsorption of hydrogen, therefore being instrumental in enhancing the hydrogenation process and increasing surface oxygen vacancy. On balance, the synergistic catalysis effect of M and In₂O₃ contributes to the high catalytic performance of M/In₂O₃ catalysts. As for the improvement of CO₂ adsorption and key intermediates stability, supporting In₂O₃ on the other metal oxides is considered to be extremely useful, especially the combination of In₂O₃ with ZrO₂ support. ZrO₂ support is an excellent modifier for In_2O_3 to promote the concentration of oxygen vacancy, enhance the interaction with CO₂, and stabilize the key intermediates. The structure-activity relationship of In₂O₃/ZrO₂ can be concluded as follows: high surface and dispersion of In₂O₃ to prevent sintering and strong interaction of In₂O₃ and ZrO₂ (i.e., solid solution m-ZrO₂:In) from preventing the over-reduction of In₂O₃, generate more active In-oxygen vacancy (V₀)-Zr sites for activating CO₂ and stabilizing key formate intermediates, and also form electron-rich In₂O₃ (electron transfer from ZrO₂ to In₂O₃) to facilitate the dissociation of hydrogen. In addition, the phase state of ZrO₂ support greatly affects the catalytic activity of In₂O₃/ZrO₂, and different from amorphous ZrO₂ and tetragonal ZrO₂, the interaction between monoclinic ZrO₂ and In₂O₃ nanoparticles can impel atomical dispersion of In²⁺/In³⁺ into m-ZrO₂ lattice to form solid solution m-ZrO₂:In, which prevented the over-reduction of In species and stabilized the active In-oxygen vacancy-Zr sites to facilitate CO₂ conversion into methanol. Although the research of In₂O₃-based catalysts for CO₂ hydrogenation to methanol has made substantial headway recently, several issues remain to be addressed in future studies. For instance, it is urgent to reveal the evolutionary process of active sites under real reaction conditions, which is extremely crucial to establish a more intuitive and reliable structure–activity relationship for designing In_2O_3 -based catalysts. In addition, the catalytic mechanism over In₂O₃-based catalysts is usually proposed by theoretical study-based DFT calculation at present; however, the validity in practical applications is rather challenging. On the one hand, the microscopic reaction process (molecular level) could not be observed through experiments to verify its validity. On the other hand, the DFT calculation is unable to restore the real experimental conditions (i.e., species of active sites, mass transfer, etc.), therefore resulting in the difference between the theoretical reaction pathway and the actual reaction pathway. In order to obtain the evolutionary process of active sites and valid reaction mechanism, two considerable methods should be highlighted in future studies as follows: (1) making more efforts to analyze and identify the species of key intermediates by comprehensive in situ characterization technology (i.e., in situ DRIFTS, in situ XPS, etc.) and kinetic investigation; (2) combining DFT calculations with other simulation methods (i.e., computational fluid dynamics (CFD), kinetic Monte Carlo (KMC), etc.) to build more realistic models for theoretical study. Furthermore, from the point view of practical application, it is extremely necessary to reveal the deactivation mechanisms and enhance catalytic stability of In₂O₃-based catalysts in converting CO₂ into methanol, so more attention should be paid to the issues of sintering and the structural evolution monitored by in situ/operando spectroscopic techniques. Overall, this review mainly summarized the regulation and modification of active