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Abstract: As the strength parameters of rock mass degrade differently during slope instability,
different factors should be considered in the strength reduction method. Previous nonlinear reduction
methods were essentially implemented based on the Mohr–Coulomb criterion, which was reported
not to reflect the nonlinear performance of rock mass. To address this deficiency, in this study,
the Hoek–Brown criterion was combined with a nonlinear reduction technique for slope stability
evaluation. Firstly, based on the classical definition of safety factors, the relationships that should be
satisfied by each parameter of the critical slope were derived. The critical curve of the slope regarding
the Hoek–Brown constant mb and the uniaxial compressive strength of rock mass σcmass was then
obtained. On the assumption that the slope parameter deterioration conforms to the shortest path
theory, the reduction ratio of σcmass to mb was determined. The more objective k-means algorithm was
employed to automatically search the potential sliding surface, on which the slope safety factor was
calculated as the ratio of sliding resistance to sliding force. Finally, the slopes in published literature
were adopted for verification, and the calculated safety factors were compared with those by other
methods, which showed better efficacy.

Keywords: slope stability; nonlinear criterion; strength reduction method; cluster algorithm

1. Introduction

Landslides are one of the most dangerous geological disasters, causing heavy casualties
and economic losses around the world [1–4]. In rock projects such as transportation,
hydropower and mining, the original stable slopes are easily affected by the disturbance
of engineering excavations [5–8], leading to more destructive disasters such as landslides
and collapses [9], such as landslides occurred on the expressway [10] (Figure 1). The
bearing capacity estimation has always been an important issue in the field of geotechnical
engineering [11,12], which is also the basis for project design. In recent years, various
numerical, analytical, as well as laboratory methods have been applied to evaluate the
bearing capacity of slope rock mass [13–15], while slope stability analysis is an effective
guarantee for the successful construction and safe operation of a project. In other words,
the accurate assessment of slope stability is of great significance to reduce landslide risks,
avoid geological disasters and reduce project investment [16–18].

Currently, both the limit equilibrium method and the strength reduction method
are commonly used in slope stability calculations [19–24]. The former carries out static
equilibrium analysis on rock mass slices based on the preassumed sliding surface to
determine the minimum safety factor [25]. The strength reduction method, on the other
hand, simultaneously reduces the cohesion c and the internal friction angle ϕ of the slope
and regards the reduction factor corresponding to the instability as the safety factor of the
slope [26–29], which is expressed in Equation (1).

Materials 2023, 16, 2793. https://doi.org/10.3390/ma16072793 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16072793
https://doi.org/10.3390/ma16072793
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4880-3489
https://orcid.org/0000-0002-5924-5163
https://doi.org/10.3390/ma16072793
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16072793?type=check_update&version=1


Materials 2023, 16, 2793 2 of 16

Fs =
cinitial

ccritical =
tan ϕinitial

tan ϕcritical (1)

where Fs is the safety factor of slope, ccritical and ϕcritical are respectively the cohesion and
internal friction angle of critical slope, while cinitial and ϕinitial are respectively the initial
values of cohesion and internal friction angle of slope.

Materials 2023, 16, x FOR PEER REVIEW 2 of 17 
 

 

 
Figure 1. Historical landslide in expressway [10]. 

Currently, both the limit equilibrium method and the strength reduction method are 
commonly used in slope stability calculations [19–24]. The former carries out static equi-
librium analysis on rock mass slices based on the preassumed sliding surface to deter-
mine the minimum safety factor [25]. The strength reduction method, on the other hand, 
simultaneously reduces the cohesion c and the internal friction angle φ of the slope and 
regards the reduction factor corresponding to the instability as the safety factor of the 
slope [26–29], which is expressed in Equation (1). 

tan
tan

initial initial

critical critical

cFs
c

ϕ
ϕ

= =  (1)

where Fs is the safety factor of slope, ccritical and φcritical are respectively the cohesion and 
internal friction angle of critical slope, while cinitial and φinitial are respectively the initial 
values of cohesion and internal friction angle of slope. 

