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Abstract: Zigzag molecular nanobelts have recently captured the interest of scientists because of
their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing features. In
the current study, first-row transition metals supported on an H6-N3-belt[6]arene nanobelt are
investigated for the electrocatalytic properties of these complexes for the hydrogen dissociation
reaction (HDR). The interaction of the doped transition metal atom with the nanobelt is evaluated
through interaction energy analysis, which reveals the significant thermodynamic stability of TM-
doped nanobelt complexes. Electronic properties such as frontier molecular orbitals and natural
bond orbitals analyses are also computed, to estimate the electronic perturbation upon doping.
The highest reduction in the HOMO–LUMO energy gap compared to the bare nanobelt is seen in
the case of the Zn@NB catalyst (4.76 eV). Furthermore, for the HDR reaction, the Sc@NB catalyst
displays the best catalytic activity among the studied catalysts, with a hydrogen dissociation
barrier of 0.13 eV, whereas the second-best catalytic activity is observed for the Zn@NB catalyst
(0.36 eV). It is further found that multiple active sites, i.e., the presence of the metal atom and
nitrogen atom moiety, help to facilitate the dissociation of the hydrogen molecule. These key
findings of this study enhance the understanding of the relative stability, electronic features, and
catalytic bindings of various TM@NB catalysts.

Keywords: molecular nanobelts; transition metal; dissociation barrier; density functional theory;
hydrogen molecule

1. Introduction

With advancements in modern society, hydrogen is predominantly viewed as “the fuel
of the future”, as well as an eminent energy carrier, due to its clean, green, and ecofriendly
nature [1]. Hydrogen technology has wide ranging applications; however, its practical
implementations need to be acquired yet [2]. One of the key barriers in the implementation
of hydrogen technology is an effective and low-cost hydrogen storage process [3]. The
hydrogen dissociation reaction (HDR) in this regard is considered as the principle step in
the hydrogen storage process. The main problem with the feasible hydrogen economy is
the hydrogen storage, and so far, searching for a cost-effective strategy of storing hydrogen
is considered as an indomitable challenge. Scientists are trying to search for innovative
ways that can better help to store hydrogen. In recent times, hydrogen can be stored
as liquid hydrogen, compressed hydrogen, and as a storage material [4]. The capture
and discharge of H2 on materials involves the process of molecular adsorption, chemical
bonding, diffusion, and dissociation [5,6]. Moreover, the hydrogen splitting reaction over
various metal surfaces is often grasped as a prototype system for the examination of the
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gas–catalyst interaction, and thus, an understanding of the catalytic essence due to a simple
reaction mechanism [7].

Additionally, other reactions involving HDR include the catalytic hydrogenation
reaction, which is an important step in several industrial processes. The hydrogen disso-
ciation reaction (HDR) is a key step in almost all hydrogenation processes that are central
to pollutant removal and industrial chemical production [7]. Moreover, the hydrotreating
process also requires the activation of a hydrogen molecule on the catalyst surface, and
subsequent reactions between adsorbed hydrogen and other organic species [8]. In the
catalytic world, these hydrogenation reactions display a vital contribution to industrial
chemical processes with respect to market sales [9]. Metal-decorated electrocatalysts
have been abundantly utilized as catalysts due to their appropriate electronic structures,
which allows for the easy adsorption and dissociation of the H2 molecule on the metal
catalytic surface [10–12].

Platinum group noble metal-based materials have been considered as the most effec-
tive catalysts in energy production application, and they have surpassed all conventional
catalysts [13]. However, it is still necessary to design low-platinum or non-platinum
catalysts, due to the expensiveness and rareness of platinum [14,15]. In this regard, the
non-precious metal catalysts, which usually consist of metal elements with high relative
abundances, such as Mn, Fe, Cu, Ni, etc., have shown a catalytic performance that is
almost comparable with Pt [16–18]. Significant research efforts have been displayed
in recent years to investigate transition metals (e.g., Mn, Co, Fe, etc.) and their metal
alloys for hydrogen splitting, because of their higher H2 storage capacities and low
cost [5–8]. However, one of the major drawbacks of metal-based alloys is the ease of an
oxide layer formation on the surfaces of these catalysts, which hinders the adsorption of
the hydrogen molecule [9].

In catalysis, single atom catalysis (SAC) has appeared as a novel way to obtain the
utmost utilization efficiency and remarkable catalytic activity. SAC is an economically
viable and emerging strategy towards the maximization of catalytic efficiency, and to
lower the noble metal cost [19–21]. Several synthetic protocols have been reported
to design such SACs, such as atomic deposition layer [22], wet chemistry [23], and
soft landing [24]. Various noble metal SACs such as palladium [25], platinum [26],
and rhodium [27], etc., have been broadly researched to catalyze the HDR (hydrogen
dissociation reaction). However, the main obstacles with such SACs are a high operating
cost and temperature; therefore, these are not feasible economically [28]. Therefore, the
replacement of noble metals is necessarily required with low-cost materials for large-
scale and commercial applications. In this regard, transition metals (TM) such as Fe, Ni,
Co, etc., have gained attention due to their high relative abundance and low price [29,30].
The performance of SACs is now taking hold; but their molecular- and electronic-level
realizations are still limited. Therefore, the electronic catalytic investigation of such
single atom-supported electrocatalysts is highly capitative [31].