sites of In₂O₃-based catalysts to facilitate the activation of reactants and stabilization of intermediates in CO₂ hydrogenation, which is conducive to the design of more efficient In₂O₃-based catalysts for the highly selective transformation of CO₂ to methanol in future studies, realizing the resource utilization of CO_2 . Materials **2023**, 16, 2803 18 of 22 **Author Contributions:** Conceptualization, D.C. and G.Z.; validation, Y.C., K.B.T. and G.Z.; formal analysis, Y.C.; writing—original draft preparation, D.C.; writing—review and editing, K.B.T. and G.Z.; visualization, K.B.T.; supervision, G.Z. All authors have read and agreed to the published version of the manuscript. **Funding:** This work was supported by the National Natural Science Foundation of China (Nos. U21A20324 and 22278167), the Natural Science Foundation of Fujian Province (Nos. 2022J01312 and 2021J06026), and Start-Up Scientific Research Funds for Newly Recruited Talents of Huaqiao University (No. 605-50Y20015). Institutional Review Board Statement: Not applicable. **Informed Consent Statement:** Not applicable. **Data Availability Statement:** Not applicable. Conflicts of Interest: The authors declare no conflict of interest. #### References Yue, Y.; Huang, Z.; Cai, D.; Ullah, S.; Ibrahim, A.-R.; Yang, X.; Huang, J.; Zhan, G. Fabrication of multi-layered Co₃O₄/ZnO nanocatalysts for spectroscopic visualization: Effect of spatial positions on CO₂ hydrogenation performance. Fuel 2022, 321, 124042. [CrossRef] - Tan, K.B.; Zhan, G.; Sun, D.; Huang, J.; Li, Q. The development of bifunctional catalysts for carbon dioxide hydrogenation to hydrocarbons via the methanol route: From single component to integrated components. *J. Mater. Chem. A* 2021, 9, 5197–5231. [CrossRef] - 3. Li, W.; Wang, K.; Zhan, G.; Huang, J.; Li, Q. Hydrogenation of CO₂ to Dimethyl Ether over Tandem Catalysts Based on Biotemplated Hierarchical ZSM-5 and Pd/ZnO. ACS Sustain. Chem. Eng. 2020, 8, 14058–14070. [CrossRef] - 4. Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Mac Dowell, N.; Fernández, J.R.; Ferrari, M.-C.; Gross, R.; Hallett, J.P.; et al. Carbon capture and storage update. *Energy Environ. Sci.* **2014**, *7*, 130–189. [CrossRef] - 5. Song, M.; Huang, Z.; Chen, B.; Liu, S.; Ullah, S.; Cai, D.; Zhan, G. Reduction treatment of nickel phyllosilicate supported Pt nanocatalysts determining product selectivity in CO₂ hydrogenation. *J. CO*₂ *Util.* **2021**, 52, 101674. [CrossRef] - 6. Liu, S.; Song, M.; Cha, X.; Hu, S.; Cai, D.; Li, W.; Zhan, G. Nickel phyllosilicates functionalized with graphene oxide to boost CO selectivity in CO₂ hydrogenation. *Sep. Purif. Technol.* **2022**, 287, 120555. [CrossRef] - 7. Wang, L.; Wang, D.; Li, Y. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079. [CrossRef] - 8. Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. *Nat. Rev. Earth Environ.* **2021**, *3*, 141–155. [CrossRef] - 9. Calzadiaz-Ramirez, L.; Meyer, A.S. Formate dehydrogenases for CO₂ utilization. *Curr. Opin. Biotechnol.* **2022**, 73, 95–100. [CrossRef] - 10. Kim, J.; Seong, A.; Yang, Y.; Joo, S.; Kim, C.; Jeon, D.H.; Dai, L.; Kim, G. Indirect surpassing CO₂ utilization in membrane-free CO₂ battery. *Nano Energy* **2021**, *82*, 105741. [CrossRef] - Castro, S.; Albo, J.; Irabien, A. Photoelectrochemical Reactors for CO₂ Utilization. ACS Sustain. Chem. Eng. 2018, 6, 15877–15894. [CrossRef] - 12. Mikulčić, H.; Ridjan Skov, I.; Dominković, D.F.; Wan Alwi, S.R.; Manan, Z.A.; Tan, R.; Duić, N.; Hidayah Mohamad, S.N.; Wang, X. Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO₂. *Renew Sust. Energ. Rev.