Compared with the limit equilibrium method, the strength reduction method has 
wider applicability and practicability in the stability analysis of projects such as mine 
slopes, highway subgrades, deep buried tunnels, and water conservancy dams, since it is 
simple in expression, convenient during calculation, and applicative to various geological 
conditions [30–32]. It was reported, however, that the traditional strength reduction 
method dismisses the different degradations of c and φ, and the reduction scheme is still 
controversial [33–37]. Tang and Zheng proposed the double safety factor method for 
slope stability analysis [38,39]. Pantelidis and Griffiths [40] also analyzed the influence of 
different reduction strategies on slope stability. Xue, Dang [41] derived the expression 
between reduction coefficients through linear attenuation assumption. Jiang, Wang [42] 
suggested that the reduction ratio of cohesion to internal friction should be 1.75 for ho-
mogeneous soil slopes. Yuan, Bai [43] fitted the reduction ratio of slope model with 
different slope angles and determined the specific reduction ratio by interpolation cal-
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ity analysis, and all of them are implemented by linearly reducing the two Mohr–
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Compared with the limit equilibrium method, the strength reduction method has
wider applicability and practicability in the stability analysis of projects such as mine
slopes, highway subgrades, deep buried tunnels, and water conservancy dams, since it is
simple in expression, convenient during calculation, and applicative to various geologi-
cal conditions [30–32]. It was reported, however, that the traditional strength reduction
method dismisses the different degradations of c and ϕ, and the reduction scheme is still
controversial [33–37]. Tang and Zheng proposed the double safety factor method for slope
stability analysis [38,39]. Pantelidis and Griffiths [40] also analyzed the influence of differ-
ent reduction strategies on slope stability. Xue, Dang [41] derived the expression between
reduction coefficients through linear attenuation assumption. Jiang, Wang [42] suggested
that the reduction ratio of cohesion to internal friction should be 1.75 for homogeneous
soil slopes. Yuan, Bai [43] fitted the reduction ratio of slope model with different slope
angles and determined the specific reduction ratio by interpolation calculation. On the
assumption that there are countless combinations of the reduction ratio of cohesion and
internal friction angle, Isakov and Moryachkov [44] proposed the shortest reduction path
theory to calculate the comprehensive safety factor of slope, which was then improved
by Yuan, Li [45] based on critical c-tan ϕ curves. Fang, Chen [46] discovered a nonlinear
instability criterion according to the concept of critical slope. These promote the rapid
development of nonlinear strength reduction method for slope stability analysis, and all of
them are implemented by linearly reducing the two Mohr–Coulomb parameters [47–50].
Meanwhile, rock mechanics gradually realized that the linear criterion cannot reflect the
nonlinear failure characteristics of rock mass [51–53], in which case reduction methods
based on the nonlinear Hoek–Brown strength criterion are constantly proposed [54].

For the description of the nonlinear performance of rock mass, Hoek and Brown
proposed the Hoek–Brown strength criterion in 1980 based on abundant triaxial test results
and engineering practice [55–57]. In 1992, Hoek et al. corrected the Hoek–Brown strength
envelope of rock mass at low stress levels. Subsequently, the engineering application
showed that it was too conservative in terms of rock mass with good quality. In this
case, Hoek et al. [58,59] further improved the original results and proposed generalized
Hoek–Brown strength criteria for rock mass of different quality, which is presented in
Equation (2). In 2002, Hoek et al. [5–8] comprehensively discussed the Hoek–Brown
parameter relations, and built a new determination method of parameters mb, s and a by
introducing geological strength index GSI and disturbance factor D (see Equations (3)–(5)).
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At present, the Hoek–Brown strength criterion has been widely used in rock and rock mass
mechanics analysis, rock slope stability analysis, rock tunnel design and other fields [60].

σ1 − σ3 = σci(mbσ3/σci + s)a (2)

mb = mie
GSI−100
28−14D (3)

s = e
GSI−100

9−3D (4)

a = 0.5 +
(

e−GSI/15 − e−20/3
)

/6 (5)

where σ1 and σ3 are, respectively, the major and minor principal stresses at rock mass
failure; mb, s, and a are all the rock mass material constants; mi is a material constant, GSI is
the geological strength index, and D is the disturbance factor ranging 0~1.