Although significant research has been performed on abundantly present transition
metals, these catalysts suffer from a high dissociation barrier and low stability issues [32].
The stability of SACs is mainly based on the support material (adsorbent). Carbon-based
materials such as graphene [33,34], metal organic frameworks [35], graphitic carbon
nitride [36,37], and other nanostructured surfaces have gained interest as adsorbent or
support materials for SACs due to a large surface area, a promising hydrogen storage
ability, and a high thermal stability [38–40]. Recently, the hydrogen dissociation reaction
has been studied on a less expensive and abundant single transition metal atom (Fe, Co,
and Ni)-doped C2N surface via density functional theory [41]. However, scientists are
still looking for more rational and highly efficient catalytic adsorbent materials with
higher efficiencies.

Zigzag molecular nanobelts have recently captured the interest of scientists because
of their appealing aesthetic structures, intriguing chemical reactivities, and tantalizing
features [42]. The cylindrical, well-defined cavities of variable sizes, and the promising
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electronic characteristics declare zigzag molecular belts as being unique and eminent
support materials, and macrocyclic hosts (supramolecular chemistry) [43]. Additionally,
the hydrocarbon skeletons of these molecular belts can be considered as the smallest
chunk of the zigzag single-walled CNT [44]. These molecular belts can also be viewed
as potential templates to support the growth of uniform and structurally well-defined
CNTs, which find their practical applications in nanoscience and advanced nanotech-
nology [43]. The revival interest in hydrocarbon molecular belts has been witnessed in
recent years [45]. These zigzag low-coordinated molecular nanobelts have been success-
fully synthesized and reported in the literature to exist independently. The successful
synthesis reported by Cheung et al. involves a repetitive Diels–Alder reaction, followed
by the reductive aromatization of O2-bridged moieties [46]. Similarly, the facile reduc-
tion of ketone with n-butyllithium (nucleophilic addition) and NaBH4 produced tertiary
and secondary alcohol-containing nanobelts, respectively. The selective oxidation of
biscarbonyl-bearing octahydrobelt[8]arene with (PhSeO)2O and m-CPBA furnished the
corresponding 1,4-quinone and lactone-embedded molecular nanobelts [47]. The molecu-
lar belt[n]arenes bring the realization of a high intrinsic conductivity, abundant catalytic
active sites, a large surface area, and strong molecular adsorption. In recent times,
density functional theory and experimental predictions have unveiled that catalysts
with multiple active sites, including nitrogen atom or/and transition metal (TM) doping
(TM = Co, Cr, Fe, Cu, Ni, or Zn) on a heterostructural electrocatalyst are more promising
candidates to promote the hydrogen adsorption and hydrogen evolution process [48–51].
To the best of our knowledge, zigzag molecular nanobelts have not yet been explored for
their catalytic and adsorbent capabilities. In the current study, molecular belts are uti-
lized as adsorbents for transition metal atoms to design highly efficient electrocatalysts
for the hydrogen dissociation reaction, which could provide stability, higher selectivity,
and economical feasibility.

Herein, we have chosen the hydrogen dissociation reaction (HDR) as a probe reaction
to explore the catalytic performances of ten transition metals, doped H6-N3-belt[6]arene
nanobelt (NB) as SACs. Currently, density functional theory (DFT)-based quantum chemical
simulations are scrutinized as a highly fruitful approach towards investigating the nature
and efficiency of a catalyst [52–55]. Therefore, the density functional quantum chemical
method is accessed to comprehensively probe the splitting of the hydrogen molecule on
the transition metal-doped H6-N3-belt[6]arene nanobelt (TM@NB) as SACs to evaluate
the catalytic activities of these complexes. Moreover, the considered TM@NB complexes
are also explored for thermodynamic stability, electronic features, hydrogen adsorption
capacity, and the catalytic performance for HDR.