* **2019**, 114, 109338. [CrossRef] - 13. Reis Machado, A.S.; Nunes da Ponte, M. CO₂ capture and electrochemical conversion. *Curr. Opin. Green Sustain. Chem.* **2018**, 11, 86–90. [CrossRef] - 14. Ren, M.; Zhang, Y.; Wang, X.; Qiu, H. Catalytic Hydrogenation of CO₂ to Methanol: A Review. Catalysts 2022, 12, 403. [CrossRef] - 15. Murthy, P.S.; Liang, W.; Jiang, Y.; Huang, J. Cu-Based Nanocatalysts for CO₂ Hydrogenation to Methanol. *Energy Fuels* **2021**, 35, 8558–8584. [CrossRef] - 16. Bowker, M. Methanol Synthesis from CO₂ Hydrogenation. ChemCatChem 2019, 11, 4238–4246. [CrossRef] - 17. Choi, E.J.; Lee, Y.H.; Lee, D.-W.; Moon, D.-J.; Lee, K.-Y. Hydrogenation of CO₂ to methanol over Pd–Cu/CeO₂ catalysts. *Mol. Catal.* **2017**, 434, 146–153. [CrossRef] - 18. Zhao, F.; Fan, L.; Xu, K.; Hua, D.; Zhan, G.; Zhou, S.-F. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO₂ hydrogenation to methanol. *J. CO*₂ *Util.* **2019**, *33*, 222–232. [CrossRef] - 19. Li, Y.; Na, W.; Wang, H.; Gao, W. Hydrogenation of CO₂ to methanol over Au–CuO/SBA-15 catalysts. *J. Porous Mater.* **2016**, 24, 591–599. [CrossRef] - 20.
García-Trenco, A.; Regoutz, A.; White, E.R.; Payne, D.J.; Shaffer, M.S.P.; Williams, C.K. PdIn intermetallic nanoparticles for the Hydrogenation of CO₂ to Methanol. *Appl. Catal. B* **2018**, 220, 9–18. [CrossRef] - 21. Wang, J.; Zhang, G.; Zhu, J.; Zhang, X.; Ding, F.; Zhang, A.; Guo, X.; Song, C. CO₂ Hydrogenation to Methanol over In₂O₃-Based Catalysts: From Mechanism to Catalyst Development. *ACS Catal.* **2021**, *11*, 1406–1423. [CrossRef] Materials **2023**, 16, 2803 19 of 22 22. Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO₂ hydrogenation to methanol. *Chem. Soc. Rev.* **2020**, *49*, 1385–1413. [CrossRef] [PubMed] - 23. Tian, G.; Wu, Y.; Wu, S.; Huang, S.; Gao, J. Solid-State Synthesis of Pd/In₂O₃ Catalysts for CO₂ Hydrogenation to Methanol. *Catal. Lett.* **2022**, *153*, 903–910. [CrossRef] - 24. Choi, H.; Oh, S.; Trung Tran, S.B.; Park, J.Y. Size-controlled model Ni catalysts on Ga₂O₃ for CO₂ hydrogenation to methanol. *J. Catal.* **2019**, *376*, 68–76. [CrossRef] - 25. Poerjoto, A.J.; Ashok, J.; Dewangan, N.; Kawi, S. The role of lattice oxygen in CO₂ hydrogenation to methanol over La_{1-x}Sr_xCuO catalysts. *J. CO*₂ *Util.* **2021**, *47*, 101498. [CrossRef] - 26. Kothandaraman, J.; Dagle, R.A.; Dagle, V.L.; Davidson, S.D.; Walter, E.D.; Burton, S.D.; Hoyt, D.W.; Heldebrant, D.J. Condensed-phase low temperature heterogeneous hydrogenation of CO₂ to methanol. *Catal. Sci. Technol.* **2018**, *8*, 5098–5103. [CrossRef] - 27. Frusteri, L.; Cannilla, C.; Todaro, S.; Frusteri, F.; Bonura, G. Tailoring of Hydrotalcite-Derived Cu-Based Catalysts for CO₂ Hydrogenation to Methanol. *Catalysts* **2019**, *9*, 1058. [CrossRef] - 28. Din, I.U.; Shaharun, M.S.; Naeem, A.; Tasleem, S.; Johan, M.R. Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO₂ to methanol. *J. CO*₂ *Util.* **2017**, 21, 145–155. [CrossRef] - 29. Zhang, X.; Liu, J.-X.; Zijlstra, B.; Filot, I.A.W.; Zhou, Z.; Sun, S.; Hensen, E.J.M. Optimum Cu nanoparticle catalysts for CO₂ hydrogenation towards methanol. *Nano Energy* **2018**, 43, 200–209. [CrossRef] - 30. Gutterod, E.S.; Lazzarini, A.; Fjermestad, T.; Kaur, G.; Manzoli, M.; Bordiga, S.; Svelle, S.; Lillerud, K.P.; Skulason, E.; Oien-Odegaard, S.; et al. Hydrogenation of CO₂ to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the Metal-Organic Framework. *J. Am. Chem. Soc.* **2020**, 142, 999–1009. [CrossRef] - 31. Toyao, T.; Kayamori, S.; Maeno, Z.; Siddiki, S.M.A.H.; Shimizu, K.