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Abstract: Debonding of zirconia cantilevered resin-bonded fixed dental prostheses (RBFDPs) remains
the main treatment complication, therefore, the present in vitro study aimed to evaluate the effect of
different surface pretreatments on the bonding of zirconia RBFDPs. Eighty milled zirconia maxillary
central incisors, with complementary zirconia cantilevered RBFDPs, were randomly subjected to four
different surface pretreatments (n = 20): as-machined (AM); airborne-particle abraded (APA); coated
with nanostructured alumina coating (NAC); incisor air-abraded and RBFDP coated (NAC_APA). After
bonding, half of each group (n = 10) was stored in deionized water (150 days/37 ◦C), thermocycled
(37,500 cycles, 5–55 ◦C), and cyclically loaded (50 N/1.2 × 106). Load-bearing capacity (LBC) was
determined using a quasi-static test. Additionally, finite element analysis (FEA) and fractography
were performed. t-test and one-way ANOVA were used for statistical-analysis. Before aging, the NAC
group provided superior LBC to other groups (p < 0.05). After aging, the AM specimens debonded
spontaneously, while other groups exhibited comparable LBC (p >0.05). The FEA results correlated with
the in vitro experiment and fractography, showing highly stressed areas in the bonding interface, cement
layer, and in RBFDP’s retainer wing and connector. The NAC RBFDPs exhibited comparable long-term
bonding performance to APA and should be regarded as a zirconia pretreatment alternative to APA.

Keywords: bonding; dental stress analysis; finite element analysis; materials testing; resin bonded
fixed partial denture; resin cements; zirconium dioxide

1. Introduction

All-ceramic resin-bonded fixed dental prostheses (RBFDPs) represent an increasingly
popular treatment modality for replacing missing anterior teeth. Because of the minimal
tooth preparations, high esthetics, and time-efficient treatment, RBFDPs offer several ad-
vantages over conventional fixed dental prostheses (FDPs), orthodontic space closure, and
implant-supported crowns [1–4]. However, because of their non-retentive geometry [5–10]
and the inability to effectively bond to zirconia, the debonding incidence of zirconia RBFDPs
remains the main clinical complication, with a five-year incidence of 5.5% [11].

To optimize the bonding to the zirconia retainer wing, a combination of airborne-
particle abrasion (APA) and chemical bonding with an adhesive monomer, has been widely
advocated [12,13]. However, APA may introduce surface cracks and plastic deformation,
leading to zirconia strength degradation and premature failures [14–18], especially in
novel translucent zirconia containing 5 mol.% yttria, which hinders the tetragonal-to-
monoclinic toughening mechanism [19,20]. Furthermore, zirconia surface changes resulting
from APA, lead to lowered translucency [21], which may impair the optical properties
of the increasingly used thin translucent zirconia restorations. In light of these concerns,
different approaches to pretreating the zirconia bonding surface have been studied [22–29].
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Nanostructured alumina coating (NAC), an additive nano-roughening pretreatment, has
provided a stronger and durable resin–zirconia bond than APA in vitro [30,31]. It has also
been shown that NAC does not impair zirconia’s mechanical nor optical properties [32].

There is a considerable lack of clinical trials evaluating the effect of different surface
pretreatments on the zirconia RBFDPs’ performance [7,33,34], and no long-term random-
ized controlled trials have been reported. In vitro experiments offer a more time and
cost-effective evaluation of long-term performance of a prosthetic system. Moreover, many
variables can be eliminated, in order to focus on the main clinical problem, such as the
zirconia–resin bond in the case of zirconia RBFDPs [11].

Despite the vast amount of in vitro studies evaluating bonding to zirconia [22–29],
only a few adopted a clinically relevant experimental geometry, based on non-retentive
zirconia RBFDPs as an experimental model. In these studies, different RBFDP framework
designs [35,36], materials [37], and preparation geometries [38] were studied, while the
authors are unaware of studies evaluating the influence of alternative zirconia pretreat-
ment methods. Moreover, in these tests [35,36], substrate fractures predominated, despite
debonding being the main clinical complication, and the experimental models were not ver-
ified with additional finite element analysis (FEA) and detailed fractography, as proposed
previously [39]. This additional analysis is important to determine whether the debonding
of specimens actually occurred due to the failure at the bonding interface, or the crack
initiated solely in one of the substrates [39,40].