2. Methodology

In the current work, density functional theory (DFT) simulations are carried out to
investigate the hydrogen dissociation reaction (HDR) over various transition metal-doped
nanobelts (TM@nanobelt). All the DFT calculations are simulated using the Gaussian 09
package [56], whereas the obtained results are analyzed via Gaussview 5.0 and Chem-
craft [57–60]. ωB97XD, a DFT functional, is used with appropriate split valence basis sets
6-311G (d,p) to simulate the geometric and thermodynamic parameters. The wB97XD
functional employees the D2 dispersion Grimme’s model, which is considered as the latest
version, which includes empirical dispersion by Head–Gordon et al. [61]. The ωB97XD
method is a well reported hybrid functional that mainly accounts for the accurate in-
vestigation of dispersion forces and long-range corrections [62–64]. wB97XD has been
considered as an accurate functional in predicting molecular geometries. Moreover, the
ωB97XD functional is also considered as the most appropriate functional for the geometric
optimization of organic molecules [65–67]. In contrast, the 6-311G(d,p) basis set is cho-
sen, which is a Pople-type basis set that contains the polarization function. The level of
theory (ωB97XD/6-311G(d,p)) chosen here is well reported in literature, where it is used
to investigate the potential of single-atom catalysis [68]. The frequency analysis is also
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performed to confirm the nature of the stationary points, such that the absence of the nega-
tive frequency validates the true minima nature of the reactants and products (stationary
points) of all the studied TM@nanobelt analogues. Additionally, the presence of single
imaginary frequency corroborates the presence of the transition state. Moreover, transition
states are also confirmed through the motion of the reaction coordinates via the associated
eigenvectors [69]. The whole first-row TM from Sc to Zn are doped over nanobelt, and their
catalytic performance is investigated for the hydrogen dissociation reaction. The interaction
energy (Eint) analysis is performed to evaluate the mode of interaction of all the designed
TM@nanobelt complexes by using Equation (1):

∆Eint = ETM@NB − (ENB+ETM) (1)

Here, ETM@NB refers to the energy of the metal-doped complex, whereas ENB and ETM
represent the energies of individual nanobelt and transition metal (with the most stable spin
state), respectively. Moreover, frontier molecular orbitals (FMOs) analysis is performed on
the designed TM-doped nanobelt catalysts to see the electronic level perturbations.

Similarly, adsorption energies (∆Eads) for the adsorption of the hydrogen molecule are
also computed by using Equation (2) for all the doped nanobelts. In Equation (2), EH2TM@NB
presents the total energy of the hydrogen molecule-adsorbed TM@NB complex. ETM@NB
refers to the energy of metal-doped nanobelts, and EH2 corresponds to the energy of the
isolated H2 molecule.

∆Eads = EH2TM@NB − (ETM@NB+EH2) (2)

The energy barriers (Ea) and reaction energies (∆E) are estimated according to Equa-
tions (3) and (4), respectively. In Equations (3) and (4), the ETS, ER, and EP correspond
to the energies of the transition state (TS), reactants (R), and the final state or product
(P), respectively. The hydrogen dissociation reaction mechanism and its pathways are
evaluated by comparing the energy barriers (Ea) [70].

Ea = ETS − ER (3)

∆E = EP − ER (4)

To obtain further insight into the donor–acceptor interactions during the dissociation
of the hydrogen molecule over the doped complexes, NBO and EDD analyses are also
computed. For the EDD analysis, Multiwfn software is employed [71].

3. Results and Discussion
3.1. Geometry Optimization and Adsorption Energy

Prior to hydrogen molecule adsorption, the designed TM@NB complexes are fully
relaxed to their preferable stable geometries at the ωB97XD/6-311G(d,p) level of theory.
The titled zigzag molecular nanobelt of interest, H6-N3-belt[6]arene, consists of six six-
membered fused alternative benzene and pyridine rings [42]. The top and side view
of the optimized structure of H6-N3-belt[6]arene with the important bond distances
mentioned are given in Figure 1. The average bond distance of the edge C—C bond
length is 1.41 Å, whereas the C—C bond length of the C—C bonds present at the center
of fused rings is extended slightly to 1.45 Å, which is consistent with the reported
bond distances [72]. Moreover, 1.35 Å of bond length is observed for all C—N bonds
(see Figure 1). In this study, the first-row transition metal (TM) atoms (Sc to Zn) are
adsorbed over the H6-N3-belt[6]arene nanobelt (NB) at various sites, i.e., on the top of a
benzene (A) or pyridine ring (B), and over the bridge head (C). In all the studied TM@NB
complexes, the bridge head site is not stable. The early transition metal complexes reveal
pyridine’s top position as the most stable site for doping, whereas the late transition
metal complexes show comparable stability for both the benzene and pyridine top
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positions. Therefore, transition metal doped over the pyridine top configuration is
selected for discussion afterwards. DFT spin-polarized simulations are performed for
the first four spin states of the considered TM@NB complexes, to obtain the most stable
spin state (the lowest possible geometry). Among the studied spin states, a doublet is
observed as the stable spin state for Sc@NB, Co@NB, and Cu@NB, whereas it is a triplet
for Ti@NB and Cr@NB. Similarly, a quartet is calculated as the most stable spin states for
V@NB and Mn@NB, respectively. Moreover, a quintet is the most stable spin state for
Fe@NB, whereas it is a singlet for Ni@NB and Zn@NB. The TM@NB complexes with the
most stable spin states are employed in this study for discussion hereafter.
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Figure 1. Top view (a) and side view (b) of the optimized structure of nanobelt at ωB97XD/6-
311G(d,p) level of theory, where (c) presents the possible sites for doping transition metal atom;
benzene ring (A), pyridine ring (B) and C—C bridge (C). Grey, whitish, and blue balls represent
carbon, hydrogen, and nitrogen atoms, respectively.