Current reduction methods based on the nonlinear Hoek–Brown criterion can be
broadly classified into three categories: direct reduction, strength envelope lowering, and
indirect reduction, which are summarized in Table 1. In direct reduction methods, Wu,
Jin [61] believed that only the uniaxial compressive strength σci and material constant mi
should be reduced when the nonlinear strength reduction method was used to calculate
the safety factor of rock slope. Song, Yan [62] discussed seven direct reduction cases of
stability calculation, and found that only by directly reducing the values of σci and GSI can
the reasonable safety factor of a slope be obtained. Yang, Wang [63] selected Hoek–Brown
parameters σci and mi as reducing objects to carry out a stability analysis of surrounding
rock in a tunnel. For the second category, Hammah, Yacoub [64] lowered the envelope of
the Hoek–Brown criterion to achieve global reduction. Lastly, Li, Merifield [65] adopted
the equivalent Mohr–Coulomb parameters to achieve the indirect reduction of the Hoek–
Brown criterion, and established the stability analysis chart of rock slope. Shen et al. [66,67]
deduced the instantaneous equivalent Mohr–Coulomb parameters from the nonlinear
Hoek–Brown criterion to implement safety factor calculation.

Table 1. Review of the previous reduction methods based on Hoek–Brown criterion.

Category Description Advantage Disadvantage

Direct reduction method Simultaneous reducing all or part
of the Hoek–Brown parameters. Simple and easy to use

Insufficient theoretical
basis for
parameter selection.

Strength envelope lowering Overall reduction of the
Hoek–Brown envelope by a factor.

Relatively accurate, and satisfying
strength reduction concept Inefficient calculations

Indirect reduction method

Reduction of equivalent
Mohr–Coulomb parameters or
instantaneous equivalent
Mohr–Coulomb parameters.

Compatible with Mohr–Coulomb
parameter-based criteria
or software

Large errors in global
equivalent parameters
and complex calculation
of instantaneous
equivalent parameters

Each of these studies has contributed to the advancement of strength reduction meth-
ods based on the Hoek–Brown criterion. However, the above studies all use the same
coefficients for the Hoek–Brown parameter reduction, which conflicts with the experimen-
tal evidence. To account for the degradation of the nonlinear strength parameter of the rock
mass, this paper proposes a new nonlinear strength reduction method for slope stability
evaluation. The selection of the Hoek–Brown parameter was achieved by establishing
an expression for the safety factor of the Hoek–Brown parameter. The respective reduc-
tion coefficients were then derived based on the critical strength curve of the slope and
the shortest path theory. Based on the horizontal displacement difference of the critical
slope, the k-means algorithm was used to search for potential slip surfaces in order to
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calculate a more objective safety factor. As a result, a new nonlinear reduction method for
Hoek–Brown material slopes was established and confirmed by comparison with other
reduction methods.

2. Methods
2.1. Critical Strength Curve of Slope Satisfying Hoek–Brown Criterion

Slope stability is usually controlled by the geometrical parameters of the rock mass
(such as slope height H, slope angle θ) and physical parameters (unit weight γ), as well as all
parameters involved in the rock failure criterion. Taking the Hoek–Brown strength criterion
as an example, the parameters include σci, mb, s and a. All of these should satisfy a certain
functional relationship at the point of slope failure. According to the classical definition of
the slope safety factor, it is computed by the sliding resistance and the sliding motion on
the potential sliding surface. In another word, the slope safety factor is a function of the
anti-sliding force and the sliding force on the potential sliding surface (see Equation (6)).

Fs = f1
(
τ, τg

)
(6)

where τ is the anti-sliding stress, τg is the sliding stress, and f 1 is an unknown function.
Generally, the sliding force on the potential sliding surface of the slope is provided by

the weight of sliding mass (Hγ), thereby the slope safety factor Fs can be expressed as a
function of slope height H, unit weight γ and slope angle θ (see Equation (7)).

Fs = f2(τ, θ, Hγ) (7)

The expression form of normal stress–shear stress (σn-τ) on the failure surface of the
Hoek–Brown strength criterion [68,69] is

σn = σ3 +
σci

(
mb

σ3
σci

+ s
)a

2 + amb

(
mb

σ3
σci

+ s
)a−1 (8)

τ = (σn − σ3)

√
1 + amb

(
mb

σ3

σci
+ s
)a−1

(9)

It can be seen from Equation (9), τ is closely related to Hoek–Brown strength parameter
σci, mb, s and a, and normal stress σn. Thus, τ can be expressed as Equation (10).

