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Abstract: Deformation instability is a macroscopic and microscopic phenomenon of non-uniformity
and unstable deformation of materials under stress loading conditions, and it is affected by the
intrinsic characteristics of materials, the structural geometry of materials, stress state and environ-
mental conditions. Whether deformation instability is positive and constructive or negative and
destructive, it objectively affects daily life at all times and the deformation instability based on
metal-bearing analysis in engineering design has always been the focus of attention. Currently, the
literature on deformation instability in review papers mainly focuses on the theoretical analysis of
deformation instability (instability criteria). However, there are a limited number of papers that
comprehensively classify and review the subject from the perspectives of material characteristic
response, geometric structure response, analysis method and engineering application. Therefore,
this paper aims to provide a comprehensive review of the existing literature on metal deformation
instability, covering its fundamental principles, analytical methods, and engineering practices. The
phenomenon and definition of deformation instability, the principle and viewpoint of deformation
instability, the theoretical analysis, experimental research and simulation calculation of deformation
instability, and the engineering application and prospect of deformation instability are described.
This will provide a reference for metal bearing analysis and deformation instability design according
to material deformation instability, structural deformation instability and localization conditions of
deformation instability, etc. From the perspective of practical engineering applications, regarding the
key problems in researching deformation instability, using reverse thinking to deduce and analyze
the characteristics of deformation instability is the main trend of future research.

Keywords: metal deformation instability; intrinsic characteristics; structural geometry; theory and
methods; engineering application

1. Introduction

In the majority of engineering application fields, such as aerospace, automobile, coastal
power station, etc., the deformation and stability failure of materials is one of the key issues.
From the perspective of macrophysics, instability is a phenomenon in which a structure
changes from one equilibrium state to another equilibrium state, or to an unstable state.
In essence, instability is a change in energy. The deformation instability of materials not
only has macroscopic instability, but also has microscopic instability [1]. Generally, the
deformation instability of the material itself or its structure is related to stiffness, and shear-
ing is considered to be the most fundamental cause of deformation instability [2]. Plastic
deformation instability occurs during the deformation process of metal materials. If the
material properties, loading conditions, and geometric structures are different, the prin-
cipal stress states suffered are different in plastic instability. The deformation instability
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of metal materials will be manifested in the form of local necking [3–5], buckling [6–8],
wrinkling [9–11], etc. Since there are different process parameters, such as forming tem-
perature, friction conditions, forming equipment, process route, etc., the change law of the
same instability characteristic is also different.

Therefore, deformation instability is a process based on energy change and guided
by shearing deformation, and the deformation instability process of metal materials is a
complex process with multi-factor coupling. That is, it is mainly related to multiple factors,
such as material intrinsic properties, material macro/microstructure, geometric structure,
ambient temperature, and loading conditions [12–16]. In practical engineering applications,
it is sometimes necessary to take advantage of deformation instability. That is, some parts
may need to use the deformation instability characteristics of materials to achieve special
functions, and then obtain high-efficiency applications in specific occasions. Sometimes, the
deformation instability of materials may bring potential danger to the service of parts, or
directly cause catastrophic accidents, and it is necessary to accurately predict and precisely
control the occurrence and development of deformation instability. Therefore, the study of
deformation instability is very important for the development of precise plastic forming for
high-performance components and better applications in engineering practice.

At present, many scholars have adopted theoretical analysis [7,17], numerical simu-
lation [18–21] and experimental research methods [22,23]; there is systematic research on
deformation instability in terms of materials, structure, boundary conditions and appli-
cations. That is, the research on the deformation instability of metal materials first needs
to determine the instability behavior, establish the mathematical model, and obtain the
analytical solution of deformation instability. Secondly, combined with the mathematical
model and numerical simulation, stress–strain analysis is carried out to determine the type
of deformation instability. Finally, by combining numerical simulation and experimental
research methods, the variation law of the deformation instability is analyzed and the uni-
versal criterion and optimal process parameters which are suitable for specific engineering
fields are obtained. According to the above, this paper first makes a comparative analysis
and summary for the definition of deformation instability, classical instability criteria and
the principle of deformation instability, and then the latest research on instability criteria
in recent years is summarized. Secondly, in terms of the material inherent characteristics
and boundary conditions, the super-plasticity and deformation instability characteristics of
metal materials under hot forming conditions are discussed. The deformation instability
modes of different structures are also described by classifying them into metal sheets,
tubes and beams, respectively. Since there are many research methods on the deformation
instability of metal materials, the research methods in the latest literature are reviewed
and compared. Finally, they are classified according to the effect of deformation instability
in engineering applications; that is, deformation instability is positive and constructive,
or deformation instability is negative and destructive. Therefore, we further summarized
the latest literature on deformation instability in practical engineering applications and
proposed the unresolved problems and future research directions of deformation instability.

Up until now, there have been many review papers on deformation instability, most of
which only focused on the theoretical analysis of deformation instability (instability criteria);
there have been very few papers that classify and review based on material characteristic
response, geometric structure response, analysis methods and engineering applications.
Therefore, from the above four aspects, this paper comprehensively analyzes, summaries
and reviews the latest discoveries and achievements in the study of the deformation
instability of metal materials. The purpose is to help more researchers quickly extract the
latest research results in this field, and compare the value and significance of their own
topics with predecessors, so as to propose more innovative research content.

2. Definition of Deformation Instability

Since deformation instability is closely related to the intrinsic characteristics of ma-
terials, macro/microstructure, forming temperature, stress loading conditions and other
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factors, many scholars have clearly defined deformation instability for different materi-
als and different forming conditions. At the same time, relevant theoretical criteria are
established to predict, analyze and control the deformation instability of materials.

Based on the problem of elastic compression rods, Euler proposed the definition of
compression rod instability first; that is, the minimum load which causes the compression
rod to bend is the critical load of compression rod instability. It was concluded that critical
load is inversely proportional to the square of rod length (as show in Equation (1)), also
known as the “engineering beam theory”. Since then, people have had an understanding
of deformation instability. Felippa et al. [24] further interpreted and reasoned the formula
of instability deformation of beam structure, and explained it in detail. Abrahamson [25]
proposed the dynamic buckling theory of rods under axial compression, which laid the
foundation for subsequent research on deformation instability.

Pcr =
EIπ2

l2 (1)

When the majority of metal materials undergo plastic deformation, the essence is also
a change of energy. When the increment of strain energy is less than the increment of
work performed by an external force, plastic instability will occur. From the perspective
of stress and loading force, plastic instability refers to the phenomenon that when the
load on the material reaches a certain critical value, even if the load decreases, the plastic
deformation will continue. Plastic deformation instability includes load instability and
deformation instability. For general metal materials, load instability is accompanied by
geometric deformation instability; the material will be unstable when there are significant
extreme points on the tensile curve. In a deformation process dominated by tensile stress,
deformation instability is mainly manifested in the form of shear deformation and local
necking, which is called tensile instability [26]. On the other hand, in a deformation process
dominated by compressive stress, deformation instability is mainly present in the form of
wrinkling, buckling, shear fracture, etc., which is called compression instability [27] (as
show in Figure 1). It also can be seen that deformation instability is closely related to the
bearing stress state.
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Tensile instability includes dispersion instability and concentration instability. After
the material undergoes stable and uniform deformation under tensile stress, there is a
metastable flow in a relatively wide area, which is called dispersion instability. When the
tensile necking reaches a certain extent, the unstable flow will be confined to a narrow
area, which is called local instability or concentration instability. Swift proposed [28] that,
for ductile work-hardening materials with uniform structure, the strain remains constant
until a critical value is reached. At this point, the rate of decrease in the cross-sectional
area is faster than the rate of increase in yield stress, causing the material to reach its
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maximum load capacity. This indicates the occurrence of load instability, which means that
the strain is no longer uniformly distributed throughout the material. As the load decreases,
localized necking continues and dispersion instability in materials occurs. Therefore, Swift
proposed a dispersion instability theory for uniaxial tensile, where instability conditions
are as follows:

dσ

σ
= dε = −dA

A
(2)

where dσ is stress increment, dε is strain increment, A is instantaneous cross-sectional area,
and dA is the value of the change in cross-sectional area.

