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Abstract: SMAF-ECC material composed of shape memory alloy fiber (SMAF) and engineered
cementitious composite (ECC) has good bending and tensile properties, as well as good crack self-
healing ability, energy consumption, and self-centering ability. The bond behavior between fiber
and matrix is crucial to the effective utilization of the superelasticity of SMAF. The experimental
study considered three variables: SMA fiber diameter, fiber end shape, and bond length. The pullout
stress–strain curve of SMAF was obtained, and the maximum pullout stress, maximum bond stress,
and fiber utilization rate were analyzed. Compared with the straight end and the hook end, the
maximum pullout stress of the specimen using the knotted end SMAF is above 900 MPa, the fiber
undergoes martensitic transformation, and the fiber utilization rate is above 80%, indicating that the
setting of the knotted end can give full play to the superelasticity of the SMAF. Within the effective
bond length range, increasing the bond length can increase the maximum anchorage force of the
knotted end SMAF. Increasing the fiber diameter can increase the maximum pullout stress and
maximum anchoring force of the knotted end SMAF but reduce the utilization rate of SMA fiber. This
study provides a reliable theoretical basis for the bonding properties between SMAF and ECC.

Keywords: shape memory alloy fiber; superelasticity; engineered cementitious composites; bonding
performance

1. Introduction

Traditional concrete materials have poor tensile properties, poor impact toughness,
obvious strain softening characteristics, and large crack width, making the internal steel
susceptible to corrosion [1,2]. In order to meet the requirements of modern construction and
overcome the defects of traditional concrete, various types of high-performance fibers were
combined with concrete materials to develop high-performance fiber-reinforced concrete
materials. In the early 1990s, Engineered Cementitious Composites (ECC) were successfully
developed at the University of Michigan [3]. ECC is a kind of cementitious composite
material reinforced by randomly distributed short fibers which has ultra-high toughness,
high tensile strength, and high fracture resistance [4–9]. Different from ordinary concrete
and fiber-reinforced concrete materials, ECC will undergo strain hardening after it cracks.
The tensile strain capacity of ECC can be 300 to 500 times that of ordinary concrete, and it
will produce a large number of small and evenly distributed cracks before it breaks [10]. In
addition, ECC has high shear ductility, energy dissipation capacity, and damage tolerance,
so it is widely used to improve the seismic performance of structures. Maalej et al. [11]
and Yuan et al. [12] found that ECC beams had high bearing capacity, high ductility, high
energy consumption, and plump hysteresis loop. Shan et al. [13] found that the ultimate
bearing capacity, ductility, and crack resistance of ECC columns was significantly improved
compared with concrete columns. Yuan et al. [14] verified that replacing concrete with ECC
in the beam–column joint region could significantly improve the bearing capacity, ductility,
energy dissipation capacity, and shear strength of the beam–column joints. However, ECC
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will produce significant residual deformation and a large number of crack damage, which
is still not conducive to the structural repairing or strengthening [15].

Shape memory alloy (SMA) is a kind of functional material with special shape memory
effect and superelasticity which has been used in aerospace, automobile, robot, biomedicine,
civil engineering, and other fields [16–20]. Superelasticity is a characteristic of austenitic
SMA material produced by stress excitation at normal temperature. As shown in Figure 1,
σms and σmf are the starting and ending stress of martensitic transformation separately, σas
and σaf are the beginning and ending stress of austenite transformation, respectively, and
Af is the temperature at the end of austenite transformation. SMA material can produce
an obvious energy dissipation loop during the loading and unloading process, and the
strain can be significantly recovered after unloading [21,22]. Therefore, superelastic SMA
can be used in seismic structures to improve the energy dissipation capacity and provide
self-centering capacity for structures. Pei et al. [23] found that SMA bars were able to
improve the bearing capacity, ductility, and self-centering capability of concrete beam–
column joints. Cortés-Puentes et al. [24] proved that the shear walls strengthened by SMA
rods had a self-centering ability and were able to self-repair the damaged areas. However,
in these studies, SMAs are mainly fabricated into rods, bars, or strands. These continuous
SMA products are expensive, difficult to process, need special connectors to connect with
steel bars, and are prone to weak cross-sections, which seriously affect the application and
promotion of SMA materials.
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Therefore, short and randomly distributed SMA fibers were used instead of the above
continuous products in mortar and concrete structures. However, the bonding strength
between the SMA fibers and the mortar or concrete matrix is very poor due to the smooth
surface of SMA fibers [25]. Therefore, different end shapes for SMA fibers were used
to improve the bonding performance. Dehghani et al. [26] found that SMA fibers with
45◦ hook end showed a high bond strength with the concrete matrix, while Choi et al. [27,28]
found that spearhead end provided a much greater pullout resistance for SMA fibers and
showed a good flag-shaped energy dissipation behavior. They [29,30] also indicated that
the larger diameter of SMA fibers, the better self-centering capacity of the cementitious
composites. Ho et al. [31] found that the crimped fiber with a larger diameter provided a
great peak pullout stress. However, due to the brittleness of concrete or mortar, they are
easily damaged in tension, so the performance of SMA cannot be fully utilized.