τ = f3(σci, σn, mb, a, s) (10)

While the normal stress σn on the potential sliding surface of the slope is also provided
by the weight of sliding mass, which means

τ = f4(σci, mb, a, s, θ, Hγ) (11)

By substituting Equation (11) into the slope safety factor expression Equation (7), the
relationship between the safety factor Fs and slope parameters (see Equation (12)) can
be obtained.

Fs = f5(σci, mb, a, s, θ, Hγ) (12)

According to the expression of the Hoek–Brown strength criterion
(see Equation (2)), the uniaxial compressive strength of rock mass σcmass can be estimated
if σ3 = 0 (see Equation (13)). Therefore, the influences of parameters a and s on the slope
stability are incorporated into that of parameter σcmass.

σcmass = σci · sa (13)
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Combined with Equation (12), the slope safety factor Fs can be transformed into a
function of the parameters σcmass and mb as well as the physical and geometric parameters
of the slope, as presented in Equation (14).

Fs = f6(σcmass, mb, θ, Hγ) (14)

For a given slope in critical state, all of the above parameters should satisfy the
relationship of Fs = f 6 (σcmass, mb, θ, Hγ) = 1.0. Referring to the research results by Yuan
et al. [45], there are numerous combinations of ccritical and tan ϕcritical for a critical slope
when it obeys the Mohr–Coulomb failure criterion [70–72], and the ccritical and tan ϕcritical

obtained by traditional strength reduction is only one potential possibility. In the same way,
for a rock slope whose slope height H, weight γ and slope angle β have been determined,
there are also numerous critical combinations of σcmass and mb, which can also be plotted in
the critical strength curve σcmass-mb. The critical strength curve of the rock slope is mainly
determined by numerical simulation of stability analysis on different slope models. Specific
steps include:

(1) A series of homogeneous slopes with different slope angles θ and weight γ were
established by FLAC3D, and the geometric model is shown in Figure 2. The slope
height H = 20 m remained unchanged, the variation range in slope angle was set
to 30◦–75◦ with a gradient of 15◦, and the variation range of unit weight was set to
20–26 kN/m3 with a gradient of 2 kN/m3.
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Figure 2. Geometric model of homogeneous slope.

(2) Referring to the built-in slope example in FLAC3D, other parameters are presented
in Table 2.

Table 2. Parameters of built-in slope in Hoek–Brown material.

E/(MPa) ν mb s a σci/(MPa)

5000 0.3 0.067 0.000025 0.619 30

(3) Different values of mb were assigned to slope models. In this study, it was linearly
changed according to Equation (15).

mnew
b = mb × k (15)

where mb
new is the value of the Hoek–Brown parameter mb for each slope model, k

represents the variation coefficient, and k = 1, 5, 10, 15, 20, . . . , 100.

(4) The left and right boundaries were normally constrained, and model bottom was
fixed in all directions. The initial stress field was generated by the gravity of the model
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and the default convergence condition was used as the indicator of slope failure. The
value of σci was continuously reduced during the numerical simulation of stability
analysis until the slope model reached the critical state for each slope model.

(5) The critical value of σci and the corresponding Hoek–Brown parameters of the slope
were substituted to Equation (13) to calculate the specific value of the uniaxial com-
pressive strength of rock mass σcmass.

(6) Taking mb as the horizontal axis and σcmass as the vertical axis, the critical strength
curve of slope at any slope angle can be drawn. Finally, the general expression
of slope critical strength curve at given slope angle can be obtained by nonlinear
data fitting.

The critical strength curves of each slope under different unit weight and slope angle
are shown in Figure 3.
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For all the critical strength curves in Figure 3, the value of σcmass drops with the
increase in mb, and the dropping speed is decreasing. In principle, the slope stability is
improved when the value of mb increases, and the required value of σci is lowered at slope
critical state. As a result, the value of σcmass drops according to Equation (13). Under the
conditions of the same unit weight, greater strength is required to maintain slope stability
at a greater slope angle. Therefore, the reduction factor of σci is less, and the critical value
of σcmass is greater. Reflected in Figure 3, the larger the slope angle, the higher the slope
critical strength curve.
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Since the slope critical strength curve is decreasing more and more slowly, it is as-
sumed that all the curves in this study conform to the law of power function variation
(see Equation (16)).