In the complex stress state, the stress intensity σi and strain intensity εi reflect the
comprehensive effect of each stress–strain component. Therefore, the dispersion instability
condition can also be written as:

dσi
σi

= dεi (3)

If the stress–strain relationship of materials follows the power function form σi = Kεn
i ,

when unidirectional tensile, using dispersion instability condition σi = σ1, εi = ε1, the
strain intensity at dispersion instability can be expressed as:

εi = ε1 = n (4)

where K and n are material constants.
Hill proposed the definition of concentration instability in 1952, firstly [29], which

refers to the generation and development of concentration instability necking, mainly
dependent on the local thinning of a sheet without any length change occurring along the
direction of the thin neck. As a result, the condition for instability is that the strengthening
rate of the materials’ unstable section is mutually balanced with the reduction rate in the
thickness direction. At this moment, the local necking may continue to develop, while
the stress in other parts will remain constant or even decrease, ultimately leading to the
cessation of deformation. Hill analyzed the local necking problem of the Luders line at the
stress field of σ2 < (1/2)σ1 in thin plate. Suppose that the direction of characteristic line is
y, the direction perpendicular to it is x, and the angle between maximum principal stress σ1
and x is α. The local instability criterion derived by Hill is as follows:

dσx

σx
=

dσy

σy
= −dεt, dεy = 0 (5)

The direction of local necking line is:

tan2 α = −dε1

dε2
= −

σ1 − 1
2 σ2

σ2 − 1
2 σ1

(6)

Marciniak and Kuczynski jointly proposed the famous M–K groove theory [30]. Ac-
cording to the M–K theory, deformation instability occurs in a groove perpendicular to the
direction of larger principal stress, which leads to the gradual concentration of local strains.
In the initial stage, the change in groove depth is associated with a gradual decrease of
the strain in an adjacent area. When the strain is reduced to a certain limit value, ε∗, sheet
tensile instability occurs. The schematic diagram of the classical M–K theory is shown
in Figure 2a. M–K theory is commonly employed to predict local necking phenomena or
evaluate forming limit strain, and it is a common method to calculate the forming limit
curve (FLC) for local necking strain in thin sheet [31,32]. However, it should be noted that
the classical M–K model assumes that the initial groove is perpendicular to the principal
stress direction, so it is only suitable for calculating the ultimate strain in the right region
of FLC [33]. In order to predict the ultimate strain of the metal sheet in the left region of
FLC, Hutchinson and Neale tilted the assumed initial grooves in the model, by which the
M–K model was modified to form a certain angle ψ with the secondary stress direction [34].
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Figure 2b shows the schematic diagram of the modified M–K model, and the instability
criterion is as follows:

tan ψ = exp[(1− ρ)ε11] tan ψ0 (7)

where ψ is the inclination angle of current groove, ψ0 is initial inclination angle, ρ is strain
path, and ε11 is principal strain.
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In recent years, numerous researchers have modified the classic M–K instability theory
for different materials, allowing for the prediction of deformation instability and sheet
forming limits under different forming conditions. A summary of the research results can
be found in Table 1.

Table 1. Summary of research results on modified M–K model in recent years.

Authors Materials Modified M–K Model Representative Figures

Wang et al.
[35,36]

6061
Aluminum

Alloy

(
∑ βAdεA

1
)nA

exp
(
εB

1 − εA
1
)

ϕB = f0
(
∑ βBdεB

1
)nB

ϕA

where ϕ = σ/σ1, β = dε/dε1, n is real-time strain hardening
exponents, and A and B are zone-A and zone-B, respectively.
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[35,36] 

6061  

Aluminum 
Alloy 
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where 1/ϕ σ σ= , 1/d dβ ε ε= , n is real-time 
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Yu et al.
[37,38]

AA5182O
Sheet

ψ∗ =


arctan

√−ρ, −0.5 ≤ ρ ≤ 0
0, 0 < ρ ≤ r0 /rmax
ρ·rmax−r0
rmax−r0

θr−max , r0 /rmax < ρ ≤ 1

where ψ∗ is critical groove angle, ρ is strain routes, r0 /rmax is
degree of anisotropy, and θr−max is maximum r-value.
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Table 1. Cont.

Authors Materials Modified M–K Model Representative Figures

Wang et al.
[40–43]

Al-Mg-Li
Alloy Sheet

f0 = tb
0/ta

0
f = f0 exp

(
εb

3 − εa
3
)

where f 0 is imperfection coefficient and ta
0 and tb

0 are initial
thick of a and b, respectively.
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where α = (σ2 − σ3)/(σ1 − σ3); δ = σ12/(σ1 − σ3).
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Storen and Rice [48] were able to predict the occurrence of localized necking in a
sheet subjected to biaxial tension using a simple constitutive model with only one vertex
at the subsequent yield point. It was found that if the plastic flow theory of ideal yield
locus was adopted, the uniform thin sheet could not appear with local necking under the
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biaxial tension action; that is, the sheet deformation would be stable. However, the ideal
yield trajectory cannot accurately describe the deformation process in the deformation
strengthening stage. This is because, in the subsequent yielding stage of the deformation
process, singularity points must exist on the yield surface, resulting in regions of increased
local stress [49]. Therefore, Storen and Rice believed that the deformation instability of
materials is induced by the presence of singularity on the subsequent yield surface. The
singularity point appears because of the orthogonal slip inside the material crystal, which
makes the yield surface of the polycrystalline material form an irregular apex during the
plastic deformation, and this singular apex causes the local necking of the materials. The
plastic flow principle of ideal yield surface is shown in Figure 3a, and the principal stress
rate at point A is expressed as: { .

ε1 = 1
2h m

(
m :

.
σ
)

.
ε1 = 1

2h m
( .
σ−m :

.
σ
) (8)

where m is normal vector of the yield surface and h is the hardening rate.
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Figure 3b is a schematic diagram of plastic flow with a singularity point, where the
two yield surfaces intersect at point B. Therefore, the strain rate at point B is expressed as:

.
ε =

1
2h
[
m1
(
m1 :

.
σ
)
+ m2

(
m2 :

.
σ
)]

(9)

This research shows that, compared with the classic M–K model, the Storen–Rice
model predicts forming limit diagrams for an aluminum alloy sheet in biaxial tension; it is
closer to the experimental results [50,51].

Bressan and Williams [52] studied the shear instability and local necking in sheet metal
forming. They concluded that the essence of plastic deformation instability is the change
of energy, and deformation instability is controlled by shearing. Work hardening and an
inhomogeneity of materials can promote the development of strong shear bands in a pure
shear direction. The primary reason for the development of shear bands, which in turn
leads to the shear instability of materials, is the growth of voids within the materials [53].

Semiatin et al. [2,54] analyzed the adiabatic shear bands of metallic materials based on
load instability and local fluidization models. According to the local fluidization model,
significant strain concentrations only occur in simple shear if the deformation exceeds
instability strain. A flow localization model of strain rate hardening and thermal softening
effects can be used to represent the dynamics of strain concentration, and thus it can predict
the occurrence of adiabatic shear banding.

Many scholars have given corresponding definitions of deformation instability ac-
cording to different materials’ formability. For example, Song et al. [55,56] studied the
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forming properties of superplastic materials, and proposed that the occurrence of materi-
als’ deformation instability is attributable to the local narrow necking, and the expansion
phenomenon of necking regions in defective materials when stress is loaded; it also experi-
enced three processes of load instability, geometric instability and fracture instability. Load
instability occurs when the tensile load increases by dP ≤ 0. Geometric instability is the
process of materials’ non-uniform deformation; that is, when the uniform strain is greater
than the strain hardening exponent, the strain hardening effect cannot offset the increase in
stress caused by the contraction of cross-section, and geometric instability occurs at this
time. Typically, in the plastic instability process, load instability and geometric instability
usually occur simultaneously. In the case of superplastic materials, necking does not occur
after load instability, and it can re-establish a prolonged and nearly stable deformation
process after geometric instability [57]. In addition, Li et al. [58,59] found that plastic
deformation instability is related to material scale by studying the plastic deformation
instability of Au/Cu multilayer film. At nanoscale, the dislocations between grains and
crossings at the grain interface can easily cause local shear bands to appear in the material,
ultimately resulting in geometric instability. At higher scales, localized dislocations within
the material displace the grain boundary interface, which also result in plastic deformation
instability.

Based on the above definitions of deformation instability, in order to more accurately
analyze and predict the deformation instability behavior of materials, a variety of deforma-
tion instability criteria have been used for judgment and prediction. Among them, several
common criteria are as follows:

(1) Hart’s instability criterion [60]

Under uniaxial tension, the material appears to have deformation instability when the
following conditions are met:

γ + m < 1 (10)

γ is the work hardening rate:

γ = (1/σ)(∂σ/∂ε) (11)

m is the strain rate sensitivity parameter:

m =
( .
ε/σ

)(
∂σ/∂

.
ε
)
= ∂ ln σ/∂ ln

.
ε (12)

where σ is the flow stress, ε is real strain, and
.
ε is real strain rate.