Compared with concrete or mortar, ECC has much larger tensile deformation capacity,
so it is more compatible with SMA fibers. In addition, the crack distribution of ECC is
wide and the crack width is small, which can enable more SMA fibers to participate in the
work and reduce the difficulty of SMA fibers to close the crack [32]. On the other hand,
SMA fibers can provide crack closure and self-centering capability for ECC, which can
effectively solve the problems of residual deformation and residual cracks of ECC materials.
Ali et al. [33] found that compared with ECC made with only 2% PVA by volume fraction,
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the ECC beams strengthened with SMA fibers obtained higher flexural strength, increased
by 39%, and the self-centering rate reached 36%. Dehghani et al. [34,35] found that SMA
fibers could improve the flexural toughness and tensile properties of ECC materials. Chen
et al. [36] also proved the improvement in strength and ductility and the self-centering
ability of SMA-ECC specimens. The author’s previous research [32] also confirmed the
effectiveness of SMA fibers in improving the energy dissipation and self-centering ability
of ECC beams.

Although the incorporation of SMA fibers into ECCs has yielded exciting results, it
is evident that the prerequisite for the full utilization of SMA fiber’s superelasticity is its
sufficient bond strength with ECC. However, just like concrete and mortar matrix materials,
the bonding strength of ECC matrix and SMA fiber is very poor because of the smooth
surface of SMA fibers, so it is necessary to take some measures to improve the bonding or
anchoring strength of SMA fiber and ECC matrix. In the previous study, the author studied
the deformation recovery and cyclic energy dissipation ability of SMA fibers and ECC
matrix under cyclic pullout loads [37]. In order to more accurately analyze the bonding and
anchoring capacity of SMA fiber and ECC matrix, the strength utilization ratio of SMA fiber
before anchoring failure, the direct pull-out test of SMA fiber and ECC matrix was carried
out in this study, and the influencing factors such as end shape, diameter, and bonding
length of SMA fibers were compared as well. This study can provide a reliable basis for
improving the bonding capability of SMA fiber and ECC matrix, conducting theoretical
research on the mechanism of SMA fibers in ECC matrix.

2. Experiment Design
2.1. Materials

In this test, the main components of ECC include Type I ordinary Portland cement.
The measured compressive strength after 28 days of curing was 42.5 MPa; high quality
fly ash, fineness was 43 µm, density was 2.4 g/cm3, and water content was 0.5%; for
white crystalline quartz sand, fineness was 100~200 mesh; for PVA fibers, length was
9 mm, diameter was 31 µm, tensile strength was 1500 MPa, elastic modulus was 42 GPa,
and elongation was 6%; polycarboxylate is a high performance water-reducing agent.
The experimental mix proportion of ECC is shown in Table 1. According to Chinese
Standard JC/T 2461-2018: Standard test method for the mechanical properties of ductile
fiber-reinforced cementitious composites [38], the dumbbell-shaped specimens were made
to test the tensile properties of ECC material, and the specified size of tensile specimen is
shown in Figure 2. The thickness of ECC specimen is 13 mm.

Table 1. Mixture weight proportion of the ECC specimens [37].