The ground state fully relaxed geometries of the TM@NB complexes with the C—
TM and N—TM bond lengths mentioned, are presented in Figure 2, while their corre-
sponding computed interaction energy (∆Eint) values are summarized in Table 1. Bond
interaction distances and interaction energies are two crucial parameters to estimate the
stability of a system. Therefore, it can be seen from Figure 2 that the N—TM interaction
distances between the N atom pyridine ring and the doped transition metal are calcu-
lated in the range of 1.80 Å to 1.98 Å. Similarly, the C—TM bond distances between the
C atom of the nanobelt and the transition metal are computed in the range of 1.87 Å to
2.13 Å in the studied complexes. The lowest C—TM and N—TM interaction distances
are calculated in the case of the Ni@NB complex (see Figure 2), followed by the Co@NB
and Cu@NB complexes. The highest N—TM and C—TM bond distances are observed for
Sc@NB (1.98 Å) and Ti@NB (2.13 Å) among all the considered complexes, respectively. A
monotonic decrease in interaction distances is seen from the Sc- to Ni-doped complexes
with an increase in atomic number. However, a slight increase in the N—TM and C—TM
bond distances are calculated for the Cu@NB and Zn@NB complexes. The calculation of
C—TM interaction distances between the carbon atom of the nanobelt and the doped
metal atom are nearly comparable with previously reported bond lengths [73].
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Figure 2. Optimized structures of stable TM@NB complexes (TM = Sc-Zn) at ωB97XD/6-311G(d,p)
level of theory. Where grey, whitish, and blue balls represent carbon, hydrogen, and nitrogen
atoms, respectively.

Table 1. Summary of energies for the interaction of TM atom over nanobelt (∆Eint), HOMO (eV),
LUMO (eV), energy gap (eV), and NBO charges on TM atom of all considered TM@NB complexes.

Complexes ∆Eint (eV) HOMO (eV) LUMO (eV) Eg (eV) QTM |e|

Sc@NB −3.54 −6.06 −0.52 5.53 1.211
Ti@NB −3.57 −6.28 −0.86 5.42 1.131
V@NB −3.31 −6.47 −0.81 5.66 1.124
Cr@NB −3.68 −6.42 −1.31 5.11 1.097
Mn@NB −4.38 −5.33 −2.10 3.23 0.991
Fe@NB −2.10 −6.20 −1.07 5.13 0.971
Co@NB −4.59 −6.41 −0.79 5.62 0.939
Ni@NB −4.97 −6.34 −0.89 5.45 0.779
Cu@NB −3.01 −6.27 −0.95 5.32 0.939
Zn@NB −0.18 −6.20 −1.44 4.76 1.241

Nanobelt (NB) – −6.94 −1.28 5.66 –
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Additionally, the interaction energies of the TM@NB complexes are also calculated by
using Equation (1), and the values are presented in Table 1. The interaction energies with
a negative sign reveal that the doping of the transition metal over the H6-N3-belt[6]arene
nanobelt is a feasible process for all the considered metal atoms, i.e., Sc to Zn. Among
the studied TM@NB complexes, the highest thermodynamic stability is displayed by the
Ni@NB complex with the highest value of interaction energy (−4.97 eV), followed by
Co@NB (−4.59 eV) and Mn@NB (−4.38 eV). Overall, the Eint values are calculated in the
range of−0.18 eV to−4.97 eV for all of the considered TM@NB complexes. The lowest value
of interaction energy (−0.18 eV) is observed for the Zn@NB complex, which shows that Zn
atom doping over the H6-N3-belt[6]arene nanobelt is not much of a facile process. The lower
value of the interaction energy for Zn atom doping over a graphene surface is also reported,
which declares that Zn atom doping is not a feasible process [34]. The interaction energy
results further reveal that all the doped systems are showing chemisorption, consistent
with the interaction distances except for Zn (physisorption). The highest interaction energy
in the case of the Ni@NB complex is also consistent with the shortest interaction distances.
Overall, upon optimization, no substantial structural deformation is noticed; however, the
H6-N3-belt[6]arene nanobelt structure slightly changes its shape from circular to oval upon
doping (see Figures 1 and 2).

3.2. Electronic Properties of TM@NB Complexes

To further explore the electronic characteristics and the interactions of transition
metals with the H6-N3-belt[6]arene nanobelt, natural bond orbital analysis is carried out
with stable spin states. It is obvious from the electropositive nature of metal atoms, that
the transition metal should transfer its charge to the H6-N3-belt[6]arene nanobelt in the
designed complexes. The calculated values of the NBO charge are reported in Table 1, and
the values reveal a positive charge on the metal atom, which confirms the transference of
charge from metal atom to nanobelt in all of the studied TM@NB complexes. The highest
NBO charge transfer is calculated in the case of the Zn@NB complex (1.241 |e|), followed
by the Sc@NB (1.211 |e|), Ti@NB (1.131 |e|), and V@NB (1.124 |e|) complexes. The least
NBO charge transfer is calculated in the case of Ni@NB (0.779 |e|). The maximum NBO
charge transfer for the Zn@NB complex may be due to a stable d10 configuration after
losing one electron. Overall, the amount of charge transfer for the transition metal atom in
the studied TM@NB complexes is calculated in the range of 0.779 |e| to 1.241 |e|. There
is a gradual decrease in the amount of NBO charge transfer with the increase in atomic
number from Sc to Ni. NBO analysis strongly correlated with the interaction distances and
confirms the electropositive nature of the transition metal atoms.