(2) Jona’s instability criterion [61]

Under uniaxial compression, the localized flow criterion is as follows:

ξ1 = γ + m− 1 > 0 (13)

According to the above criterion, flow localization increases with the increment of
material strain rate sensitivity. Taking into account the localization of strain rate, an
additional criterion given for flow localization in uniaxial compression is as follows:

ξ2 =
γ− 1

m
> 0 (14)

(3) Semiatin’s instability criterion [62]

Semiatin and Lahoti proposed a phenomenological criterion for predicting flow local-
ization in the hot forging of titanium alloys. According to this criterion, shear banding may
occur when the ratio of dimensionless flow softening rate to strain rate sensitivity parameter
exceeds 5. The instability condition for uniaxial compression can be expressed as:

α = − γ

m
> 5 (15)
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where α is the flow localization parameter.

(4) Dynamic Material Model (DMM) criterion [63]

The DMM is based on the principle of irreversible thermodynamics proposed by
Ziegler, which is suitable for large deformation processes of metallic materials. When
the entropy rate produced by the material deformation does not match the entropy rate
imposed on the material, flow localization or instability will occur. Therefore, the flow
instability criterion is:

∂D
∂

.
ε
<

D
.
ε

(16)

where D is the dissipation function that characterizes the flow behavior of the material, and
.
ε is strain rate. As suggested by Kumar and Prasad, if power is divided by two parts G and
J, D can be replaced by J, this is called power co-content.

J =
∫

.
εdσ (17)

Therefore, the instability criterion also can be expressed as follows:

∂J
∂

.
ε
<

J
.
ε

(18)

when the material obeys the following constitutive equation:

σ = K
.
ε

m (19)

J =
mσ

.
ε

m + 1
(20)

Substituting the expression of J into the instability criterion, the following expression
can be obtained:

ξ3
( .
ε
)
=

∂ ln[m/(m + 1)]
∂ ln

.
ε

+ m ≤ 0 (21)

According to the continuity criterion, when the parameter ξ3 becomes negative, the
flow becomes unstable.

Based on the DMM criterion, the formability and stability of different materials under
high temperature deformation conditions can be accurately analyzed by the forming dia-
grams method. Chen et al. [64] established a dynamic material model by using isothermal
compression experiments to study the thermal deformation behavior of T2 copper. Accord-
ing to the forming diagram, it was found that plastic flow instability mainly occurs at low
temperatures of 500–650 ◦C and a strain rate greater than 0.1 s−1. Zheng et al. [65] studied
the high-temperature formability of high-strength Mg alloys through tensile experiments.
The forming diagram of the Mg alloy was designed based on DMM, and it was found
that, with the decrease of the strain rate and the increase of deformation temperature, the
fracture instability patterns exhibited by the tensile specimens vary from quasi-cleavage
to ductile fractures. For aluminum alloys, the tensile specimens’ fracture process is from
brittle to ductile [66]. Liu et al. [67] researched the formability of cast steel by forming
a graph method of DMM; it was found that, with the increase of temperature and the
decrease of strain rate, the degree of dynamic recrystallization increases, and deformation
instability is prone to occur.

(5) Gegel’s and Alexander’s instability criterion [68]

0 < m ≤ 1 (22)

∂η

∂
(
ln

.
ε
) < 0 (23)
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s =
∂ log σ

∂
(

1
T

) ≥ 1 (24)

∂s
∂
(
ln

.
ε
) < 0 (25)

where m is the strain rate sensitivity, s is the entropy, and T is temperature. Meanwhile,
considering the Lyaponov function L(η, s), Alexander proposed some conditions for the
materials’ stable flow. In addition to the above equations, Alexander’s criterion include:

∂m
∂
(
ln

.
ε
) < 0 (26)

Both Gegel and Alexander’s flow stability criteria show that the flow stress with
respect to strain rate curve should be inherently convex, and should exhibit flow softening
with incremental temperature within materials. Furthermore, according to Alexander’s
criterion, strain hardening should decrease with increment strain rate and increase with
increment temperature.

(6) Metallurgical instability criterion [69]

2m < η ≤ 0 (27)

η =
2m

m + 1
(28)

Therefore, the metallurgical instability condition is m < 0.
In summary, the definition and criteria of deformation instability under specific condi-

tions are given according to the deformation instability characteristics of different materials,
different structures, and different deformation conditions. Deformation instability is a
process based on energy change and guided by shearing deformation. Deformation insta-
bility will promote or inhibit the effective forming of materials, which is very critical for
engineering applications.

3. Deformation Instability Induced by Characteristics of Material

Deformation instability is related to material characteristics; whether it is the inherent
characteristics of materials or the new characteristics induced by the change of external
conditions, the deformation instability characteristics will be different. Therefore, this
section mainly reviews the deformation instability characteristics induced by inherent
properties of materials, and the deformation instability characteristics of new properties,
which are induced by changes in the forming conditions.

3.1. Deformation Instability in Superplastics of Materials

Different materials have different inherent characteristics. It is well known that super-
plasticity is the inherent characteristic of superplastic materials, and the super-plasticity
of materials can also be a new characteristic induced by high temperature, multi-pass
processing and other external conditions. In general, super-plasticity is an underlying
property of materials with lattice structures. From the perspective of bearing capacity,
superplastic materials do not show geometric instability after load instability, and there
will be a similar stable deformation process after geometric instability [56]. Microscopi-
cally, superplastic behavior is mainly divided into microcrystalline super-plasticity and
microstructural super-plasticity. It is characterized by relatively low flow stress. The failure
mode of superplastic materials is dominated by unstable plastic flow, and it shows the
uniform strain before deformation instability [70–72]. Its microstructure shows certain
void characteristics.
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Zhang et al. [73] established the superplastic limit diagram of polycrystalline super-
plastic material; it was found that the strain rate sensitivity index m and strain hardening
exponent n are the main mechanical parameters which affect the deformation instability of
superplastic material; the deformation instability mode is mainly represented by necking at
high strain rate. Sheinerman [74] proposed a model to describe the occurrence of single and
multiple necks in super-plastically deformed materials; it was found that diffuse necking
occurs throughout the specimen in small samples of super-plastically deformed ultrafine-
grained metals and alloys. In larger specimens, the instability region was only in a small
portion of the sample, which can significantly reduce deformation failure. Song et al. [55,56]
analyzed the influence of mechanical parameters and temperature on the deformation insta-
bility of superplastic materials; they found that deformation instability is closely related to
the strain rate sensitivity index m, strain hardening exponent n, and hardening coefficient.
They put forward the criterion of tensile load instability and geometric instability under
constant temperature; that is:

(1) Load instability criterion are as follows:

γ ≤ 1 + m or ε ≥ n
1 + m

(29)

According to the load instability criterion, the load instability point of superplastic
materials appears earlier than plastic materials.

(2) The geometric instability criterion is as follows:

γ ≤ 1−m or ε ≥ n
1−m

(30)

Stress instability is manifested at this point because material necks occur when the
materials have geometric instability.

In addition, a majority of metal materials will also exhibit superplastic deformation
behavior under the action of high temperature, fine-grain strengthening, or other special
conditions. Jafarian et al. [75,76] studied the superplastic behavior of ultrafine-grained
aluminum alloys, and found that the occurrence of dynamic recrystallization destabilized
superplastic deformation. Meanwhile, the low-angle grain boundary gradually transforms
into a high-angle grain boundary, and grain boundary slip is the main mechanism of
superplastic deformation instability (as shown in Figure 4a). The condition for superplastic
deformation instability is T > 300 °C,

.
ε > 5× 10−2. Li et al. [77] conducted hot rolling

and heat treatment on the fine-grained(average grain size is 8.48 µm) 5A70 aluminum alloy
sheet, and they found a phenomenon of fine precipitates dispersed during the superplastic
deformation process, as shown in Figure 4b. The presence of these microscopically dis-
persed particles promotes the nucleation and growth of voids, ultimately leading to the
instability of superplastic deformation.