-i. Heterogeneous Pt and MoO_x Co-Loaded TiO₂ Catalysts for Low-Temperature CO₂ Hydrogenation To Form CH₃OH. *ACS Catal.* **2019**, *9*, 8187–8196. [CrossRef] - 32. Ojelade, O.A.; Zaman, S.F.; Daous, M.A.; Al-Zahrani, A.A.; Malik, A.S.; Driss, H.; Shterk, G.; Gascon, J. Optimizing Pd:Zn molar ratio in PdZn/CeO₂ for CO₂ hydrogenation to methanol. *Appl Catal. A-Gen.* **2019**, *584*, 117185. [CrossRef] - 33. Geng, F.; Bonita, Y.; Jain, V.; Magiera, M.; Rai, N.; Hicks, J.C. Bimetallic Ru–Mo Phosphide Catalysts for the Hydrogenation of CO₂ to Methanol. *Ind. Eng. Chem. Res.* **2020**, *59*, 6931–6943. [CrossRef] - 34. Feng, W.-H.; Yu, M.-M.; Wang, L.-J.; Miao, Y.-T.; Shakouri, M.; Ran, J.; Hu, Y.; Li, Z.; Huang, R.; Lu, Y.-L.; et al. Insights into Bimetallic Oxide Synergy during Carbon Dioxide Hydrogenation to Methanol and Dimethyl Ether over GaZrO_x Oxide Catalysts. *ACS Catal.* **2021**, *11*, 4704–4711. [CrossRef] - 35. Sha, F.; Tang, C.; Tang, S.; Wang, Q.; Han, Z.; Wang, J.; Li, C. The promoting role of Ga in ZnZrO_x solid solution catalyst for CO₂ hydrogenation to methanol. *J. Catal.* **2021**, *404*, 383–392. [CrossRef] - 36. Lee, K.; Anjum, U.; Araújo, T.P.; Mondelli, C.; He, Q.; Furukawa, S.; Pérez-Ramírez, J.; Kozlov, S.M.; Yan, N. Atomic Pd-promoted ZnZrO solid solution catalyst for CO₂ hydrogenation to methanol. *Appl. Catal. B* **2022**, 304, 120994. [CrossRef] - 37. Xu, D.; Hong, X.; Liu, G. Highly dispersed metal doping to ZnZr oxide catalyst for CO₂ hydrogenation to methanol: Insight into hydrogen spillover. *J. Catal.* 2021, 393, 207–214. [CrossRef] - 38. Sun, K.; Fan, Z.; Ye, J.; Yan, J.; Ge, Q.; Li, Y.; He, W.; Yang, W.; Liu, C.-j. Hydrogenation of CO₂ to methanol over In₂O₃ catalyst. *J. CO*₂ *Util.* **2015**, *12*, 1–6. [CrossRef] - 39. Ghosh, S.; Sebastian, J.; Olsson, L.; Creaser, D. Experimental and kinetic modeling studies of methanol synthesis from CO₂ hydrogenation using In₂O₃ catalyst. *Chem. Eng. J.* **2021**, *416*, 129120. [CrossRef] - 40. Baumgarten, R.; Naumann d'Alnoncourt, R.; Lohr, S.; Gioria, E.; Frei, E.; Fako, E.; De, S.; Boscagli, C.; Drieß, M.; Schunk, S.; et al. Quantification and Tuning of Surface Oxygen Vacancies for the Hydrogenation of CO₂ on Indium Oxide Catalysts. *Chem. Ing. Tech.* 2022, 94, 1765–1775. [CrossRef] - 41. Medina, J.C.; Figueroa, M.; Manrique, R.; Rodríguez Pereira, J.; Srinivasan, P.D.; Bravo-Suárez, J.J.; Baldovino Medrano, V.G.; Jiménez, R.; Karelovic, A. Catalytic consequences of Ga promotion on Cu for CO₂ hydrogenation to methanol. *Catal. Sci. Technol.* **2017**, 7, 3375–3387. [CrossRef] - Chou, C.-Y.; Lobo, R.F. Direct conversion of CO₂ into methanol over promoted indium oxide-based catalysts. *Appl Catal. A-Gen.* 2019, 583, 117144. [CrossRef] - 43. Fichtl, M.B.; Schlereth, D.; Jacobsen, N.; Kasatkin, I.; Schumann, J.; Behrens, M.; Schlögl, R.; Hinrichsen, O. Kinetics of deactivation on Cu/ZnO/Al₂O₃ methanol synthesis catalysts. *Appl Catal. A-Gen.* **2015**, 502, 262–270. [CrossRef] - 44. Sun, J.T.; Metcalfe, I.S.; Sahibzada, M. Deactivation of Cu/ZnO/Al₂O₃ Methanol Synthesis Catalyst by Sintering. *Ind. Eng. Chem. Res.* **1999**, *38*, 3868–3872. [CrossRef] - 45. Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. *Chem. Soc. Rev.* **2011**, 40, 3703–3727. [CrossRef] - 46. Porosoff, M.D.; Yan, B.; Chen, J.G. Catalytic reduction of CO₂ by H₂ for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. *Energy Environ. Sci.