Frontier molecular orbitals analysis is also computed to visualize the electronic contri-
butions (HOMO–LUMO isodensities), and to compute the corresponding energies. FMO
analysis helps to comprehend the perturbations in the electronic properties of the doped
transition metal on the H6-N3-belt[6]arene nanobelt. The HOMO–LUMO isosurfaces gener-
ated via Gaussview are given in Figure 3, and their corresponding HOMO, LUMO energies,
and H-L energy gaps are summarized in Table 1. The H-L energy gap (Eg) of the pure
H6-N3-belt[6]arene nanobelt is 5.66 eV, where the values of the HOMO and LUMO energy
levels are −6.94 eV and −1.28 eV, respectively. The results reported in Table 1 for FMO
analysis show a reduction in the H-L energy gap in all studied TM@NB complexes, ex-
cept the V@NB complex, where the energy gap remains the same (5.66 eV). The highest
reduction in the energy gap compared to the bare nanobelt is seen in the case of the Zn@NB
catalyst (4.76 eV), followed by Cr@NB (5.11 eV), whereas the lowest reduction in energy
gap is observed for V@NB (5.66 eV) and Co@NB (5.62 eV). The FMO analysis reveals the
changes in electronic properties upon doping of the transition metal atom.
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Figure 3. HOMO-LUMO orbital density distribution of studied TM@NB complexes (TM = Sc-Zn).

Moreover, the orbital distributions in Figure 3 reveal that the HOMO is densely
occupied over the transition metal atom in most cases. The LUMO orbital density is
mainly occupied over the H6-N3-belt[6]arene nanobelt. The LUMO isodensity is almost
missing over the transition metal atom, except for the V@NB and Cr@NB complexes.
The HOMO–LUMO orbital density distribution confirms the transfer of charge from the
electropositive transition metal to the H6-N3-belt[6]arene nanobelt (MLCT) upon excitation
from HOMO to LUMO. The depicted density distribution is more clear in the case of the
Sc@NB, Mn@NB, Fe@NB, and Zn@NB complexes.

3.3. Hydrogen Molecule Adsorption over TM@NB Complexes

The H—H bond distances (DH-H) for the hydrogen-adsorbed TM@NB complexes are
observed in the range of 0.75 Å to 0.85 Å (labeled in black see Figure 4). Adsorption energy
(Eads) is also computed by using Equation (2) for the adsorption of hydrogen molecule
over the designed TM@NB complexes (see Table 2). In certain complexes, the H—H bond
length of adsorbed hydrogen, the strong TM—H bond interactions, thus results in the
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weakening of the H—H bond. All the considered TM@NB complexes are energetically
favorable for the hydrogen adsorption process, and the computed values of adsorption
energy are observed in the range of −0.06 to −0.93 eV. Among all the complexes, the
Co@NB complex has the highest adsorption energy value of −0.93 eV for the adsorption
of the hydrogen molecule, owing to a higher thermal stability of this complex. Moreover,
the Ni@NB (−0.89 eV), Cr@NB (−0.77 eV), Cu@NB (−0.72 eV), and Mn@NB (−0.54 eV)
complexes have manifested higher adsorption energy values. A higher value of adsorption
energy reveals a stronger binding of the hydrogen molecule over the TM@NB complexes.
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Important interaction bond distances (TM—H and N—H) are also mentioned in
Figure 3, which reveal that these interaction distances also vary in different doped
systems. The N—H bond distances in various studied systems are observed in the range
of 2.53 Å to 3.36 Å, whereas the TM—H bond distances are in the range of 1.58 Å to
2.12 Å. Overall, when a hydrogen molecule is adsorbed over the TM@NB complex, the
H–H bond length is slightly increased compared to the isolated hydrogen molecule.
Thus, this reveals the activation of the hydrogen molecule over the metal-doped H6-N3-
belt[6]arene nanobelt. A gradual increase in H—H bond distance is observed from Sc to
Mn, with an increase in atomic number upon adsorption over the TM@NB complexes,
whereas the H—H bond distance decreases after Mn with an increase in atomic number,
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which may be due to less participation of d-orbital electrons due to the pairing up of
these electrons. The lowest H—H bond distance is obtained in the case of the Zn@NB
complex due to a stable d10 configuration.

Table 2. Summary of hydrogen molecule adsorption energies (∆Eads), energy of reaction (∆E), and
hydrogen dissociation energy barriers (Ea) for all studied TM@NB complexes.