Malik et al. [78] studied the superplastic instability behavior of fine-grained Mg
alloys (as shown in Figure 5). It was found that the grain size increased significantly after
superplastic deformation in high temperature tensile tests. By analyzing the stress–strain
curves at different temperatures and deformation rates, it was found that the mechanism
of superplastic deformation instability was intragranular slip because of the small value of
significant strain rate sensitivity (m) and hardening exponent (n). Nazeer et al. [79] also
suggested that, for a very fine grain size which has uniform microstructure, the conditions
of high m, low n, and thermal stability are necessary to achieve super-plasticity. It was
found that the elongation of the WE54 Mg alloy reached 726% at 400 ◦C. If this temperature
is exceeded, the thermal stability of the material will decrease, the super-plasticity will
deteriorate, and deformation instability and cracks will even be generated, thus limiting
the further extension of the material and eventually leading to deformation failure. Recent
studies by some scholars on the characteristics of the superplastic deformation instability
of other alloy materials are summarized in Table 2.
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Table 2. A review of recent research on the superplastic deformation instability of alloy materials.

Author Year Material Main Points

Demirel et al. [80] 2023 Ti6Al4V
For high-temperature superplastic formation of Ti alloys, the main
causes of deformation instability are grain boundary slip (GBS) and

creep mechanisms.

Bobruk et al. [81] 2023 2021Al
For ultrafine grained (UFG) Al alloys, according to the analysis of
strain rate sensitivity, they showed stable superplastic behavior at

the test temperature of 240~270 ◦C.

Myshlyaev et al. [82] 2023 Al-Mg-Li

The important role of intra-grain slip during superplastic flow was
demonstrated through experimental analysis of strain hardening,
the formation of typical deformation textures, and the increase of

dislocation density within grains. Superplastic materials exhibited
pronounced porosity near the instability point.

Mochugovskiy et al. [83] 2023 Al-Mg-Si-Cu

When the strain rate was low, the residual cavitation after
superplastic forming was relatively large; the impurity particles

inside the grains also caused the surrounding cavities to increase,
which would easily lead to superplastic deformation instability.

In order to meet the requirements of lightweight materials, and better performance in
aerospace, automotive and other industrial fields, research and development of various
new materials are increasing gradually; they are made of various materials. Due to the
different functions of various materials, functionally gradient metal materials (FGMM)
have been formed [84,85]. FGMM are generally composed of metal and another brittle
material, which has the advantages of corrosion resistance, high strength, and the ability to
meet the surface stress continuity of composite materials [86,87]. In addition, in the study
of formability of FGMM, the instability mechanism research on plastic deformation is also
crucial. Tang et al. [88] investigated the superplastic behavior of shear band deflection in
soft and hard functionally gradient metallic glasses (GMG). The deformation instability of
homogeneous metallic glasses is characterized by the formation of localized shear bands,
which can lead to severe damage or macroscopic brittle fractures of the material. The
deformation instability mechanism of functionally gradient metallic glasses is shown in
Figure 6a. For hard-shell soft-core materials, the main shear band starts from the upper left
surface under the bidirectional compressive stress, and the effective shear yield stress of
local hard zone gradually increases. The shear force gradually develops towards the soft
core area, and the shear angle is largest when it reaches central area. Then, it develops to the
hard zone, so that the shear band is deflected. Similarly, for soft-shell hard-core materials,
the deflection of the shear band also occurs under the action of bidirectional compressive
stress, and shear velocity is faster than hard-shell soft-core materials in the local hard
area. The correctness of the principle is verified again through the analysis of fracture
morphology obtained in the experiment. Nguyen et al. [89] discussed the bending and
buckling of thin-walled sandwich I-beams by considering two types of material distribution,
i.e., top-bottom half distribution and enveloping distribution (as shown in Figure 6b). They
proposed a modified gradient beam theory and then analyzed the bending and buckling of
thin-walled functionally gradient sandwich I-beams on two-parameter elastic foundations
by separating the variables.

3.2. Deformation Instability in Hot Forming Process

Under thermoforming conditions, the plastic deformation instability of material is
characterized by flow instability, and the material flow occurs before local necking. From
the analysis of external forming conditions, conditions such as tensile load, friction con-
ditions, temperature gradients or local softening of materials may cause flow instability
of materials [2,90]. From the analysis of physical mechanisms, many factors such as adia-
batic shear band, dynamic recrystallization, grain coarsening or spheroidization can lead
to material structure instability and flow instability [91,92]. Culver [93] concluded that
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thermal softening counteracts the stability that was produced by work hardening during
hot forming, and this phenomenon may lead to material instability. When the instability
condition is reached, the deformation becomes extremely localized and localization occurs
in pure shear. This localization can concentrate in a single shear plane, eventually leading
to localized necking of the material. According to different forming methods, this can be
roughly divided into thermal compression instability and thermal tensile instability.
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Ji et al. [94] investigated the deformation instability behavior of the Ti-6Al-4V alloy
in the thermal compression process by combining experimental studies and numerical
simulation methods, taking bolt forging and forming as an example. After analyzing the
macro-instability index and forming load curve, it was found that the bottom of the bolt
head firstly presents shear instability. This can be attributed to the elevated local tempera-
ture, causing a reduction in the deformation load due to localized softening. Eventually,
this leads to a macroscopic bolt instability. From the analysis of processing diagrams at
different strain rates and different temperatures, instability regions appear in the region of
smaller strain rates and low temperatures, or at high temperatures and high strain rates
(as shown in Figure 7a). As a result, the strain rate at the bottom of bolt head is low and
the temperature is high in forging process, thus increasing the likelihood of macroscopic
deformation instability. From the analysis of the microscopic mechanism, the Ti-6Al-4V
alloy is most prone to microstructure instability under conditions of high temperature and
high strain rate, because high strain rate leads to the formation of an adiabatic shear band
or flow localization at low temperatures, and intergranular deformation at high tempera-
tures to crack [95]. Ma et al. [96] and Ling et al. [97] discussed the deformation instability
behaviors of dual-phase Mg-9Li-3Al and Al-4.96Cu-0.96Mg-0.63Ag-0.57Mn-0.13Zr alloys
by thermal compression experiments. Processing diagrams of power dissipation and insta-
bility regions were established by using the dynamic material model, as shown in Figure 7b.
It was concluded that flow instability regions are located in regions of low temperature
and high strain rate. Singh et al. [98,99] conducted uniaxial compression tests on (Nb + V)
stabilized micro-alloyed steel with mechanical thermal simulation. From Figure 7c, it has
been discovered that, at high strain rate (10 s−1), flow instability occurs in both thermal and
warm deformation regions. At low strain rates (0.01 s−1), flow instability occurs only in
lower temperature ranges (700~900 ◦C). The reason for this is that low strain rates can cause
microcracks or micro-void nucleation, leading to instability, while high strain rates can
result in the formation of adiabatic shear bands within high temperature regions, ultimately
causing shear instability within the materials.
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Figure 7. Hot processing diagrams of different materials during compression: (a) the gray area is
the deformation instability area of the Ti-6Al-4V titanium alloy [94]; (b) the dark blue area is the
deformation instability area of the dual-phase Mg-9Li-3Al alloy [96]; (c) F indicates the deformation
instability point of stabilized micro-alloyed steel [98].

Zheng et al. [65,100] and Imran et al. [101] studied deformation instability characteris-
tics of Mg alloy and TC4 alloy under hot stretching conditions, respectively. The thermal
processing diagram is shown in Figure 8a; the MgNdZnZr alloy is unstable in a range
of 200–300 ◦C and 0.02~1 s−1. The TC4 alloy is unstable in a range of 800~850 ◦C and
0.01~1.0 s−1. Macroscopic fracture morphology is shown in Figure 8b; it was found that,
with temperature increases, the fractures have a characteristic that transitions from a quasi-
cleavage plane to a ductile fracture. This is because the temperature increase leads to the
homogenization of internal tissues and stress relaxation [102]. Sun et al. [103] analyzed the
deformation instability characteristics of a CrMnFeNi high-entropy alloy cast and forged
under high temperature tensile conditions from the perspective of physical mechanisms, as
show in Figure 8c. It was found that the fracture instability of as-cast parts shifted from
ductile fracture to brittle fracture as the parts reached moderate temperatures. At room
temperature for the forged parts, the physical mechanism of instability was attributed to
slip and twinning, and dynamic instability occurred when the temperature reached 950 ◦C,
causing immediate softening after yielding.
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Figure 8. Deformation instability characteristics of different materials under hot tensile condi-
tions: (a) hot processing diagrams of MgNdZnZr alloy and TC4 alloy; (b) fracture morphology
of MgNdZnZr alloy and TC4 alloy at different temperatures [65,101]; (c) engineering stress–strain
curves of CrMnFeNi high-entropy alloys, with as-cast and forged samples [103].
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Except for the above contents, the latest research on deformation instability in hot
forming by some scholars is summarized in Table 3.