* **2016**, *9*, 62–73. [CrossRef] - Huang, Z.L.; Yuan, Y.J.; Song, M.M.; Hao, Z.M.; Xiao, J.R.; Cai, D.R.; Ibrahim, A.R.; Zhan, G.W. CO₂ hydrogenation over mesoporous Ni-Pt/SiO₂ nanorod catalysts: Determining CH₄/CO selectivity by surface ratio of Ni/Pt. Chem. Eng. Sci. 2022, 247, 117106. [CrossRef] Materials **2023**, 16, 2803 20 of 22 48. Li, W.; Wang, K.; Huang, J.; Liu, X.; Fu, D.; Huang, J.; Li, Q.; Zhan, G. M_xO_y-ZrO₂ (M = Zn, Co, Cu) Solid Solutions Derived from Schiff Base-Bridged UiO-66 Composites as High-Performance Catalysts for CO₂ Hydrogenation. *ACS Appl. Mater. Interfaces* **2019**, 11, 33263–33272. [CrossRef] - 49. Sha, F.; Tang, S.; Tang, C.; Feng, Z.; Wang, J.; Li, C. The role of surface hydroxyls on ZnZrO_x solid solution catalyst in CO₂ hydrogenation to methanol. *Chin. J. Catal.* **2023**, 45, 162–173. [CrossRef] - 50. Pinheiro Araújo, T.; Morales-Vidal, J.; Zou, T.; Agrachev, M.; Verstraeten, S.; Willi, P.O.; Grass, R.N.; Jeschke, G.; Mitchell, S.; López, N.; et al. Design of Flame-Made ZnZrO_x Catalysts for Sustainable Methanol Synthesis from CO₂. Adv. Energy Mater. 2023, 2204122. [CrossRef] - 51. Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A highly selective and stable ZnO-ZrO₂ solid solution catalyst for CO₂ hydrogenation to methanol. *Sci. Adv.* **2017**, *3*, e1701290. [CrossRef] - 52. Sadeghinia, M.; Rezaei, M.; Kharat, A.N.; Jorabchi, M.N.; Nematollahi, B.; Zareiekordshouli, F. Effect of In₂O₃ on the structural properties and catalytic performance of the CuO/ZnO/Al₂O₃ catalyst in CO₂ and CO hydrogenation to methanol. *Mol. Catal.* **2020**, *484*, 110776. [CrossRef] - 53. Ye, J.Y.; Liu, C.J.; Mei, D.H.; Ge, Q.F. Active Oxygen Vacancy Site for Methanol Synthesis from CO₂ Hydrogenation on In₂O₃(110): A DFT Study. ACS Catal. **2013**, *3*, 1296–1306. [CrossRef] - 54. Qin, B.; Li, S. First principles investigation of dissociative adsorption of H₂ during CO₂ hydrogenation over cubic and hexagonal In₂O₃ catalysts. *PCCP* **2020**, 22, 3390–3399. [CrossRef] - 55. Wang, L.; Dong, Y.; Yan, T.; Hu, Z.; Jelle, A.A.; Meira, D.M.; Duchesne, P.N.; Loh, J.Y.Y.; Qiu, C.; Storey, E.E.; et al. Black indium oxide a photothermal CO₂ hydrogenation catalyst. *Nat. Commun.* **2020**, *11*, 2432. [CrossRef] - 56. Lorenz, H.; Jochum, W.; Klötzer, B.; Stöger-Pollach, M.; Schwarz, S.; Pfaller, K.; Penner, S. Novel methanol steam reforming activity and selectivity of pure In₂O₃. *Appl. Catal. A-Gen.* **2008**, *347*, 34–42. [CrossRef] - 57. Bielz, T.; Lorenz, H.; Amann, P.; Klötzer, B.; Penner, S. Water–Gas Shift and Formaldehyde Reforming Activity Determined by Defect Chemistry of Polycrystalline In₂O₃. *J. Phys. Chem. C* **2011**, *115*, 6622–6628. [CrossRef] - 58. Martin, O.; Martin, A.J.; Mondelli, C.; Mitchell, S.; Segawa, T.F.; Hauert, R.; Drouilly, C.; Curulla-Ferre, D.; Perez-Ramirez, J. Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO₂ Hydrogenation. *Angew. Chem. Int. Ed.* **2016**, *55*, 6261–6265. [CrossRef] - 59. Frei, M.S.; Capdevila-Cortada, M.; Garcia-Muelas, R.; Mondelli, C.; Lopez, N.; Stewart, J.A.; Ferre, D.C.; Perez-Ramirez, J. Mechanism and microkinetics of methanol synthesis via CO₂ hydrogenation on indium oxide. *J. Catal.* **2018**, *361*, 313–321. [CrossRef] - 60. Tsoukalou, A.; Abdala, P.M.; Stoian, D.; Huang, X.; Willinger, M.G.; Fedorov, A.; Muller, C.R. Structural Evolution and Dynamics of an In₂O₃ Catalyst for CO₂ Hydrogenation to Methanol: An *Operando* XAS-XRD and In Situ TEM Study. *J. Am. Chem. Soc.* **2019**, 141, 13497–13505. [CrossRef] - 61. Sun, K.; Rui, N.; Zhang, Z.; Sun, Z.; Ge, Q.; Liu, C.-J. A highly active Pt-In₂O₃ catalyst for CO₂ hydrogenation to methanol with enhanced stability. *Green Chem.* **2020**, 22, 5059–5066. [CrossRef] - 62. Yang, B.; Li, L.; Jia, Z.; Liu, X.; Zhang, C.; Guo, L. Comparative study of CO₂ hydrogenation to