Complexes ∆Eads (eV) ∆E Ea

H2Sc@NB −0.06 −0.98 0.13
H2Ti@NB −0.40 −1.28 0.65
H2V@NB −0.45 −1.04 0.47
H2Cr@NB −0.77 −0.93 0.35
H2Mn@NB −0.54 −1.82 0.46
H2Fe@NB −0.26 −0.86 0.98
H2Co@NB −0.93 −1.38 0.99
H2Ni@NB −0.89 −1.09 1.05
H2Cu@NB −0.72 −1.55 0.77
H2Zn@NB −0.27 −1.15 0.36

3.4. Dissociation of the Hydrogen Molecule over TM@NB Complexes

The dissociative adsorption of the H2 molecule is considered to be one of the important
reactions over catalytic surfaces. The hydrogen dissociation reaction involves the splitting
of a molecular covalent bond, and at the same time, it requires the formation of new
chemical bonds. Thus, an efficient catalyst is required to perform an HDR reaction. Herein,
we considered TM@NB catalysts to evaluate their catalytic performances for the hydrogen
dissociation reaction. In such reactions, the efficiency of the catalyst can be examined via the
activation energy (Ea) or the energy barrier, which is regarded as an important criterion to
localize or to regulate the transfer of electrons (charged particles) [74]. Therefore, a lowering
of the energy barrier facilities the transport of charges from the oxidative site (the electron
donor site) to the reductive site (the electron acceptor site). The free energy diagram of
the HDR pathway on the designed TM@NB catalysts is demonstrated in Figure 5. The
negative values of energies declares that both the intermediate (H2*) and product (2H*)
states are thermodynamically favorable in all TM@NB catalysts, showing the stability of
these complexes. The electrocatalytic dissociation reaction of the hydrogen molecule started
with the adsorption of the hydrogen molecule, followed by the heterolytic cleavage of the
H—H bond, and finally, the diffusion of dissociated hydrogen atoms to their corresponding
binding sites. Among the studied TM@NB catalysts, the smallest activation barrier for
HDR is observed in the case of the Sc@NB catalyst (0.13 eV), while the highest activation
barrier is seen in the case of the Ni@NB catalyst (1.05 eV). Moreover, the lowest dissociation
barrier of the Sc@NB complex is followed by the Cr@NB, Zn@NB, Mn@NB, and V@NB
catalysts, with energy barriers of 0.35 eV, 0.36 eV, 0.46 eV, and 0.47 eV, respectively. The
dissociation barrier for the Ti@NB catalyst is quite close to the Cr@NB catalyst, with a value
of 0.65 eV. While for rest of the studied metal-doped H6-N3-belt[6]arene nanobelt catalysts,
the hydrogen dissociation barriers are 0.77 eV, 0.98 eV, 0.99 eV, and 1.33 eV for Cu@NB,
Fe@NB, Co@NB, and Ni@NB, respectively. At a transition state, the H—H bond lengths
vary between 0.89 Å and 1.07 Å, which shows that the H—H bond length increases in
all of the studied complexes, compared to their corresponding intermediate counterparts.
Similarly, the N—H and TM—H bond distances are decreased at the transition state (TS),
as compared to the intermediate (H2*) state.
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Herein, the best catalyst efficiency for the hydrogen dissociation reaction is obtained
for Sc@NB catalyst; therefore, the HDR over the Sc@NB catalyst is taken as a representa-
tive model to discuss the reaction mechanism in detail. The detailed free energy diagram
of the hydrogen dissociation reaction mechanism over the Sc@NB complex, along with
the important bond lengths mentioned, is presented in Figure 6. Initially, the hydro-
gen molecule (reactant) becomes adsorbed over the Sc@NB catalyst from the side edge
position, directly approaching towards the transition metal atom (Sc) and the nitrogen
atom of the nanobelt, as shown in Figure 6. The hydrogen dissociation reaction (HDR)
H2*→ 2H* resulted in the dissociation of molecular hydrogen into two atomic hydro-
gens, which are diffused to the nitrogen site and the metal active site on the product
side. This molecular hydrogen dissociation process requires overcoming the dissociation
energy barrier of 0.13 eV (3.00 kcal/mol). In dissociation reactions, the H−H bond length
is considered as a crucial structural parameter, which predicts the stabilities of intermedi-
ate and transition states. At the transition state, the H—H bond length extends to 0.98 Å,
which was primarily at 0.78 Å in an intermediate state (the hydrogen adsorbed Sc@NB
complex). This substantial elongation in H—H bond distance at the transition state
compared to the intermediate state declares the facilitated activation of the H2 molecule
over the Sc@NB catalyst. Figure 6 shows that the splitting of the hydrogen molecule
is proceeded through heterolytic cleavage, where the hydrogen is dissociated into the
hydride ion and a proton. The N—H and TM—H interaction bond distances at the
transition state are decreased to 1.39 Å and 1.98 Å from 2.67 Å and 2.12 Å (intermediate
state), respectively. After dissociation, the hydride ion diffuses towards a metal atom (Sc),
while the proton diffuses towards a nitrogen atom of the H6-N3-belt[6]arene nanobelt.
The molecule hydrogen dissociation is accompanied by the evolution of −1.05 eV of heat.
Moreover, the Sc—H and N—H bond distances upon the binding of hydrogen atoms
are 1.85 Å and 1.01 Å, respectively. Furthermore, the enthalpy of the H2Sc@NB complex
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(product side 2H*) is −0.98 eV, thus showing that the dissociated hydrogen (product) is
more stabilized compared to molecular hydrogen (reactant).
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Table 2 reveals that the dissociation barriers over various designed TM@NB catalysts
for the hydrogen dissociation reaction are observed in the broad range of 0.13 eV to 1.05 eV.
Figure 5 further shows that the products are thermodynamically more stabilized than
their corresponding reactants. Among all the considered catalysts, the smallest hydrogen
dissociation barrier is seen for the Sc@NB complex (0.13 eV), which can be readily attained
under ambient conditions (a prerequisite for the hydrogenation reaction). This declares that
the Sc@NB complex has the most efficient catalytic activity for HDR in comparison to the
rest of the studied TM@NB complexes. Similarly, the second-best catalytic activity for the
hydrogen dissociation reaction is observed for the Zn@NB catalyst (0.36 eV). The observed
catalytic efficiency for the Sc@NB (0.13) catalyst is remarkably better than the already
reported metal-based surfaces (Mg15Ni2Al12) for the hydrogen dissociation reaction, where
the dissociation barrier was 0.82 eV [75]. Similarly, a dissociation barrier over designed
catalysts is even better then what has been reported for the noble metal atom-based single
atom catalyst (CeO2 surface), where the barrier is in the range of 0.30 eV to 0.99 eV [24].
The Sc@NB catalyst delivers outstanding catalytic activity for HDR; therefore, the Sc@NB
catalyst can be utilized as a promising and cost-effective single atom-based catalyst for
hydrogenation reactions.