Table 3. Summary of the latest research on deformation instability in hot forming.

Authors Year Material
The Conditions of Deformation Instability

Temperature/◦C Strain Rate/s−1

Shabani et al. [104] 2023 FeCrCuMnNi 750~850 0.1, 0.01, 0.001
Singh et al. [105] 2023 EN30B Steel 1000~1150 0.1~0.8
Jeong et al. [106] 2023 AlSi4340 Steel 1000~1100 0.1, 0.2, 0.9, 1.0
Azizi et al. [107] 2023 AlSiAA4032 427~527 0.01~0.1
Yang et al. [108] 2023 Al4.6Mg0.2Sr 300~400, 400~450 0.018~1, 0.018~0.1
Lin et al. [109] 2022 Ti47.5Al2.5V1.0Cr0.2Zr 1050~1140, 1180~1200 0.006~1

Yang et al. [110] 2022 215AlLi 390~520 0.1~10
Qiao et al. [111] 2022 Fe2.5Ni2.5CrAl 1020~1100 0.01~1

Ghosh et al. [112] 2022 Ti14Cr 850~950 0.01
Yi et al. [113] 2022 Al0.5Mg0.4Si0.1Cu 350~500 0.316~10

4. Deformation Instability Induced by the Structural Geometry of Materials

The deformation instability characteristics of materials are closely related to their
macro/micro structures. Many scholars have studied the influence of macro geometric
configurations such as sheet metal, tubes, and beam-column structures on deformation
instability behaviors. They have good engineering application orientations and provide
references for practical applications. Therefore, this section reviews the latest research
results on deformation instability characteristics according to different geometric structures
of materials.

4.1. Deformation Instability of Sheet Metal

The deformation behavior in sheet metal forming processes is relatively complex.
In sheet metal stretch forming, deformation instability is mainly in the form of shearing;
in the extrusion or stamping forming, the deformation instability is mainly in the form
of wrinkling. Shear instability and wrinkling can both cause many problems, such as
easy corrosion, easy damage, and difficult assembly [114]. Therefore, it is necessary to
avoid deformation instability in most cases of practical applications. Many scholars have
studied the influence of non-material intrinsic characteristic parameters such as loading
conditions, process parameters, and geometric parameters on deformation instability.
Using the method of establishing theoretical criteria, wrinkling limit diagrams (WLD),
etc., it is possible to efficiently predict and accurately control the occurrence of sheet
metal instability [115,116].

In order to study the local deformation instability characteristics caused by local
uneven plastic deformation during the plastic forming process of thin-walled metal sheets,
Li R. et al. [117] and Li F. et al. [118] used different types of notched specimens for tensile
tests, as shown in Figure 9a. Li R. studied the deformation instability of a 2219-O aluminum
alloy sheet in pure shear, dog bone, and curved specimens by experiments. Li F. simulated
and analyzed the deformation instability characteristics of V-notch, plane tensile and shear
specimens of magnesium alloy sheets. It was found that stress and strain concentration
occurred during the stretching process, and they were all concentrated at the root of notch,
resulting in a critical area at the edge and center of notch, with localized necking in this
area. Du et al. [115,119] used the method of establishing WLD to predict wrinkling in a
uniform sheet under symmetrical stretching. It was found that when the thin sheet was
stretched symmetrically at both ends, a wrinkle wave along the stretching direction was
generated in middle. There is a law that the wrinkle wave increases with the increase
of height of the middle wrinkle, and new wrinkle waves are generated on both sides, as
shown in Figure 9b. According to the WLD of the thin-walled sheet it was concluded that
the corresponding area below the unified critical wrinkling limit curve is the wrinkling
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area, and the corresponding area above the curve is the wrinkling-free area. Tang et al. [120]
studied the wrinkling behavior of a thin-walled sheet under asymmetric stretching, which
is basically the same as that under symmetric stretching. That is, the direction of wrinkle is
still along the direction of the principal stress, and the wrinkle waves expand to both sides,
as shown in Figure 9c.
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Chen et al. [121,122] investigated the wrinkling behavior of high curvature, large
flange sheet metal stampings by experiment. They found that if the blank holder was not
used, the larger the gap between mold and side blank, and the more serious the wrinkling of
the flange. However, when the rubber blank holder was used, wrinkling was significantly
improved, as shown in Figure 10a. Won et al. [123] proposed a phenomenological for
predicting wrinkling; that is, using critical compressive strain and geometric bending strain
with respect to a specific triaxiality to predict wrinkling in Gpa-grade steels. Their study
revealed that severe compression or folding of the mold surface usually causes wrinkling
in the non-flange area, while wrinkling in the flange area is caused by uniaxial compressive
strain and buckling strain provided by sufficient blank holder force, as shown in Figure 10b.
López-Fernández et al. [124,125] investigated the formability and failure modes within the
limit diagram (FLD) of a shrinking flange on the AA2024-T3 sheet by using the single-point
incremental forming method (SPIF). In the case of the flange radius being large, there are
two modes of wrinkling failure and initial wrinkling failure, as shown in Figure 10c. When
the mold radius is small, only initial wrinkling failure occurs; for the SPIF method, when the
compressive stress reaches a certain critical value, shrinkage flanging can cause wrinkling.

4.2. Deformation Instability of Tubes

Wrinkling is the main form of instability in the tube forming process, and includes
bending, compression or liquid expansion. This wrinkling instability generally tends to be
localized, and can possibly lead to catastrophic failure such as collapse or rupture [126,127];
wrinkling can also destabilize the tube surface, resulting in thinner or thicker walls [128–131].

Jia et al. [132,133] studied the bending formability of composite thin-walled lenticular
tubes (CTLTS); it was found that CTLTS first showed local wrinkling, and gradually formed
periodic wrinkling as the bending angle increased. Finally, the concentrated deformation
in the local wrinkled area caused a collapse of the composite thin-walled tube, as shown
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in Figure 11a. Naderi et al. [134] explored the influence of geometric parameters on
the wrinkling of composite tubes, and found that when the thickness variation ratio of
composite tubes was less than 80 mm, the probability of wrinkling on the bending inner side
increased. Zhu et al. [135,136] investigated the influence of geometric dimensions and filling
conditions on the formability of thin-walled composite tubes. When the rigid mandrel
filling and the relative bending radius was in a range of 1.32~1.80, the forming defects of
thin-walled composite tubes mainly had wrinkling, while when the relative bending radius
gradually increased, the outside wall of tubes suffered from cracking failure.
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large flange [121,122]; (b) wrinkling of GPa-grade steel, comparison analysis of representative wrinkle
area (wrinkling area b, c and d) with the simulation results [123]; (c) failure mode of a AA2024-T3
thin plate [124].

Li et al. [137–142] conducted a lot of research on the wrinkling instability of composite
bending tubes, thin-walled round bending tubes, and rectangular bending tubes. The
relevant research is basically mature, and the research conclusions have very important
reference significance. The studies primarily focused on investigating the effects of ge-
ometrical parameters, filling conditions, loading conditions and forming parameters on
tube wrinkling. The main conclusion was that using hard polymer filling can significantly
inhibit tube wrinkling, and the suppression of the inner tube is more significant. However,
when rigid constraints are employed, wrinkles appear easily in the core area, as shown
in Figure 11b [137,141], and wrinkling occurs more easily under tensile stress than under
compressive stress [138]. In the cold-formed condition, the corners can reduce the corruga-
tion height of inner flange, but increase the corrugation height of the sidewall [139]. For
multitool constrained bending with different tube shapes, geometric specifications and
loading conditions, the wrinkling occurs in different locations, including front, straight,
curved, integral, upper and lower bends, etc., but the wrinkling form in bent tubes is
similar to regular waves, as shown in Figure 11c [140].
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In addition to the rotary draw bending method, there are also other forming methods
for the bending tube, such as push bending, free bending, etc. The deformation instability
during the forming process is summarized in Table 4.

Table 4. Summary of deformation instability during bending tube process.

Authors Materials Types of Forming Conditions of Instability

Yu et al. [143] ST12 Push bending
Gap between punch and U/O die, and

excessive stock at the end of elbow
causing wrinkling.

Tao et al. [144] 5A02 Al Alloy Push bending

Due to the tangential tensile stress
concentration at the front end of the tube,
the smaller the relative bending radius,

the easier it is to have instability.