σcmass = AmB
b (16)

where both parameters A and B are undetermined coefficients, and can be determined by
data fitting.

The fitting results and parameter values of each curve in Figure 3 are shown in Table 3,
and the variation laws of each parameter are shown in Figures 4 and 5. From the value of
R2 corresponding to each curve, the fitting curves show good matching with the critical
data, which explains the reliability of the fitting results to a certain extent. In addition, it
is obvious that the fitting values of slope critical curve parameters A and B are roughly
the same under different slope unit weight, with slight changes. The slope angle has a
stronger influence on the critical curve parameters, both of which increase with slope
inclination. Also, it can be seen from Figures 4 and 5 that the values of parameters A and B
are approximately linearly positively correlated with the slope angle.

Table 3. Fitting results of slope critical curves.

Unit Weight/kN/m3 Slope Angle/◦ A B R2

20

30 0.013 −0.374 0.995
45 0.019 −0.310 0.999
60 0.029 −0.267 0.993
75 0.039 −0.228 0.989

22

30 0.013 −0.373 0.996
45 0.020 −0.310 0.999
60 0.030 −0.275 0.996
75 0.040 −0.232 0.984

24

30 0.013 −0.377 0.995
45 0.020 −0.316 0.999
60 0.031 −0.279 0.995
75 0.041 −0.234 0.987

26

30 0.014 −0.381 0.995
45 0.021 −0.325 0.999
60 0.031 −0.287 0.997
75 0.042 −0.239 0.988
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30 0.013 −0.374 0.995 
45 0.019 −0.310 0.999 
60 0.029 −0.267 0.993 
75 0.039 −0.228 0.989 

22 

30 0.013 −0.373 0.996 
45 0.020 −0.310 0.999 
60 0.030 −0.275 0.996 
75 0.040 −0.232 0.984 

24 

30 0.013 −0.377 0.995 
45 0.020 −0.316 0.999 
60 0.031 −0.279 0.995 
75 0.041 −0.234 0.987 

26 

30 0.014 −0.381 0.995 
45 0.021 −0.325 0.999 
60 0.031 −0.287 0.997 
75 0.042 −0.239 0.988 

Figure 4. The variation in parameter A with slope angle.
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2.2. Nonlinear Reduction Method

As previously described, there are countless possibilities for a stable rock slope that
causes the initial strength of rock mass to decay to critical strength. Without considering
other external factors, the faster the strength of natural rock slope decays, the more likely it
is to fail. Therefore, based on the position relationship between the initial strength of rock
mass and the σcmass-mb critical curve in the coordinate system, the corresponding reduction
principle of parameters σcmass and mb can be established by assuming that σcmass and mb are
reduced along the shortest path from the critical curve during slope strength attenuation.
That is the shortest reduction path theory.

The distance from the initial state of slope to the critical strength curve can be
calculated as

D =

√(
minitial

b − mcritical
b

)2
+
(
σinitial

cmass − σcritical
cmass

)2 (17)

In the case that the initial σcmass and mb are known, the critical values of σcmass and mb
can be obtained by substituting Equation (16) into Equation (17) and minimizing D. Then,
the reduction ratio ε of σcmass and mb can be solved by Equation (18).

ε =

(
σinitial

cmass
σcritical

cmass

)
/

(
minitial

b

mcritical
b

)
(18)

From Figure 3, the slope strength critical curve is not unique, so the reduction ratio
ε is not consistent either for different slopes. One of the cores of the nonlinear strength
reduction method based on the Hoek–Brown criterion studied in this paper is just the
determination of the reduction ratio ε. By ensuring that the reduction coefficients of σcmass
and mb meet the ratio relation ε at each reduction step, the numerical calculation of rock
slope stability analysis conforms to the shortest path hypothesis.

As Equation (19) indicated, reducing σcmass by coefficient kσ can be realized by
reducing σci.

σcmass

kσ
=

σci
kσ

· sa (19)

While according to Equation (20), the reduction coefficient kmb of parameter mb in each
iteration can be calculated (see Equation (22)).

kmb =
kσ

ε
(20)

The reduction strategy of Equation (20) can be implemented in FLAC3D by program-
ming a custom rock slope strength reduction program in Fish language. Furthermore, it
is inevitable to consider the method of determining the safety factor of slope because the
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parameter reduction is not synchronous. The classic definition in Equation (6) points out
that the safety factor of slope Fs can be evaluated by the ratio of sliding resistance to sliding
movement on the potential sliding surface, while the sliding resistance approximates to
sliding movement at slope failure, which signifies that Fs is also be expressed by the ratio
of initial sliding resistance τinitial to critical sliding resistance τcritical (see Equation (21)).