Raw Materials Cement Fly Ash Silica Sand Water PS PVA * (%)

Mix proportion 1.0 2.4 0.36 0.26 0.0082 2.0
* Percentage of fiber content by volume.
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In the test, obvious multiple cracks were observed, as shown in Figure 3. From Figure 4,
ECC showed obvious strain hardening characteristics after cracking, the ultimate strain
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(the corresponding strain when the stress drops to 85% of the peak stress) reached 3.12%,
and the peak tensile stress reached 4.25 MPa. In addition, the curve fluctuated obviously,
and each fluctuation indicates a new crack appeared in the specimen [39]. Nickel–titanium
superelastic SMA fibers were used in this test, with diameters of 1.0 mm, 1.2 mm, and
1.5 mm, respectively. Direct tensile tests were carried out by a universal testing machine
to obtain the main mechanical performance of these SMA fibers. The main mechanical
performance of the SMA fibers is shown in Table 2 and the stress–strain curves are shown
in Figure 5.
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Table 2. The main mechanical performance of the SMA fibers with different diameters.

Diameter/mm
Start Point of Stress Platform End Point of Stress Platform Tensile Strength

a/MPa
Ultimate

Strain b/%Strain/% Stress/MPa Strain/% Stress/MPa

1.0 1.55 450 17.22 591 1123 28.6
1.2 1.65 468 13.7 581 1147 29.1
1.5 2.08 459 12.5 520 1372 25.4

a The ultimate tensile strength is taken as the peak stress in the direct tensile stress–strain curve of SMA. b The
ultimate tensile strain is the strain corresponding to the fracture point in the direct tensile stress–strain curve
of SMA.
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2.2. Specimen Design and Fabrication

In order to study the bonding properties of SMA fiber and ECC matrix, direct pullout
tests of SMA-ECC specimens were carried out, and the SMA fiber diameter, end shape, and
bond length were taken as the main influencing factors. The diameters of the SMA fiber
are 1 mm, 1.2 mm, and 1.5 mm, respectively. The end shapes are set to be straight, hook,
and knotted, as shown in Figure 6. The bonding length was set to be 30 mm, 40 mm, and
50 mm, not including the length of hook or knot. The grouping table of the test specimens
is shown in Table 3. The specific dimensions of the specimens are shown in Figure 7. The
ECC mix ratio used in the tests is the same as Table 1. After being fabricated, the specimens
were placed into a standard curing box, demolded after 24 h, and put into the water tank to
continue standard curing for 28 days.
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Table 3. Test specimen grouping table.

Group Specimen Diameter (mm) End Shape Bonding Length (mm)

1
st-1.0 1.0

Straight 110 (through)st-1.2 1.2
st-1.5 1.5

2
s-1.2-40

1.2
Straight

40h-1.2-40 Hook
k-1.2-40 Knotted

3
k-1.2-30

1.2 Knotted
30

k-1.2-40 40
k-1.2-50 50

4
k-1.0-40 1.0

Knotted 40k-1.2-40 1.2
k-1.5-40 1.5

2.3. Test Device and Test Method

A universal testing machine was used for the direct pullout test, and the loading speed
was controlled by the pulling displacement as 2 mm/min. The loading was stopped when
the fiber was broken or pulled out. In order to reduce the slip between the ECC matrix and
the fixture of the testing machine, a specific ECC fixture was used to fix the matrix, and
the carbon fiber cloth was used to wrap the specimen to reduce the stress concentration
of the fixture. A specific fiber clamp was used to fix the free end of the SMA fiber. The
length of the free tensile section was 100 mm. The built-in sensor of the testing machine
was used to record the load and the pulling displacement during the test. The test data
were synchronously collected by the computer. The test devices are shown in Figure 8. The
pull-out test analyzed the bonding behavior of SMA fiber and ECC matrix, the bond failure
process, and the stress level of SMA fibers. Therefore, this study analyzed the principal
indicators such as load, displacement, and SMA fiber stress, and expressed them by the
load–displacement–stress combination curve. On this basis, the bond-bearing capacity and
SMA fiber strength utilization ratio was compared.
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3. Results of Pullout Tests
3.1. Pullout Mechanical Properties

The pullout load–displacement–stress curves of test specimens are shown in Figure 9,
and the main pullout mechanical parameters are shown in Table 4. In Table 4, σf is calculated
according to Equation (1).

σf =
F

A f
=

F

π·
d2

f
4

(1)

where σf is the pullout stress of the SMA fiber; F is the pullout load; Af is the section area
of the SMA fiber; df is the diameter of the SMA fiber. The comparison of the maximum
pullout stress of the SMA fiber in each specimen is shown in Figure 10.

Table 4. The main pullout mechanical parameters of test specimens a.