Xiao et al. [145] 5A02 Al Alloy Push bending

The stress distribution on the
compression side is greater than the

tension side, indicating that inner side of
the tube is more prone to instability.

Österreicher et al. [146] AA2024 Three-roll-push bending Only solution-annealed material leads to
a wrinkle-free bend.

Cheng et al. [147] AA6061-T6 Free bending

When t0 < 0.8 mm, plastic instability and
wrinkling occurred in the inner flange,
and the smaller the wall thickness, the

more obvious the wrinkling.

Wang, Hu and
Cheng et al. [148–150] Stainless Steel SS304 Free bending

The smaller the distance between the
center point of the bending die and the

front end of guide, the easier it is for the
tube to wrinkle.

Yang et al. [151] SS304 Free bending

The inner side of the rectangular tube is
subjected to uneven compressive stress,

which makes the material flow unevenly,
resulting in increased wall thickness on

the inner side of the tube, and
wrinkled instability.
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4.3. Deformation Instability of Beams

The deformation instability of beams is characterized mainly by buckling instability,
which is generally considered to be a critical failure mechanism that needs to be prevented
from occurring in most cases. During the buckling process, there may be multiple modes
in the buckling response due to differences in loading forces, temperatures, etc. [152–154].
For example, local buckling, global buckling and interactive buckling modes can possibly
occur under combing load conditions (as shown in Figure 12a) [155]. Jiao et al. [156,157]
studied the buckling process of hollow microstructure beams by numerical simulation,
and according to Figure 12b, a significant local buckling can be observed. According to
the established dynamic and static theoretical models, the buckling fracture of slender
beams constrained by irregular sides can be analyzed. Furthermore, the buckling mode
transitions of the beams when subjected to linear and sinusoidal bilateral constraints have
been investigated, and the results show that the deformed shape of the beams conforms to
constrained modes; both the static and dynamic large deformation models can measure
the end shortening, which causes the severe rotation of the neutral axis of beam, as shown
in Figure 12c,d. Mhada et al. [158,159] established a multi-scale model of the interaction
between global buckling and local buckling by considering the coupling of global and local
buckling. It can accurately predict the local buckling region, which provides a theoretical
basis for the study of the combined buckling of long-arm beams.
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tion, Yang also studied the static and dynamic buckling modes of the FG-CB beam, and 

Figure 12. Modes of beam buckling: (a) local buckling, global buckling and interactive buckling [155];
(b) local buckling of a hollow microstructure beam [156]; (c) buckling schematic diagram of a slender
beam with irregular bilateral constraints; (d) buckling modes of beams under linear and sinusoidal
two-sided constraints [157].

Salem et al. [160] and Yang et al. [161,162] studied the buckling instability of func-
tionally gradient beams. Salem characterized the post-buckling response of beams by
establishing a theoretical and numerical simulation model, as shown in Figure 13a. It was
found that changing the length of the beam may delay the buckling mode of the next
stage by theory and simulation methods, and the feasibility of this phenomenon is verified
by experiments. Yang studied the relationship between the free vibration and buckling
modes of beams, as shown in Figure 13b. The study revealed that the vibration modes of
the functionally gradient composite beams (FG-CB) are nearly identical to their buckling
modes. Moreover, under dynamic excitation, FG-CB exhibits a transition from oscillation to
elastic instability, making it susceptible to triggering the first instability mode. In addition,
Yang also studied the static and dynamic buckling modes of the FG-CB beam, and found
that, under different high temperature conditions, the dynamic and static buckling loads of
beams are sensitive to the loading position, as shown in Figure 13c. It can be concluded that
the number of load limit points is related to temperature and loading position, and that
the buckling load decreases with the increment of power exponent, but it increases with
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the increment of temperature. Wu et al. [163] used an efficient high-order model to study
the buckling of functionally gradient sandwich beams, and found that panels reinforced
with carbon nanotubes (CNTs) in a uniformly distributed configuration can improve the
buckling load and stability of the sandwich beam structure.
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experimental verification results of laminated functionally gradient materials (FGM) beams [160];
(b) relationship between free vibration and buckling modes of functionally gradient composite beams
(FG-CB) [161]; (c) relationship of FG-CB load limit point number and loading position [162].

5. Analytical Methods of Deformation Instability

According to the review of the previous four sections, the research methods of material
deformation instability mainly include the establishment of theoretical instability criteria,
the use of numerical simulation predictions and experimental verification. Therefore, this
section elaborates and summarizes the latest research methods of deformation instability.

5.1. Theory Analysis

As we all know, theory serves as the premise for various studies and provides the basis
for further investigations. Theoretical analysis of deformation instability research is very
important, and is the guarantee for the feasibility of follow-up research results. Therefore,
this section mainly elaborates on and summarizes the latest research on deformation
instability criteria and instability prediction.

Chawla et al. [164,165] used Timoshenko’s first-order shear deformation beam theory
to determine the deflection of I-beam, and calculated the critical buckling load of the flange,
web and beam. Based on the failure criterion of strength to calculate the failure load of the
beam, they proposed a new I-beam load instability criterion (Table 5, Equation (31)) and
the feasibility of the criterion was verified by experiments. In order to study the dynamic
instability process of beams, Yang et al. [161] utilized Hamilton’s principle to derive the
governing equation of dynamic instability in the thermomechanical plane. They further
applied the Bolotin method and solved the equation using the differential quadrature
method (DQM). Eyvazian et al. [154] used the nonlinear motion equation to obtain the
critical buckling temperature change and critical post-buckling instability. The above
research provides a theoretical basis for the analysis of beam instability.
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Pozorski et al. [166,167] studied the local instability of a sheet by using the energy
method and differential method, and established the instability criterion of the critical
wrinkling stress (Table 5, Equation (32)). The sensitivity of the wrinkling stress to changes
in material parameters has been verified by parametric analysis, and the feasibility of the
theoretical criterion is proven. Wang et al. [168,169] performed a theoretical analysis of
the local instability of thin-walled sheet metal during stretching. Under the boundary
conditions of force or displacement control, the axisymmetric necking of circular or square
hyper-elastic sheets was subjected to equivalent biaxial tension. Furthermore, based on the
numerical analysis of strain energy, by comparing the critical force of necking instability
and ultimate instability, the moment of necking occurrence can be judged comprehensively.
That is, the instability condition for necking does not correspond to Jacobian equal to
zero. Sabri et al. [170] studied the wrinkling behavior of composite sheets subjected to
in-plane shear deformation. They employed an energy method to establish an in-plane
shear model for static analysis, allowing for the determination of potential buckling modes
of elastic plate under specified boundary conditions. The theoretical model can predict
wrinkle jumping and multiple buckling modes between free boundaries for a certain shear
deformation. Huang et al. [171] proposed a theoretical model for calculating the flange
forming limit by the energy method, to predict and avoid flange wrinkling of spinning
bimetallic clad sheets. According to the theoretical model, the wrinkling forming limit
diagram (WLD) of conventional spinning flange was obtained. It was found that the flange
wrinkled when the forming angle was larger than the theoretical result. He et al. [172]
established a theoretical method by an energy method to determine the instability moment,
when the circumferential stress reaches critical wrinkling limit; this method is applied to
study the formability of large integral sheets. The stress distribution in the flange area is
derived considering the plastic behavior reflected by the plastic modulus, which was caused
by the non-axisymmetric shape and the shear stress component. The critical circumferential
wrinkling stress of the flange was calculated by the energy method, and a new instability
criterion for large sheet metal was obtained (Table 5, Equation (33)).

Li et al. [173,174], based on the radial-axial rolling process of an ultra-large ring with
four guide rollers, established a dynamic mechanical model of the combined action of
each roll on the ring, and deduced and calculated the bending moment and normal stress.
By comparing the normal stress and yield stress, the instability of four guide roller rings
was judged and finally the mathematical model of critical instability force was established
(Table 5, Equation (34)). Moreover, the plastic instability criterion was validated in terms
of critical force, section bending moment, normal stress and plastic instability dangerous
ring section; this confirms the reliability of the criterion. Miyajima et al. [175] studied the
necking phenomenon of layered metal composites prepared by Accumulative Roll Bonding
(ARB), and established a mathematical model for quantitative evaluation and the prediction
of instability based on the necking of work-hardened layered metal composites. (Table 5,
Equation (35)). The instability index is used to determine the amount of necking, which is
used to judge the instability degree of rolled material.