Fs =

∫
l τinitialdl∫
l τcriticaldl

(21)

The assessment of Equation (21) strongly relies on the positioning of the potential
sliding surface, which can be located through various methods, such as displacement
contour, maximum shear strain and maximum shear strain increment [73,74]. In this study,
the horizontal displacement of the node of the slope model was adopted as the index to
judge the position of slope potential sliding surface. Once the potential sliding surface is
located, the coordinate information of each node on the sliding surface can be extracted, and
the corresponding minor principal stress can be output. Then, the antisliding force on the
potential sliding surface can be calculated by Equations (8) and (9), and the safety factor of
slope can be solved by Equation (21). The specific steps are as follows: (1) traversing all grid
nodes of the slope model after stability calculation to derive the coordinates and horizontal
displacements of each node; (2) importing the position and displacement information of the
derived nodes into MATLAB computing software, and processing by k-means clustering
algorithm to find those nodes consisting of potential sliding surfaces; and (3) positioning the
elements on the potential sliding surface to derive the corresponding minimum principal
stress information, which is successively substituted into Equations (8), (9) and (21) to solve
the slope safety factor.

3. Results and Discussion

To verify the correctness of the Hoek–Brown criterion-based nonlinear reduction
method proposed in this paper, it is necessary to employ the slope example whose safety
factor has been confirmed for stability analysis. The built-in example in FLAC3D, simple
slope in Hoek–Brown material, was selected and is shown in Figure 6. The uniformity
of calculated safety factors of slope example by various methods in Table 4 explains
that the calculation result by Hoek–Brown local linearization is relatively correct, which
was therefore employed as the indicator to evaluate the efficacy of proposed method in
this study.
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Table 4. Factors of safety results for Hoek–Brown slope.

Resource Method Safety Factor

FLAC3D Hoek–Brown local linearization 1.15

Hammah et al. [64]

Hoek–Brown envelop lowering 1.15
Equivalent Mohr–Coulomb reduction 1.15

Bishop simplified limit equilibrium 1.153
Spencer limit equilibrium 1.152

The same slope model was established by FLAC3D, and corresponding constitutive
model and parameters were assigned. The slope strength was adjusted to reach the
critical state so as to obtain the critical strength curve and its expression of this slope
example. There are two methods to determine the critical strength curve expression of
slope. One is to repeat the above operations to obtain a large number of data points
about the critical parameters σcmass and mb, and to fit the critical strength curve expression
of the model according to Equation (16). Secondly, the values of parameters A and B
can also be theoretically obtained by solving the equations with only two sets of critical
parameters σcmass and mb, approximately determining the critical curve expression. The
latter is simple and less time-consuming, but curve accuracy cannot be guaranteed. For the
sake of precision, the first method was used to obtain multiple sets of σcmass and mb, and
the expression was fitted, as shown in Figure 7. Note that, the unit of σcmass is set as kPa to
avoid gaining values too small for the parameters A and B by fitting.

The initial state of slope example (σcmass, mb) is (42.5056, 0.067). According to
Equation (17), the distance from the initial state to the critical curve is

Dexample =

√(
0.067 − mcritical

b
)2

+
(

42.5056 − 17.339 ×
(
mcritical

b
)−0.283

)2
(22)

The calculation results show that during the range of mb (0, 25), the minimum Dexample

approximates to 0.0267 when mb
critical is 0.0421, and the corresponding value of σcmass

critical

is 42.4964 kPa. By substituting the critical values into Equation (18), ε = 0.6285 were
obtained, which indicates that when σci and mb are reduced in each iterative calculation
of slope stability numerical analysis, the reduction ratio remains 0.6285. Afterwards, the
FLAC3D nonlinear reduction algorithm was customized by Fish language to solve the
slope stability according to this reduction ratio, and the horizontal displacement is shown
in Figure 8.
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Figure 8. The stability calculation result and the horizontal displacement.