Group Specimen Fmax/N σf,max/MPa Dmax/mm

1
st-1.0 237 302 26.3
st-1.2 269 238 23.3
st-1.5 305 173 31.5

2
s-1.2-40 175 155 7.41
h-1.2-40 471 416 27.2
k-1.2-40 1261 1116 27.1

3
k-1.2-30 1067 943 33.9
k-1.2-40 1261 1116 27.1
k-1.2-50 1244 1101 23.6

4
k-1.0-40 835 1064 25.0
k-1.2-40 1261 1116 27.1
k-1.5-40 2017 1142 25.8

a Fmax is the maximum pullout load; σf,max is the maximum pullout stress of SMA fibers; Dmax is the maximum
displacement of SMA fibers.
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Figure 10. Comparison of the maximum pullout stress of each specimen.

3.1.1. The First Group

The specimens in this group include st-1.0, st-1.2, and st-1.5, and SMA fibers in
these specimens have the same straight end and bond length, but different diameters. It
can be seen from Figure 9a that when the loading displacement is small, the curves are
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approximately linear. After reaching the peak point, the pullout stress of the fiber decreases
rapidly, and the displacement increases significantly. From Table 4, the maximum pullout
stress of the SMA fibers was only 302 MPa (st-1.0), 238 MPa (st-1.2), and 173 MPa (st-1.5),
respectively, which was far less than the corresponding phase transformation platform
stress shown in Table 2. Therefore, the martensitic transformation of SMA fibers cannot be
induced. This is due to the smooth surface of SMA fiber that led to very small chemical
cemented force and friction force, and the straight end provided no anchoring force. Larger
diameters can result in reduced stress, as shown in Figure 11. The reason is that the Poisson
effect in the pulling process decreases the SMA fiber diameter, thus making the bonding
surface more prone to failure and thereby reducing the pullout stress of the fiber [40].
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Figure 11. The comparison figure of the calculation parameters of test specimens. (a) Bond strength
of SMA fibers with straight end; (b) Maximum anchorage force of SMA fibers with hook and
knotted end.

3.1.2. The Second Group

The specimens in this group include s-1.2-40, h-1.2-40, and k-1.2-40, and SMA fibers in
these specimens have the same diameter and bond length but different end shapes. From
Figure 9b and Table 4, the SMA fiber with a straight end has a very small maximum pullout
stress of 155 MPa, and there is no phase transformation stage. As for the hook end fiber, a
short phase transformation process can be observed, but there is no martensitic hardening
stage. The maximum pullout stress is 416 MPa and can start the phase transformation, so the
anchoring performance of the hook end is better than the straight end [41]. However, due
to the stress concentration, the bending hook is fractured and leads to an anchorage failure.
Therefore, the hook fiber could not withstand higher stress and could not fully produce
superelasticity. For the knotted end fiber, the curve has an obvious phase transformation
stage and hardening stage. The maximum pullout stress of this SMA fiber reaches 1116 MPa,
which is 3.38 and 2.68 times of the stress of straight end fiber and the hook end fiber
separately. It proves that the knotted end can provide enough anchoring force for SMA
fiber, resulting in superelasticity and effectively reducing slip.

3.1.3. The Third Group

The specimens in this group include k-1.2-30, k-1.2-40, and k-1.2-50, and SMA fibers
in these specimens have the same diameter and end shape but a different bond length. As
shown in Figure 9c, SMA fibers in these specimens can all experience the phase transforma-
tion and martensitic hardening stage before being fractured. From Table 4 and Figure 10,
the maximum pullout stresses are 943 MPa (k-1.2-30), 1116 MPa (k-1.2-40), and 1101 MPa
(k-1.2-50), which shows that longer bond length results in higher pullout stress. However,
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as to the maximum displacement, bonding length has an opposite effect. It is because
longer bond length can provide greater frictional resistance between SMA fiber and ECC
matrix. Therefore, the pullout stress can be increased, and the slip can be decreased. The
maximum pullout stresses of the SMA fibers in k-1.2-40 and k-1.2-50 are very close, which
is because there is an effective bond length between SMA fiber and ECC matrix when the
bond length is close to or exceeds the effective bond length, and the interfacial friction
cannot continue to increase with the increase of bond length [42].