The present in vitro study aimed to evaluate the effect of different surface pretreat-
ments on the bonding of zirconia RBFDPs, using a tailored experimental model to remove
any tooth-related variables. Further, to verify the experimental model and provide a deeper
understanding of the failure pattern, the combination of FEA and fractography was con-
ducted. The null hypothesis was that no difference would be detected between the bonding
performances of differently pretreated zirconia RBFDPs.

2. Materials and Methods
2.1. Specimen Preparation

A typodont central maxillary incisor (AG-3Z, Frasaco GmbH, Tettnang, Germany) was
prepared for zirconia cantilevered RBFDP, according to recently established guidelines, em-
ploying non-retentive geometry (Figure 1a) [41], where a minimal retainer wing thickness
of 0.7 mm is recommended. First, cervical and aproximal margins were prepared with a
016 diamond torpedo bur. The height of the distal margin provided 3 mm of connector
height. The incisal margin was prepared with a 016 diamond round end taper bur. A
small pinhole facilitating stable position of the RBFDP during cementation was prepared
centrally using a 012 round diamond bur. A shallow groove was prepared distopalatally
using a 016 diamond torpedo bur to provide a sufficient connector dimension. Finally, the
palatal surface was smoothed with a flame diamond bur.
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Figure 1. Fabrication of zirconia abutment tooth and zirconia RBFDP. (a) Non-retentive preparation
of typodont central maxillary incisor for RBFDP; (b) scanned abutment tooth and designed comple-
mentary zirconia RBFDP; (c) milled and sintered zirconia abutment tooth and complementary RBFDP.
RBFPD, resin-bonded fixed dental prosthesis.
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The prepared incisor was scanned (Identica T500, MEDIT corp., Seoul, South Ko-
rea), and a complementary monolithic RBFDP was designed with a computer-aided
design/computer-aided manufacturing (CAD-CAM) software (exocad; exocad GmbH)
(Figure 1b). The connector cross-sectional area of the RBFDP was 12.7 mm2, and the bonding
surface area was calculated to be 32 mm2, using a three-dimensional (3D) mesh processing
package (MeshLab, ISTI-CNR, Pisa, Italy). Eighty prepared incisors, with complementary
eighty zirconia RBFDPs, were milled from pre-sintered 3 mol% yttria-stabilized tetragonal
zirconia polycrystal (3Y-TZP) blocks (Ceramill Zolid HT, Amann Girrbach AG, Koblach,
Austria), using a CAD-CAM unit (Ceramill Motion 1; Amann Girrbach AG, Koblach, Aus-
tria), and thereafter sintered (Ceramill Therm III; Amann Girrbach AG, Koblach, Austria)
(Figure 1c).

The specimens were then randomly divided into four groups of twenty, where the
bonding surfaces of zirconia abutment teeth and RBFDPs were subjected to different surface
pretreatment conditions: left as-machined serving as a control (AM), low-pressure airborne-
particle abraded (APA), coated with NAC (NAC), bonding surface of RBFDP’s retainer
wing coated with NAC and the bonding surface of the abutment tooth airborne-particle
abraded (NAC_APA).

APA was performed with 50 µm alumina particles, at a pressure of 0.1 MPa for
15 s, at a 10 mm distance from the tip of the air abrasion unit. The specimens were then
ultrasonically cleaned in 97% ethanol for 3 min. For the coating process, 10 zirconia incisors
and 10 zirconia RBFDPs were inserted into a glass beaker of 300 mL aluminate-based
precursor solution (VALLBOND, Vall-cer d.o.o., Ljubljana, Slovenia) and boiled for 10 min
using a magnetic agitator with a hot plate. The calcination firing was carried out in a
laboratory furnace, in atmospheric air at 900 ◦C and a holding time of 30 min. The coating
procedure has been described in detail previously [42].

2.2. Surface Roughness Assessment

For each surface treatment, a representative retainer wing was inspected under a
scanning electron microscope (SEM) (JSM-7600F, Jeol Ltd., Tokio, Japan). Profile roughness
averages (Ra) were measured over evaluation lengths of 3 mm, with a total of five readings
per representative retainer wing with a contact profilometer (Talysurf 10, Taylor Hobson,
Leicester, United Kingdom).