The coordinates and displacement data of each node in Figure 8 were derived and then
imported into the MATLB calculation program. Then, the k-means clustering algorithm
was used to classify these nodes according to the horizontal displacement differences,
and corresponding nodes of sliding mass and stable mass were obtained, as shown in
Figure 9. The nodes of sliding mass were isolated for analysis, and the rightmost nodes
were considered the nodes on the potential sliding surface (dark blue nodes in Figure 9).
The potential sliding surface of slope can be obtained by smoothing these nodes. According
to the node coordinate information, the minimum principal stress of the node was derived
from the FLAC3D slope model, and the calculated safety factor of the slope example is 1.314.
Compared with the safety factor calculated by other methods in Table 3, the error is about
14.26%, which proves the correctness of this method to some extent. The reason for the
14.26% error can be attributed to the fact that the potential sliding surface is determined
by node displacement, while the safety factor must be solved according to the nearby
stress-state elements. That is to say, the calculated safety factor of the slope example is
susceptible to the grid density of the model. The shear–stress calculation of nodes may
make the safety factor by this method more accurate; however, it seems to be difficult to
realize in finite element software.
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Figure 9. The clustering results and nodes on the potential sliding surface.

Similarly, the slope examples in [75] (Case 1) and [65] (Case 2) were selected to further
demonstrate the feasibility and applicability of the proposed method. The slope parameters
are presented in Table 5, and the same steps were implemented for these slope models, the
results of which are presented in Table 6.
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Table 5. The parameters of other reported slope cases.

Slope Case H/m θ/◦ γ/kN/m3 E/MPa ν σci/MPa mb s a

Case 1 [75] 32 75 25 5000 0.3 40 0.281 2 × 10−4 0.508

Case 2 [65] 50 60 23 5000 0.3 10 0.657 4 × 10−4 0.522

Table 6. The calculation results of other slope cases.

Case Expression of Critical Curve Ratio of Reduction Coefficients Potential Sliding Surface

1 [75] σcmass = 0.303m−0.096
b 1.399
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Meanwhile, except for Hoek–Brown local linearization reduction, the other Hoek–
Brown nonlinear strength reduction methods, such as direct reduction of the involved
Hoek–Brown parameters (σci and mb), equivalent Mohr–Coulomb parameter reduction was
utilized to calculate the safety factor for proving the superiority of this Hoek–Brown-based
strength nonlinear reduction method, and the calculated safety factors are presented in
Table 7. Among these, the safety factors calculated by the proposed method are the closest
to those by Hoek–Brown local linearization. The errors for slope cases are only 8.22% and
8.18%, respectively.

Table 7. The comparison between factor of safety by different methods.

Method
Factor of Safety Calculation

Hoek–Brown Local
Linearization

Direct Reduction of
σci and mb

Equivalent Mohr–Coulomb
Reduction

Proposed
Method

Case 1 [75] 1.5501 1.9659 1.9201 1.6775

Case 2 [65] 1.0090 0.9900 1.5070 1.0915

4. Conclusions

In response to the previous strength reduction methods on the Hoek–Brown criterion,
which all use the same reduction factor for the parameters, this paper deduced a new re-
duction method that can reflect the nonlinear deterioration of the Hoek–Brown parameters
during slope instability. The main findings of this paper are as follows.

(1) Critical strength curves for slopes show that uniaxial compressive strength of rock
mass σcmass decreases with the increase in the Hoek–Brown parameter mb under
different unit weight or slope angle conditions. On this basis, the general expression
of slope critical strength curve was fitted by power function. Combined with the
shortest reduction path theory, the ratio of the reduction coefficients of σcmass and
mb can be determined.

(2) There are significant differences in the critical horizontal displacements between
sliding and stable nodes of slope model. The k-means clustering algorithm was used
to separate the sliding nodes and stable nodes according to such differences, so as



Materials 2023, 16, 2793 13 of 16

to automatically identify the potential sliding surface. Then, the ratio of the sliding
resistance to the sliding force was solved.

(3) Based on the proposed nonlinear reduction method and other known methods, sta-
bility calculations and safety factor comparisons were carried out on slope examples.
Compared to other methods, the safety factors calculated by the proposed method
differ less from the reference safety factor, which justifies the correctness and feasibility
of this method to a certain extent.
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