3.5. NBO and EDD Analyses

The mechanism of hydrogen molecule activation and splitting over the designed
complexes is further elaborated through charge transfer via natural bond orbital and
electron density difference analyses. Natural bond orbital (NBO) analysis helps to estimate
the amount of NBO charge transfer that occurs from transition metals (d-orbitals) upon
the adsorption of the hydrogen molecule. The computed amount of NBO charges on
hydrogen atoms, nitrogen atoms, and transition metal atoms of H2-adsorbed TM@NB
complexes are summarized in Table 3. In all of the H2TM@NB complexes, the hydrogen
molecule dissociated into hydride ion and a proton, which after dissociation, is stabilized
over the transition metal atom and the nitrogen atom of the nanobelt, respectively. Hence,
NBO analysis reveals that TM atoms exhibit a positive NBO charge, while the hydrogen
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atom (H1) interacting with TM has a negative NBO charge, which confirms the transfer
of charge from the metal atom to the hydrogen atom. Similarly, the NBO charge on the
nitrogen atom is negative, whereas on the corresponding hydrogen atom (H2), a positive
NBO charge is seen. NBO analysis displays the electropositive nature of transition metals,
therefore transferring the NBO charge to the H atom. The maximum NBO charge transfer
is obtained for the Sc metal atom (+1.444 |e|), whereas the minimum charge transfer is
seen for the Ni metal (+0.916 |e|); the trend is consistent with the previously discussed
trend in Sections 3.1 and 3.2.

Table 3. NBO charge transfer analysis of stable H2TM@NB complexes.

Complexes H1 (TM Side) |e| TM (|e|) H2 (N Side) |e| N (|e|)

H2Sc@NB −0.257 1.444 0.244 −0.764
H2Ti@NB −0.315 1.254 0.252 −0.809
H2V@NB −0.284 1.106 0.252 −0.774
H2Cr@NB −0.315 1.235 0.245 −0.789
H2Mn@NB −0.317 1.049 0.273 −0.800
H2Fe@NB −0.323 1.111 0.271 −0.755
H2Co@NB −0.327 1.050 0.281 −0.743
H2Ni@NB −0.309 0.916 0.295 −0.711
H2Cu@NB −0.295 0.975 0.238 −0.705
H2Zn@NB −0.218 1.351 0.176 −0.982

EDD is performed to validate the NBO results, and the plotted EDD isosurfaces
for the designed hydrogen-adsorbed TM@NB complexes are given in Figure 7. The
green and yellow isosurfaces are seen in the EDD plots; this therefore corroborates
the charge transfer upon hydrogen dissociation. Green colored isosurfaces present the
accumulation of charge density, whereas the yellow colored isosurfaces are showing the
depletion of charge density. From the EDD plots, it is obvious that a transfer of charge
occurs from the transition metal (TM) to the hydrogen atom (H1), and from the hydrogen
atom (H2) to nitrogen (N) upon hydrogen dissociation in all of the considered TM@NB
complexes (for details, check Figure 7). In all TM@NB complexes, the yellow colored
isosurfaces primarily appear over the TM atoms and hydrogen atoms interacting with
the nitrogen atom of the molecular nanobelt presenting the depletion of charge density.
Similarly, green colored patches appear over the hydrogen atom (H1) and the nitrogen
atom of the nanobelt, displaying the accumulation of electronic charge density. Overall,
the EDD results show a strong correlation with the results of the NBO charge transfer
analysis. Additionally, the process of charge transfer facilitates the filling of electrons in
the σ* (antibonding orbital) of the H2 molecule, hence making the dissociation process
feasible over TM@NB catalysts.