2.3. Bonding

Zirconia RBFDPs were bonded to abutment teeth using a silicone (Putty, GC Eu-
rope, Leuven, Belgium) guide, to ensure a stable and accurate position of RBFDP during
bonding. The specimens were bonded with a chemically curing resin cement, containing
10-methacryloyloxydecyl dihydrogen phosphate (MDP) adhesive monomer (Panavia 21;
Kuraray, Tokyo, Japan). A custom-made alignment apparatus was used to standardize the
bonding procedure, providing a repeatable loading axis and loading force of 750 N [43].
The excess cement was removed with a disposable microbrush, and glycerin gel (Oxyguard;
Kuraray, Tokyo, Japan) was applied to the margins to block the oxygen inhibition layer.
The RBFDPs were loaded for 6 min, allowing the cement to polymerize. Each group was
divided into two subgroups of ten specimens each. The first subgroup was stored in
deionized water at 37 ◦C for 24 h, and the second subgroup was subjected to aging.

2.4. Aging Protocol

The aging protocol included specimen storage in 37 ◦C deionized water for 150 days,
and subsequent thermal cycling (TC) for 37,500 cycles between 5 ◦C and 55 ◦C, with a dwell
time of 30 s (Thermocycler THE 1100, SD Mechatronik GmbH, Feldkirchen-Westerham,
Germany). After that, specimens were subjected to 1.2 × 106 cycles of cyclic loading, at
alternating loads between 5 and 50 N (Instron 8871, Instron Corp, Norwood, MA, USA), at
a frequency of 10 Hz.
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Before cyclic loading, specimens were inserted into a polyurethane model base, with
a longitudinal axis of abutment tooth under 45 degrees. A 0.2 mm thick silicon layer
(Fitchecker, GC Europe, Leuven, Belgium) covered the root surface and served as an
artificial periodontal membrane, to imitate physiologic tooth mobility [35]. The specimens
were loaded under 45 degrees, with load transferred through a steel cylinder ball 2 mm in
diameter, positioned palatally, 3 mm below the incisal edge of a pontic (Figure 2). A 1 mm
thick layer of tin foil was placed between the loading cylinder and the pontic, to achieve
uniform force distribution.
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Figure 2. Cyclic loading. The load was transferred through a steel cylinder ball, positioned palatally.
(a) Frontal view; (b) lateral view.

2.5. Quasi-Static Loading

The non-aged and aged specimens were statically loaded under 45 degrees (Instron
8871, Instron Corp, Norwood, MA, USA). The load was transferred through a blade
positioned perpendicular to the incisal edge of the pontic (Figure 3), at a crosshead speed
of 1 mm/min, until debonding. The force during loading was recorded, and the maximum
load-bearing capacity (LBC) value was extracted. The complete workflow is summarized
in Figure 4.
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2.6. Microstructural Analyses of Debonded Surfaces

After testing, aged RBFDP retainer wings and abutment teeth bonding surfaces were
inspected with a light microscope (LM) (SteREO Discovery.V8, Carl Zeiss AG, Oberkochen,
Germany) under ×2.5 magnification. The percentage of each retainer wing’s and abutment
tooth’s bonding area covered with cement residue was calculated in a software package
(ZEN Digital Imaging for Light Microscopy; Carl Zeiss AG). Scanning electron microscopy
(JSM-7600F; Jeol Ltd.), at an accelerating voltage of 5 kV, was used to examine the debonded
retainer wings of the representative aged specimen for each experimental group. The
representative specimen was determined by the LBC value closest to the mean LBC value
for each group.