3.1.4. The Fourth Group

The specimens in this group include k-1.0-40, k-1.2-40, and k-1.5-40, and SMA fibers
in these specimens have the same bond length and end shape but different diameters.
Figure 9d shows that all the SMA fibers can enter the martensitic hardening stage before
fractured. From Table 4 and Figure 10, the maximum pullout stress is 1064 MPa (k-1.0-40),
1116 MPa (k-1.2-40), and 1142 MPa (k-1.5-40), showing that larger fiber diameter leads
to higher maximum pullout stress, which is different with the fibers in the first group.
This is because knotted ends can provide significant anchorage force, especially at the
ultimate state, and the bond-bearing capacity of the knotted end fiber mainly comes from
the anchorage force. As the fiber diameter increases, the anchoring force increases, resulting
in higher pullout stress.

3.2. Bond-Bearing Capacity of SMA Fibers
3.2.1. Calculation Model of Bond-Bearing Capacity

Figure 12 shows the force balance diagram of the SMA fiber during the pullout process.
Therefore, the relationship between pullout load F and average interfacial bonding stress τ
and anchoring force Fa can be established as in Equation (2).

F = τπd f le + Fa (2)

where df is the same as Equation (1) and le is the bond length.
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As for SMA fibers with straight ends, the bond strength mainly comes from interfacial
bonding stress and there is no anchoring force. Thus, the average bonding stress can be
calculated through Equation (3) [43].

F = τπd f le (3)

As for SMA fibers with hook end and knotted end, the bond strength mainly comes
from the anchoring force Fa. With the increase of the pullout load, the interface between
SMA fiber and ECC matrix begins to debond, and the debonding area develops from the
loading end to the fiber end. When the interface along the bonding length is completely
debonded, the pullout load is mainly resisted by the anchoring force of the fiber end.
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Therefore, in the ultimate state of bearing capacity, the maximum pullout load can be
expressed as in Equation (4).

F = Fa (4)

3.2.2. Calculation Result and Comparison Analysis

Through Equation (3) and the maximum pullout load obtained in the test, the aver-
age bond strength τmax of SMA fibers with straight end can be calculated. Similarly, by
Equation (4) and the tested data, the maximum anchoring force Fa of SMA fibers with hook
and knotted end can be calculated as well. The calculated parameters of bond-bearing
capacity are shown in Table 5, and the comparison of the calculation parameters is shown
in Figure 11. As for SMA fibers with straight end, when the bond length is all 110 mm
(st-1.0, st-1.2, st-1.5), the larger the diameter, the lower the bond strength. The reason is
same as the effect on pullout stress. For specimen s-1.2-40, the bond length is much smaller
than the above three specimens, but its bond strength is much higher. This phenomenon
proves that there must be an effective bond length as we discussed in Section 3.1.3, which is
smaller than 110 mm. Therefore, when we calculated the average bond strength according
to the bond length of 110 mm, the calculated value will be too small. As for SMA fibers
with hook end, the maximum anchorage force is 471 N, which is far smaller than the fibers
with knotted end. Just like the analysis in Section 3.1.2, the straightened or broken of
the hook end can not provide enough anchorage force for the SMA fiber to undergo full
phase transformation [44,45]. As for SMA fibers with a knotted end, the anchoring force
is much higher than the hook end fibers and can ensure that the pullout stress of SMA
continues to grow until it enters the martensitic hardening stage, thereby giving full play to
the superelastic properties of the material. From Figure 11b, the anchoring force is very
close when the bond length exceeds 40 mm, while the fiber diameter has a significant effect
on the anchoring force. The maximum anchoring force 2017 N comes from the SMA fiber
with 1.5 diameter, even though its bond length is only 40 mm. These influence laws are
consistent with those of pullout stress, as discussed in Sections 3.1.3 and 3.1.4.

Table 5. Calculated parameters of the bond-bearing capacity of test specimens.

Specimen df/mm le/mm τmax/MPa Fa (N)

st-1.0 1.0 110 0.69 /
st-1.2 1.20 110 0.64 /
st-1.5 1.50 110 0.59 /

s-1.2-40 1.20 40.0 1.16 /
h-1.2-40 1.20 40.0 / 471
k-1.2-40 1.20 40.0 / 1261
k-1.2-30 1.20 30.0 / 1067
k-1.2-50 1.20 50.0 / 1244
k-1.0-40 1.00 40.0 / 835
k-1.5-40 1.50 40.0 / 2017

3.3. Utilization Rate of SMA Strength

In order to qualify the utilization of SMA strength, the coefficient uf was used, and the
specific expression is shown in Equation (5).

u f =
σf ,max

fy
·100% (5)

where fy is the tensile strength of the SMA fiber. When uf is greater than 100%, it represents
that the fiber has been fractured [43]. The SMA strength utilization rate of each specimen is
shown in Table 6, and the comparison figure is shown in Figure 13.
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Table 6. The SMA strength utilization rate of test specimens.