For comparison, the activation barrier of hydrogen dissociation in our work (Sc@NB
catalyst) and some other reported surfaces are summarized in Table 4. Our computed value
of the hydrogen dissociation barrier for the Sc@NB catalyst (0.13 eV) declares a highly
efficient performance of our designed catalysts with respect to the reported ones. In our
case, the least activation barrier is calculated for the Sc@NB catalyst, and the catalytic
performance is much better, even than the reported Au/TiO2 catalyst (0.54 eV).
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Table 4. Comparison of hydrogen dissociation barrier over Sc@NB catalyst with already reported
barriers over various surfaces.

Catalysts for HDR Energy Barrier (eV) Reference

Sc@NB 0.13 eV Our work

Fe@C2N 0.36 eV Shah et al. [41]

Mg15Ni2Al12 0.53 eV Zhang et al. [75]

Au/TiO2 system 0.54 eV Sun et al. [76]

Ti-doped Mg Surface 0.35 eV Du et al. [77]

The computational simulations are not always reflecting the real-world conditions,
and the results obtained may theoretically have differences from those of the exper-
imental results. These differences arise due to the limitations of the computational
methods, but it is worth mentioning that the computational results provide very useful
guidelines for experimentalists, and the trends obtained theoretically match very much
with experimental values (in most cases), although the absolute values may have differ-
ences. Several studies have been published where the results obtained theoretically for
mechanistic studies corroborate nicely with the experimental results [78–82].

The most crucial factor in a computational study is the choice of the level of theory
because an accurate level of theory can lead to reliable results. There are several theo-
retical methods that are available in the literature, and many times, it becomes quite
difficult to choose a functional for theoretical study. Therefore, calibration is needed
before a functional (or method) can be chosen. Many such benchmark studies are avail-
able in the literature, where functionals from a variety of classes are evaluated against
the experimental data or against data from a higher level of theory. We have taken
assistance from the literature benchmark studies for selecting the chosen functional.
This is since weak intermolecular forces are believed to be involved in this system
when hydrogen is dissociating on the metal-doped nanobelts, and the best functional
for describing these weak non-bonding interactions is wB97XD [83]. With a properly
chosen functional, the errors in the activation barriers are roughly±1.5 kcal/mol. Since
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a calibrated method is chosen, we are therefore very confident that the results obtained
are within the ±1.5 kcal/mol error limit [84]. However, despite these errors, the trends
obtained theoretically are generally consistent with the trends obtained experimentally.

4. Conclusions

In conclusion, we performed a systematic DFT investigation on the adsorption
and dissociation process of the hydrogen molecule over TM-doped H6-N3-belt[6]arene
nanobelt-based single-atom catalysts. The doping of transition metal (TM) over nanobelt
is an exothermic process for all of the studied metals, and a maximum interaction
energy (Eint) is obtained for the Ni@NB complex (−4.97 eV). NBO analysis reveals the
electropositive nature of the metal atoms, and the results are consistent with FMO
outcomes. Additionally, the adsorption energy (Eads) for the adsorption of the hydrogen
molecule over the designed TM@NB complexes, and their corresponding dissociation
barriers are also computed. The reaction mechanism pathway reveals that the 2H* state
(atomic hydrogen) is thermodynamically more favorable due to a negative energy level
(exothermic process) in all of the studied complexes. The minimum dissociation barrier
is seen for the Sc@NB complex (0.13 eV), followed by the Zn@NB complex (0.36 eV)
among all of the studied TM@NB catalysts. The NBO charge transfer analysis shows
that charge is being transferred from the transition metal to the H2 molecule, thus
facilitating the process of hydrogen dissociation. Moreover, for a visual depiction of
charge transfer, EDD analysis is also performed, which shows an agreement with NBO
analysis. In summary, this study reveals the Sc@NB catalyst as the most effective catalyst
for the hydrogen dissociation reaction, and hence it paves a way for experimentalists
to engineer efficient and less expensive electrocatalysts for the hydrogen dissociation
process. Moreover, the current study also provides a new avenue for material scientists
to design SACs based on other nanobelts with second- and third-row transition metals
for the facile hydrogen dissociation process. Furthermore, a transition metal-doped
H6-N3-belt[6]arene nanobelt-based catalyst might be applicable to catalyze different
chemical transformations.
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