2.7. Finite Element Analysis (FEA) of the Experimental Model

In order to evaluate stresses generated by the debonding force during quasi-static
loading, finite element analysis (FEA) was performed. A FEA model, simulating quasi-static
loading from the in vitro experiment, was created. Three-dimensional (3D) models of the
abutment tooth, RBFPD, and resin cement were created (SpaceClaim 2020 R2, Ansys Inc.,
Canonsburg, PA, USA), and aligned as three separate bonded bodies with contact. Elastic
moduli and Poisson ratios were adopted from previous studies [44]. A slightly thicker
cement layer of 0.3 mm was modeled, to achieve proper fitting, without intersections, of the
retainer wing and abutment tooth. The FEA model was established in the numerical FEA
program (ANSYS 2020 R2, Ansys Inc., Canonsburg, PA, USA). All parts were discretized by
a mesh of quadrilateral elements (elements with four triangular sides) with quadratic shape
functions, and the mesh contained 6.4 million nodes and 4.3 million elements. The mesh on
interfaces was refined, to ensure convergence, and the element size was 500 micrometers in
general and 20 micrometers or smaller on interfaces. The interfaces between structures were
assumed to be perfectly bonded, with no flaws in the material. All solids were assumed to
be homogeneous, isotropic, and linearly elastic throughout the entire deformation. Quasi-
static loading of the in vitro experiment was simulated. For computation, the mean LBC
for APA, NAC, and NAC_APA groups after aging was chosen, since critical stresses within
the restoration and bonding interfaces should be seen at this load [45]. The model of the
physical indenter was replaced by a point force of 580 N. The force was applied at the centre
of the incisal edge of the pontic and acted at approximately 45 degrees relative to the axis
going through the tooth from root to crown. The solution for a static problem with implicit
formulation, was obtained using an interactive PCG solver. The maximum first principal
stress, for evaluating the tensile stress (MPa), was obtained for the stressed regions of the
abutment tooth, RBFDP, and cement layer. In addition, the maximum shear stress (MPa)
was obtained at the tooth–cement interface and RBFDP–cement interface.

2.8. Statistical Analysis

The sample size was determined by conducting a post hoc power analysis of previ-
ous in vitro studies evaluating the differences in bond strength between APA and NAC-
prepared zirconia [21,42], using statistical software (G Power 3.1, University Düsseldorf,
Germany) [46]. Since the power to detect differences at α = 0.05 level of significance was
greater than 0.99, a sample size of 10 specimens was determined. Further, post hoc power
analysis of detecting the differences between the non-aged groups was performed, before
advancing to the aging of the specimens. The statistical analysis was performed using sta-
tistical software (IBM SPSS Statistics, v27.0, IBM Corp, New York, NY, USA). Shapiro–Wilk
and Levene tests were performed to assess the assumptions of normality of the data and
homogeneity of variances. For each surface pretreatment condition, Student’s t-tests of
independent samples were performed, to assess the LBC differences between the respective
non-aged and aged subgroups. The p-values were adjusted using the Bonferroni correction
method for the multiple comparisons. The LBC data were then split, according to the aging
condition, and a one-way ANOVA and Tukey HSD post hoc test were performed, to assess
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differences in the profile roughness (Ra), LBC, and the percentage of the bonding area
covered with residual cement among the groups (α = 0.05).

3. Results
3.1. Surface Roughness

SEM micrographs of a representative retainer wing’s bonding surface for each pre-
treatment are presented in Figure 5. APA significantly increased (p < 0.05) the mean profile
roughness (Ra) ± standard deviation to 0.25 ± 0.01, while Ra for the AM and NAC bonding
surfaces were comparable, measuring 0.22 ± 0.02 and 0.21 ± 0.03, respectively (p >0.05).
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3.2. Quasi-Static Loading

The calculated power for determining differences among the non-aged groups, at
α = 0.05 level of significance, was greater than 0.99 when using 10 specimens, indicating an
adequate sample size was used. All specimens failed because of retainer wing debonding,
except for one specimen in the aged APA group, where the connector and retainer wing
fracture occurred at the load of 524 N. Aging conditions and surface pretreatment had a
significant effect on LBC (p < 0.05) (Table 1). Before aging, differences in mean LBC between
all the experimental groups were detected (p < 0.05), where NAC provided the highest
(724 ± 58 N) and AM the lowest (361 ± 45 N) mean ±standard deviation LBC. During TC,
specimens in the AM group debonded spontaneously. Aging significantly decreased LBC
values in the NAC and NAC_APA groups (p < 0.05), however, there were no differences
between the aged APA, NAC, and NAC_APA groups, with mean LBC ranging between
581 N and 590 N (p >0.05).

3.3. Microstructural Analyses of Debonded Surfaces

The AM group exhibited a significantly lower percentage of the bonding area covered
with cement residue (p < 0.05). In other groups, the sum of the percentages of the bonding
area covered with residual cement on the retainer wing and complementary abutment
tooth, was approximately 100% (Figure 6). SEM micrographs of the representative retainer
wing’s debonded surfaces for each aged group are presented in Figure 6. In the AM group,
the retainer wing exhibited smaller areas covered with cement residue (Figure 7a) compared
to other groups (Figure 7b,c). In the NAC and NAC_APA groups, a similar failure pattern
was revealed, with a thin film of NAC remnants in the areas of adhesive failure (Figure 7c).
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Table 1. Load-bearing capacity means and standard deviations (SD), in Newtons, of the experimental
groups after quasi-static loading. The same upper-case letters in each column denote no statistical
differences (p < 0.05). * denotes statistically significant difference between LBC values of non-aged
and aged subgroups of the same experimental group.