methanol on cubic bixbyite-type and rhombohedral corundum-type indium oxide. *Chin. Chem. Lett.* **2020**, *31*, 2627–2633. [CrossRef] - 63. Dang, S.; Qin, B.; Yang, Y.; Wang, H.; Cai, J.; Han, Y.; Li, S.; Gao, P.; Sun, Y. Rationally designed indium oxide catalysts for CO₂ hydrogenation to methanol with high activity and selectivity. *Sci. Adv.* **2020**, *6*, eaaz2060. [CrossRef] [PubMed] - 64. Shi, Z.; Tan, Q.; Wu, D. Mixed-Phase Indium Oxide as a Highly Active and Stable Catalyst for the Hydrogenation of CO₂ to CH₃OH. *Ind. Eng. Chem. Res.* **2021**, *60*, 3532–3542. [CrossRef] - 65. Cao, A.; Wang, Z.; Li, H.; Nørskov, J.K. Relations between Surface Oxygen Vacancies and Activity of Methanol Formation from CO₂ Hydrogenation over In₂O₃ Surfaces. *ACS Catal.* **2021**, *11*, 1780–1786. [CrossRef] - 66. Qin, B.; Zhou, Z.; Li, S.; Gao, P. Understanding the structure-performance relationship of cubic In₂O₃ catalysts for CO₂ hydrogenation. *J. CO*₂ *Util.* **2021**, *49*, 101543. [CrossRef] - 67. Wang, W.; Chen, Y.; Zhang, M. Facet effect of In₂O₃ for methanol synthesis by CO₂ hydrogenation: A mechanistic and kinetic study. *Surf. Interfaces* **2021**, *25*, 101244. [CrossRef] - 68. Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C.-j. CO₂ hydrogenation to methanol over Pd/In₂O₃: Effects of Pd and oxygen vacancy. *Appl. Catal. B* **2017**, *218*, 488–497. [CrossRef] - 69. Cai, Z.; Dai, J.; Li, W.; Tan, K.B.; Huang, Z.; Zhan, G.; Huang, J.; Li, Q. Pd Supported on MIL-68(In)-Derived In₂O₃ Nanotubes as Superior Catalysts to Boost CO₂ Hydrogenation to Methanol. *ACS Catal.* **2020**, *10*, 13275–13289. [CrossRef] - 70. Guanfeng, T.; Youqing, W.; Shiyong, W.; Sheng, H.; Jinsheng, G. CO₂ hydrogenation to methanol over Pd/MnO/In₂O₃ catalyst. *J. Environ. Chem. Eng.* **2021**, *10*, 106965. [CrossRef] - 71. Han, Z.; Tang, C.; Wang, J.; Li, L.; Li, C. Atomically dispersed Ptⁿ⁺ species as highly active sites in Pt/In₂O₃ catalysts for methanol synthesis from CO₂ hydrogenation. *J. Catal.* **2021**, *394*, 236–244. [CrossRef] - 72. Wang, J.; Sun, K.; Jia, X.; Liu, C.-j. CO₂ hydrogenation to methanol over Rh/In₂O₃ catalyst. *Catal. Today* **2021**, *365*, 341–347. [CrossRef] - 73. Dostagir, N.H.M.D.; Thompson, C.; Kobayashi, H.; Karim, A.M.; Fukuoka, A.; Shrotri, A. Rh promoted In₂O₃ as a highly active catalyst for CO₂ hydrogenation to methanol. *Catal. Sci. Technol.* **2020**, *10*, 8196–8202. [CrossRef] Materials **2023**, 16, 2803 21 of 22 74. Qinglei, W.; Chenyang, S.; Ning, R.; Kaihang, S.; Chang-jun, L. Experimental and theoretical studies of CO₂ hydrogenation to methanol on Ru/In₂O₃. *J. CO₂ Util.* **2021**, *53*, 101720. [CrossRef] - 75. Rui, N.; Zhang, F.; Sun, K.; Liu, Z.; Xu, W.; Stavitski, E.; Senanayake, S.D.; Rodriguez, J.A.; Liu, C.-J. Hydrogenation of CO₂ to Methanol on a Au^{δ+}–In₂O_{3-x} Catalyst. *ACS Catal.* **2020**, *10*, 11307–11317. [CrossRef] - 76. Shen, C.; Sun, K.; Zhang, Z.; Rui, N.; Jia, X.; Mei, D.; Liu, C.-j. Highly Active Ir/In₂O₃ Catalysts for Selective Hydrogenation of CO₂ to Methanol: Experimental and Theoretical Studies. *ACS Catal.* **2021**, *11*, 4036–4046. [CrossRef] - 77. Jia, X.; Sun, K.; Wang, J.; Shen, C.; Liu, C.-j. Selective hydrogenation of CO₂ to methanol over Ni/In₂O₃ catalyst. *J. Energy Chem.* **2020**, *50*, 409–415. [CrossRef] - 78. Zhu, J.; Cannizzaro, F.; Liu, L.; Zhang, H.; Kosinov, N.; Filot, I.A.W.; Rabeah, J.; Bruckner, A.; Hensen, E.J.M. Ni-In Synergy in CO₂ Hydrogenation to Methanol. *ACS Catal.