5.2. FE Simulation and Experiment

For the study of material deformation instability, theoretical analysis alone is not
enough. It must be combined with finite element numerical simulation, experimental
research and other comprehensive analysis methods to obtain the best research results
quickly and accurately. Therefore, many scholars use finite element simulation, experimen-
tal research or a combination of the two methods to analyze the causes of deformation
instability, to predict the conditions of deformation instability, or control the behavior of
deformation instability.



Materials 2023, 16, 2667 23 of 38

Table 5. Summary of instability criteria analytical equations.

Authors Equation Explanation

Chawla et al. [164]
(

σlb
Slb

)2
+
(

σtc
Stc

)2
+
(

τxz
Sxz

)2
≤ 1 (31)

σlb, σtc and τxz are longitudinal compressive
bending stress, transverse compressive stress
and shear stress, respectively; Slb, Stc and Sxz
are bending compressive strength, transverse

compressive strength and shear
strength, respectively.

Pozorski et al. [166]
σw = 3

√
3
4 ·

3
√

ECGCEF ∼= 0.909 · 3
√

ECGCEF

σw = 3
2· 3√6

3
√

ECGCEF ∼= 0.825 · 3
√

ECGCEF

σw = 3

√
9

2(1+vc)·(3−vc)
2 · 3
√

ECGCEF = r · 3
√

ECGCEF

(32)

EC and GC are the modulus of elasticity and
shear modulus of the isotropic core material;
EF is the modulus of elasticity of the isotropic

facing material.

He et al. [172] σcr = D
γ2
√

2β+1[s1 β2δ3+s1Sδ3+2s2ζβ4(δ−1)/(β−1)]
12
√

k
√

Sβ2δ3[β−1−ln β+η(β−1)(δ−1)/δ]
(33)

D is the plastic modulus; k is a coefficient
related to the flange width and Poisson’s ratio,
k = 1.5; γ, β, ζ, η are coefficients related to the

geometrical parameters of the material;
s1 and s2 are the coefficients representing the
increase in the moment of inertia caused by

the shift of the neutral surface after stiffening;
S = k/[4(2β + 1)].

Li et al. [173] σmax =
|M|max

Wy
=

6Rt FG1|Qk(α1,α2,ϕ,kg)|max
hb2 ≤ σs (34)

|M|max is the maximum section bending
moment; Wy is section modulus in bending; h
and b are the width and height of the section,
respectively; Rt is the radius; Qk

(
α1, α2, ϕ, kg

)
is section bending moment factor; FG1 is

guide forces.

I =
∫ εa

εb
Bdεeq =

∫ εa
εb

{(
dσh

dεeq
− dσs

dεeq

)
−
(

σh − σs
)}

dεeq (35)
εeq is equivalent strain; h and s are hard and

soft floor, respectively; B < 0 indicates necking
progression, larger absolute values.
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Malik et al. [176–178] used a majority of high-temperature compression experiments to
analyze the physical mechanism of deformation instability of magnesium alloys, as shown
in Figure 14a. It was found that the shear instability of the magnesium alloy occurred
during the compression process under low temperature conditions; as the temperature
increased, the sample gradually appeared bulging and cracked along the circumferential
direction. Chen et al. [179] combined the 3D machining diagram with FE simulation to
simulate the thermal compression process of Cr5 alloy steel, and obtained the distribution
and change law of power dissipation and the flow instability domain of metal deformation.
When the temperature increases, the instability region decreases. It was also found that the
strain had no significant effect on the instability region. Wu et al. [180] established the FLD
model based on the instability mechanism of composite sheet forming of the M–K model.
The feasibility of FLD was verified by comparing the FE simulation results with a simplified
mechanical model. Shuai et al. [181] used a nonlinear FE analysis method to study the
compressive strain capacity of an X80 steel corroded pipeline against buckling under the
bending moment. It was concluded that, with an increase in the corrosion length of the
pipeline, the corrugation waves gradually increased on the bending inner side, thereby
augmenting the critical compressive stress and load of the pipeline, as shown in Figure 14b.
Nieto-Fuentes et al. [182] investigated the effect of a porous microstructure on the necking
formability of a dynamic in-plane tensile plastic sheet. The FE simulation of the dynamic
stretching process under different loading conditions showed that the void promotes the
localization of plastic deformation, and the position of the void becomes the first position
for rapid nucleation, as shown in Figure 14c. Dal et al. [183] investigated the side wall
wrinkling of a cylindrical cup during a deep drawing process. The CPB06ex2, BBC2008-8p
and BBC2008-16p models were imported into the ABAQUS for numerical simulation; the
feasibility of the theoretical model for predicting wrinkling was easily verified.
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Figure 14. Only one research method using experiment or simulation: (a) hot compression experiment
of magnesium alloy [176]; (b) wrinkling simulation of X80 steel tube [181]; (c) dynamic tensile
simulation of porous microstructure [182].

However, in order to analyze and predict the deformation instability of materials
more accurately, most studies take the method of combining finite element simulation and
experimental research. Huang et al. [171] analyzed the influence of geometric parameters on
flange wrinkling based on the theoretical model of the flange forming limit of spinning thin-
walled plates by numerical simulation and experimental research. Through comparative
analysis, the FE model can predict wrinkling well and the simulation calculation results
are basically consistent with experiments, as shown in Figure 15a. Więckowski et al. [184]
optimized the forming process of flange edge wrinkling based on the stamping results of a
two-stage mechanical handle of titanium sheet by FE simulation. In stamping processes, the
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use of an edge holder is imperative to prevent the flange edge from wrinkling. Additionally,
the reliability of the simulation optimization results is verified by experiments, as shown
in Figure 15b. Chen et al. [185] conducted experiments, simulations and reduced-order
calculations on flange wrinkling in the deep drawing process of the AA1100 aluminum alloy.
The flange wrinkle height and wrinkle numbers predicted by the FE model and reduced-
order model are consistent with experimental results, as shown in Figure 15c. Based on
the established sheet deformation instability model, Wang et al. [186] undertook the FE
model to compare the prediction results of FLC, maximum stress and strain instability
criteria; they found that a new FLC instability criterion can be more accurately predicted
and verified for wrinkling. Du et al. [187] took the shear wrinkling experiment of a 304 steel
plate as the research object, and used the Buckle-Explicit algorithm in ABAQUS to establish
a numerical simulation model of shear wrinkling, as shown in Figure 15d. The accuracy of
the simulation algorithm was verified by comparative experiments, and the distribution
law of unified critical wrinkling judgment point was analyzed according to numerical
simulation results. Li et al. [140] and Lin et al. [188] combined simulation and experimental
methods to study the deformation instability of tubes during compression. It was found
that dynamic buckling instability is prone to occur during compression, and multiple
constraints can cause wrinkling in higher-order buckling modes that consume more energy,
as shown in Figure 15e.
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Figure 15. Research results of deformation instability by finite element simulation and experimental
methods: (a) flange forming of the spinning thin-walled plate [171]; (b) stamping forming of a titanium
alloy mechanical handle [184]; (c) deep drawing of the AA1100 aluminum alloy [185]; (d) 304 steel plate
shear wrinkling test [187]; (e) various buckling modes of tube compression instability [140].

6. Engineering Applications of Deformation Instability

In engineering applications, the deformation instability of materials may bring po-
tential danger to the service of parts, or directly cause catastrophic accidents; there are
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also some parts that may take advantage of the deformation instability characteristics
of materials to achieve special functions, which can play a key role in special occasions.
Therefore, this section summarizes applications in engineering in terms of utilizing and
avoiding deformation instability.