Specimen fy (MPa) uf (%)

st-1.0 1123 26.9
st-1.2 1147 20.7
st-1.5 1372 12.6

s-1.2-40 1147 13.5
h-1.2-40 1147 36.3
k-1.2-40 1147 97.2
k-1.2-30 1147 82.2
k-1.2-50 1147 95.9
k-1.0-40 1123 94.8
k-1.5-40 1372 83.2
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Figure 13. The comparison figure of the SMA strength utilization rate of test specimens.

For straight end SMA fibers, the utilization rates are very low, and are less than 30%.
The influence of diameter and bond length on the strength utilization rate of SMA fiber
is consistent with the influence of pullout stress and bond-bearing capacity. The strength
utilization rate of the hook end SMA fiber is only 36.3%, further explaining that the hook
end cannot effectively utilize the superelasticity of the SMA material. For knotted end SMA
fibers the strength utilization ratio can be more than 80%, and the highest fiber utilization
ratio comes from specimen k-1.2-40, which reaches 97.2%. Comparing specimens k-1.2-30,
k-1.2-40, and k-1.2-50, which are different in bond lengths, their SMA fiber utilization
rates are 82.2% (k-1.2-30), 97.2% (k-1.2-40), and 95.9% (k-1.2-50), respectively. It shows
that the effect of bond length on strength utilization keeps accordance with that of pullout
stress and bond capacity. However, the effect of fiber diameter is different. The strength
utilization rates of specimen k-1.0-40, k-1.2-40, and k-1.5-40 are 94.8%, 97.2%, and 83.2%,
respectively. It shows that as the diameter of SMA fiber increases, the utilization rate of
fiber decreases. This is because larger diameter SMA fibers have higher tensile strength
in the test, while the maximum pullout stress growth rate with the diameter increase is
lower than the increase in material strength, resulting in the decrease of strength utilization.
This result provides a reference for reasonable selection of fiber diameter. It is worth noting
that although this study is backed up by relevant literature to support the conclusions,
the limited number of samples in this experiment raises concerns about the validity of
the conclusions. Therefore, in subsequent studies, further increasing the sample size is
necessary to confirm the rationality of the conclusions.
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4. Summary and Conclusions

In this paper, the bonding performance between SMA fiber and ECC was studied
through the direct pullout tests. The fiber pullout mechanical properties, bond-bearing
capacity and SMA strength utilization were analyzed, and the SMA fiber end shape,
diameter, and bond length were compared as well. This study can provide a basis for
the application of this new material in practical engineering. The main conclusions are
as follows:

1. By setting the proper shaping of the end anchorage, the bonding performance between
SMA fiber and ECC matrix can be effectively improved, which provides the basic
conditions for making full use of the superelasticity of SMA material.

2. The use of a knotted end in SMA fibers provides sufficient anchoring force to ensure
the full utilization of SMA superelasticity. The pullout stress of the knotted end SMA
fiber can reach a maximum value of 1116 MPa, which is significantly greater than the
martensitic transformation stress. Furthermore, the maximum anchoring force can
reach 2017 N, and the fiber strength utilization rate exceeds 80%.

3. Straight end and hook end cannot provide sufficient bond strength or anchoring force.
Due to the anchoring force provided by the hook end, the pullout stress can reach
the martensitic transformation start stress. However, the stress concentration at the
hook results in the anchorage failure, and thus the superelasticity of SMA can not be
fully used.

4. For SMA fibers with knotted end, increasing the fiber diameter can significantly
increase the anchoring force, thus obtained higher pullout stress, but the fiber strength
utilization rate will decrease. In addition, properly increasing the bond length can also
increase the anchorage force, but there is an effective bond length between SMA fiber
and ECC matrix. When the bond length is close to or exceeds the effective bond length,
the anchorage force cannot obviously increase. Fiber bond length is recommended to
be controlled at around 40 mm.
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