* **2021**, *11*, 11371–11384. [CrossRef] - 79. Li, L.; Yang, B.; Gao, B.; Wang, Y.; Zhang, L.; Ishihara, T.; Qi, W.; Guo, L. CO₂ hydrogenation selectivity shift over In-Co binary oxides catalysts: Catalytic mechanism and structure-property relationship. *Chin. J. Catal.* **2022**, *43*, 862–876. [CrossRef] - 80. Pustovarenko, A.; Dikhtiarenko, A.; Bavykina, A.; Gevers, L.; Ramírez, A.; Russkikh, A.; Telalovic, S.; Aguilar, A.; Hazemann, J.-L.; Ould-Chikh, S.; et al. Metal–Organic Framework-Derived Synthesis of Cobalt Indium Catalysts for the Hydrogenation of CO₂ to Methanol. *ACS Catal.* **2020**, *10*, 5064–5076. [CrossRef] - 81. Shi, Z.; Pan, M.; Wei, X.; Wu, D. Cu-In intermetallic compounds as highly active catalysts for CH₃OH formation from CO₂ hydrogenation. *Int. J. Energy Res.* **2021**, *46*, 1285–1298. [CrossRef] - 82. Yang, C.; Pei, C.; Luo, R.; Liu, S.; Wang, Y.; Wang, Z.; Zhao, Z.J.; Gong, J. Strong Electronic Oxide-Support Interaction over In₂O₃/ZrO₂ for Highly Selective CO₂ Hydrogenation to Methanol. *J. Am. Chem. Soc.* **2020**, *142*, 19523–19531. [CrossRef] [PubMed] - 83. Chen, T.-y.; Cao, C.; Chen, T.-b.; Ding, X.; Huang, H.; Shen, L.; Cao, X.; Zhu, M.; Xu, J.; Gao, J.; et al. Unraveling Highly Tunable Selectivity in CO₂ Hydrogenation over Bimetallic In-Zr Oxide Catalysts. *ACS Catal.* **2019**, *9*, 8785–8797. [CrossRef] - 84. Akkharaphatthawon, N.; Chanlek, N.; Cheng, C.K.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. Tuning adsorption properties of Ga_xIn_{2-x}O₃ catalysts for enhancement of methanol synthesis activity from CO₂ hydrogenation at high reaction temperature. *Appl. Surf. Sci.* **2019**, *489*, 278–286. [CrossRef] - 85. Regalado Vera, C.Y.; Manavi, N.; Zhou, Z.; Wang, L.-C.; Diao, W.; Karakalos, S.; Liu, B.; Stowers, K.J.; Zhou, M.; Luo, H.; et al. Mechanistic understanding of support effect on the activity and selectivity of indium oxide catalysts for CO₂ hydrogenation. *Chem. Eng. J.* **2021**, *426*, 131767. [CrossRef] - 86. Frei, M.S.; Mondelli, C.; Cesarini, A.; Krumeich, F.; Hauert, R.; Stewart, J.A.; Curulla Ferré, D.; Pérez-Ramírez, J. Role of Zirconia in Indium Oxide-Catalyzed CO₂ Hydrogenation to Methanol. *ACS Catal.* **2019**, *10*, 1133–1145. [CrossRef] - 87. Ye, J.; Liu, C.-j.; Mei, D.; Ge, Q. Methanol synthesis from CO₂ hydrogenation over a Pd₄/In₂O₃ model catalyst: A combined DFT and kinetic study. *J. Catal.* **2014**, *317*, 44–53. [CrossRef] - 88. Cai, Z.; Huang, M.; Dai, J.; Zhan, G.; Sun, F.-l.; Zhuang, G.-L.; Wang, Y.; Tian, P.; Chen, B.; Ullah, S.; et al. Fabrication of Pd/In₂O₃ Nanocatalysts Derived from MIL-68(In) Loaded with Molecular Metalloporphyrin (TCPP(Pd)) Toward CO₂ Hydrogenation to Methanol. *ACS Catal.* 2022, 12, 709–723. [CrossRef] - 89. Pan, T.; Zhongjie, C.; Guowu, Z.; Jiale, H.; Qingbiao, L. Preparation of supported In₂O₃/Pd nanocatalysts using natural pollen as bio-templates for CO₂ hydrogenation to methanol: Effect of acid-etching on template. *Mol. Catal.* **2021**, *516*, 111945. [CrossRef] - 90. Bing Tan, K.; Tian, P.; Zhang, X.; Tian, J.; Zhan, G.; Huang, J.; Li, Q. Green synthesis of microspherical-confined nano-Pd/In₂O₃ integrated with H-ZSM-5 as bifunctional catalyst for CO₂ hydrogenation into dimethyl ether: A carbonized alginate templating strategy. Sep. Purif. Technol. **2022**, 297, 121559. [CrossRef] - 91. Frei, M.S.; Mondelli, C.; García-Muelas, R.; Kley, K.S.; Puértolas, B.; López, N.; Safonova, O.V.; Stewart, J.A.; Curulla Ferré, D.; Pérez-Ramírez, J. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO₂ hydrogenation. *Nat. Commun.* **2019**, *10*, 3377. [CrossRef] - 92. Jiang, H.; Lin, J.; Wu, X.; Wang, W.; Chen, Y.; Zhang, M. Efficient hydrogenation of CO₂ to methanol over Pd/In₂O₃/SBA-15 catalysts. *J. CO*₂ *Util.