In industrial fields such as aerospace, automobile engines, and coastal power stations,
axial multilayer compression tubes and variable-diameter tubes play a main role in engine
exhaust, fuel transportation and oil transportation because they have the advantages of
changing fluid direction and easy installation. The controllable formation of deformation
instabilities is essential; however, it is imperative to prevent the occurrence of failures [189].
Variable-diameter tubes are formed through the combined effect of internal pressure and
axial force. Under the action of two-way pressure, deformation instability occurs in the
tube diameter to a certain extent; at the same time, it is crucial to prevent the occurrence of
failures such as rupture and excessive folding [190]. Chu et al. [191,192] and Yuan et al. [193]
conducted a detailed study on deforming tubes with variable diameters according to preset
paths while preventing the formation of failures. Firstly, the analytical model of the corner
wrinkling mechanism was established, and the critical pressure of corner wrinkling was
calculated. Based on the method of numerical simulation, it was found that, when the
internal pressure used for forming exceeded critical pressure, the corner area failure could
be suppressed, but the main failure forms were excessive wrinkling, cracking, etc., as shown
in Figure 16a. Haley et al. [126,194] conducted axial compression experiments on Al-6061-
T6 round tubes in order to study the forming process of tube compression wrinkling but not
cracking, as shown in Figure 16b. It was found that obvious wrinkling appeared in the early
stage of compression, and with further compression and bending the surface wrinkling
evolved into folds, creases and sharp cracks, which must lead to sectional catastrophic
fracture during service. Therefore, in practical engineering applications, deformation
instability is sometimes necessary for forming, but it is crucial that it remains predictable
and controllable. Moreover, measures must be taken to prevent any reduction in plastic life
and subsequent catastrophic failures.
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Figure 16. Forming by deformation instability: (a) forming of variable-diameter tube [192,193];
(b) tube forming with axial compression, and analyzing the degree of deformation instability in the
six-step ( 1©– 6©) compression process [194].

In addition, plastic hinges can realize unidirectional or multidirectional rotation and
transmit bending moments in practical engineering applications. The deformation instabil-
ity of the internal structure of the plastic hinge is used to dissipate energy, increasing the
safety reserve and multi-degree of freedom energy release of the actual support structure.
Therefore, plastic hinges are widely used in practical engineering, such as in building anti-
shock design, automobile anti-collision design and aviation anti-collision design [195–199].
Yuan et al. [200,201] proposed a new performance design method for prefabricated beam-
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column joints and artificial controllable plastic hinges (ACPH). This design can concentrate
the building structure deformation caused by earthquakes on ACPH while preventing
damage to the concrete components. ACPH includes a connection system and two energy
dissipation systems, and the three-way beam-column joints are staggered according to nor-
mal concrete beam-column joints, as shown in Figure 17a. The yield mode of ACPH is the
yield of energy dissipation system, and the energy dissipation plate will have deformation
instability under the load (as shown in Figure 17b). This design is intended to dissipate
the energy of external forces for concrete members and connection systems, enabling the
prevention of component damage while also facilitating the rapid recovery of ACPH’s
post-earthquake function. However, in order to better improve seismic performance, the
design length of the reinforced concrete plastic hinge is strictly limited, so it is neces-
sary to accurately predict the deformation instability region of the plastic hinge [202,203].
Figure 17c shows the internal structure deformation of the vehicle energy-absorbing
box [204]; the deformation type is a plastic hinge deformation of half-height. In the compres-
sion process, the folding deformation of the plastic hinge is the main type, and can absorb
at least 10% of the vehicle kinetic energy during the collision process. This mechanism
can effectively protect the interior structure of the vehicle. Zheng et al. [205,206] studied
the energy absorption performance of automobile front-end tubes; it was found that when
the number of plastic hinges is three, they can absorb energy better and play the role of
automobile collision avoidance. Multiple plastic hinges are usually installed in the aircraft
cabin to protect the interior safety of the cabin: energy absorbing seats, landing gear and
subfloor structures on aircraft are typical applications of plastic hinge deformation and
energy absorption [207–210].
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automobile energy-absorbing box [204].

However, in the structural parts and collision parts of aerospace and automotive
industries, most of the high-strength and light-weight parts are in the forming process
of stamping, spinning, rolling, forging, etc., and deformation instability must be
avoided [211,212]. Li et al. [213,214] took advantage of the non-uniform characteristics of
material deformation to realize the ring parts forming with different radii in the in-plane
roll forming. This forming method has the advantages of small forming force, less mate-
rial waste, and good flexibility [215]. However, if the forming conditions are not precise
controlled, various instability modes such as in-plane wrinkling, external wrinkling, twist
instability, and cross-section instability will appear (as shown in Figure 18a); these defects
lead to scrapped parts. Therefore, it is necessary to control the occurrence of wrinkling
instability. Chen et al. [216,217] analyzed the buckling and wrinkling of curved shell sheet
metal hydroforming in the presence of an anti-bulging effect. Utilizing the energy method
and incorporating the appropriate “anti-bulging effect”, the authors proposed a theoretical
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model of critical wrinkling stress. By combining the critical wrinkling stress with circum-
ferential stress, the critical loading path of hydraulic pressure to control wrinkling was
obtained. In addition, through experimental research, it was concluded that when using
sheet metal hydroforming technology, as long as there is an appropriate “anti-expansion
effect”, the wrinkling of unsupported sheet metal can be eliminated effectively, as shown
in Figure 18b(3–4). However, if the hydraulic pressure is too large, cracks will appear in the
raised part, and the flange part will show wrinkling (as shown in Figure 18b(5–6)) [218].
References [123,219–221] studied the deformation instability behavior of aircraft fuselage
and automotive body parts during stamping. Lightweight alloys are predominantly uti-
lized in the manufacture of fuselage skins, upper and lower wing skins, wing girders, wing
ribs, car roof rails, etc., among other components that demand exceptionally high levels
of forming precision. High-strength steel (HSS) and ultra-high strength steel (UHSS) are
widely used in the lightweight design of automobiles. The flange and flange edge are
extremely easily wrinkled during forming process (as shown in Figure 18c,d), and flange
wrinkling can be reduced by varying the pressure and blank-holder clearance [123,219,220].
Atxaga [221] studied the wrinkling instability of an AA2198 aluminum alloy in differ-
ent stamping processes. It was found that, under cold forming conditions, the part side
was prone to wrinkling, wall thickness thinning or even cracking, and wrinkling was
significantly improved under hot forming conditions (as shown in Figure 18e).
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In conclusion, the deformation instability of materials is extremely critical in engineer-
ing applications. According to the specific forming conditions and forming requirements,
catastrophic failure must be avoided and deformation instability should be used reasonably
for process forming.

7. Conclusions and Outlook

The study of deformation instability is very important in engineering applications,
and it has always been the focus of the stability of material forming. Previous research
has achieved relatively perfect results in terms of theoretical analysis solutions and other
research methods on metal deformation instability. This paper comprehensively analyzes,
summarizes and reviews the latest theoretical methods, discoveries and achievements
in the study of the deformation instability of metal materials, helping more researchers
to quickly extract the latest research results in this field, and proposing more innovative
research content. This work has a high reference significance. Additionally, the conclusions
are as follows: (1) Based on the classical instability theory, more modified deformation
instability criteria have been proposed and deduced. They can be used to accurately
predict and control deformation instability, and to achieve the purpose of improving the
precision of metal forming. (2) Inherent characteristics of materials or new properties
caused by changes in forming conditions all produce different deformation instability
characteristics. Notably, instability characteristics caused by the latter are typically more
complex. (3) The deformation instability characteristics of materials are closely related to
their macro-micro structures, manifesting primarily in the form of wrinkling, buckling,
etc. (4) The main methods of deformation instability research include theoretical analysis
and FE simulation and experiment, and most studies combine two or three methods to
obtain feasible conclusions to improve the forming accuracy. (5) Deformation instability
of materials plays a crucial role in engineering applications. Depending on the specific
forming conditions and forming requirements, it is essential to avoid catastrophic failure
and utilize deformation instability in a reasonable manner for process forming.

However, there are still many key problems in the study of deformation instability. In
practical engineering applications, there are many factors affecting deformation instability,
and the forming conditions and forming environments of materials are very complex.
In previous studies, some conditions have been idealized and the modal technology for
deformation instability analysis was not accurate enough; there is also a lack of detailed
research on different proportion superposition analyses of various deformation instability
modes. The related research is all about finding the critical load to predict instability,
but the proportion of the impact of load on the different instability states is unknown.
When the applied external conditions change, it can be difficult to predict the location of
instability using the existing analysis method. Similarly, if, in the complex environment of
engineering accidents, it is known that the parts have several instability states, it can be
difficult to know how to quickly obtain the critical load at that time, which requires new
theoretical analysis and analytical solution. With the rapid development of informatization
and industrialization, new materials are continuously being developed and used. Whether
the previous related research is applicable to the deformation instability analysis of these
new materials still needs to be debated and verified.

Therefore, research on the deformation instability of metal materials should mainly
focus on the complex forming conditions of practical engineering applications and the
forming analysis of new materials. Additionally, using reverse thinking to solve practical
engineering problems, proposing universal instability criteria, broadening the application
of instability criteria, and conducting correlation analysis with deformation damage, insta-
bility fracture, and service life changes caused by deformation, are the inevitable trends of
future development.
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