* **2020**, *36*, 33–39. [CrossRef] - 93. Men, Y.-L.; Liu, Y.; Wang, Q.; Luo, Z.-H.; Shao, S.; Li, Y.-B.; Pan, Y.-X. Highly dispersed Pt-based catalysts for selective CO₂ hydrogenation to methanol at atmospheric pressure. *Chem. Eng. Sci.* **2019**, 200, 167–175. [CrossRef] - 94. Pinheiro Araújo, T.; Morales-Vidal, J.; Zou, T.; García-Muelas, R.; Willi, P.O.; Engel, K.M.; Safonova, O.V.; Faust Akl, D.; Krumeich, F.; Grass, R.N.; et al. Flame Spray Pyrolysis as a Synthesis Platform to Assess Metal Promotion in In₂O₃-Catalyzed CO₂ Hydrogenation. *Adv. Energy Mater.* **2022**, *12*, 2103707. [CrossRef] - 95. Sun, K.; Zhang, Z.; Shen, C.; Rui, N.; Liu, C.-j. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO₂ to methanol. *Green Energy Environ.* **2022**, *7*, 807–817. [CrossRef] - 96. Shen, C.; Bao, Q.; Xue, W.; Sun, K.; Zhang, Z.; Jia, X.; Mei, D.; Liu, C.-j. Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO₂ hydrogenation to methanol over Ni/In₂O₃ catalyst: A theoretical study. *J. Energy Chem.* **2022**, 65, 623–629. [CrossRef] - 97. Zhang, Z.; Shen, C.; Sun, K.; Liu, C.-J. Improvement in the activity of Ni/In₂O₃ with the addition of ZrO₂ for CO₂ hydrogenation to methanol. *Catal. Commun.* **2022**, *162*, 106386. [CrossRef] - 98. Fang, T.; Liu, B.; Lian, Y.; Zhang, Z. Selective Methanol Synthesis from CO₂ Hydrogenation over an In₂O₃/Co/C-N Catalyst. *Ind. Eng. Chem. Res.* **2020**, 59, 19162–19167. [CrossRef] Materials **2023**, 16, 2803 22 of 22 99. Stangeland, K.; Navarro, H.H.; Huynh, H.L.; Tucho, W.M.; Yu, Z. Tuning the interfacial sites between copper and metal oxides (Zn, Zr, In) for CO₂ hydrogenation to methanol. *Chem. Eng. Sci.* **2021**, 238, 116603. [CrossRef] - 100. Zhang, X.; Kirilin, A.V.; Rozeveld, S.; Kang, J.H.; Pollefeyt, G.; Yancey, D.F.; Chojecki, A.; Vanchura, B.; Blum, M. Support Effect and Surface Reconstruction in In₂O₃/m-ZrO₂ Catalyzed CO₂ Hydrogenation. *ACS Catal.* **2022**, *12*, 3868–3880. [CrossRef] - 101. Numpilai, T.; Kidkhunthod, P.; Cheng, C.K.; Wattanakit, C.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. CO₂ hydrogenation to methanol at high reaction temperatures over In₂O₃/ZrO₂ catalysts: Influence of calcination temperatures of ZrO₂ support. *Catal. Today* **2021**, *375*, 298–306. [CrossRef] - 102. Tsoukalou, A.; Abdala, P.M.; Armutlulu, A.; Willinger, E.; Fedorov, A.; Müller, C.R. Operando X-ray Absorption Spectroscopy Identifies a Monoclinic ZrO₂:In Solid Solution as the Active Phase for the Hydrogenation of CO₂ to Methanol. *ACS Catal.* **2020**, 10, 10060–10067. [CrossRef] - 103. Tsoukalou, A.;
Serykh, A.I.; Willinger, E.; Kierzkowska, A.; Abdala, P.M.; Fedorov, A.; Müller, C.R. Hydrogen dissociation sites on indium-based ZrO₂-supported catalysts for hydrogenation of CO₂ to methanol. *Catal. Today* **2022**, *387*, 38–46. [CrossRef] - 104. Wei, Y.; Liu, F.; Ma, J.; Yang, C.; Wang, X.; Cao, J. Catalytic roles of In₂O₃ in ZrO₂-based binary oxides for CO₂ hydrogenation to methanol. *Mol. Catal.* **2022**, 525, 112354. [CrossRef] - 105. Salomone, F.; Sartoretti, E.; Ballauri, S.; Castellino, M.; Novara, C.; Giorgis, F.; Pirone, R.; Bensaid, S. CO₂ hydrogenation to methanol over Zr- and Ce-doped indium oxide. *Catal. Today* **2023**, accepted. [CrossRef] - 106. Tian, G.; Wu, Y.; Wu, S.; Huang, S.; Gao, J. Influence of Mn and Mg oxides on the performance of In₂O₃ catalysts for CO₂ hydrogenation to methanol. *Chem. Phys. Lett.* **2022**, *786*, 139173. [CrossRef] **Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.