Non-Aged Aged

Group Mean SD Mean SD p < 0.05

AM 361.4 44.9 A ds
APA 564.4 30.6 B 585.2 59.5 A
NAC 724.1 58.3 C 581.2 60.0 A *

NAC_APA 654.1 40.7 D 590.3 44.3 A *

APA, airborne-particle abrasion; NAC, nanostructured alumina coating; SD, standard deviation; ds, debonded
spontaneously (no statistical test was performed).
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Figure 6. Mean percentages of retainer wing and abutment tooth bonding area covered with cement
residue after quasi-static loading of aged groups. The same upper-case letters on the right side of
each bar denote no statistical differences between the groups (p < 0.05). AM, as-machined; APA,
airborne-particle abrasion; NAC, nanostructured alumina coating.

3.4. FEA Results

The mean LBC for the aged groups was 580 N, and this value was used for the
stress computation. The in vitro result, fracture initiation sites, and failure modes were
in accordance with the FEA results, verifying the current experimental model. The FEA
results of the simulation of quasi-static loading under mean load for aged specimens, are
shown in colorimetric stress maps based on MPa (Figure 8). High tensile stresses were
measured in the distal area of the cement layer (Figure 8a), well reflected by the area of the
cohesive cement fracture observed under SEM (Figure 9a). High tensile stresses were also
generated in the RBFDP connector area and the mesial half of the retainer wing (Figure 8b),
which is in line with the fracture path of the fractured APA RBFDP observed under SEM
(Figure 9b). In the fractured APA specimen, the fractured retainer wing remained bonded
to the abutment tooth bonding surface, with a crack propagation starting in the incisal part
of the retainer wing and continuing throughout the connector. The highest shear stresses at
the pontic–resin interface and tooth–resin interface, were generated in the medial part of
the retainer wing (Figure 8c,d), indicating the debonding initiated in the medial part of the
bonding interfaces. The stress magnitudes were comparable, whereas slightly larger areas
were affected in the RBFDP–resin interface.
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Figure 7. SEM micrographs of representative specimens for each experimental group after aging.
(a) Low magnification (original magnification ×10) of debonded AM retainer wing (figure inset),
showing predominant adhesive failure. Higher magnification (original magnification ×1000) reveals
cement residue (black arrow) and shallow milling traces (white arrows). (b) Low magnification
(original magnification ×10) of debonded APA retainer wing (figure inset) showing areas of complete
adhesive failure and areas covered with cement residue. Higher magnification (original magnification
×1000) reveals cement residue (white arrow) and exposed airborne-particle-abraded surface (black
arrow). (c) Low magnification (original magnification ×10) of debonded NAC retainer wing (figure
inset), showing areas of complete adhesive failure and areas covered with cement residue. Higher
magnification of adhesive failure area (original magnification ×20,000) reveals NAC residue, with
partly exposed zirconia grains covered with a thin film containing remnants of NAC of lamellar-like
morphology (white arrow). AM, as-machined; APA, airborne-particle abrasion; NAC, nanostructured
alumina coating.
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Figure 8. Calculated stresses represented in colorimetric stress maps (MPa). (a) Tensile stress in
cement layer. (b) Tensile stress in RBFDP. (c) Shear stress at tooth–resin interface. (d) Shear stress
at RBFDP–resin interface. RBFDP, resin-bonded fixed dental prosthesis; Max, maximal stress; Min,
minimal stress.
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Figure 9. SEM micrographs of fracture patterns relating to calculated stresses. (a) Cement fracture
pattern (white dotted line) correlating to tensile stress in cement layer (figure inset) (original mag-
nification ×25). (b) Retainer wing fracture pattern correlating to tensile stress in RBFDP (left figure
inset). At low magnification (right figure inset, original magnification ×8), fractured retainer wing
(RW) adhered to the abutment tooth (AT) is observed. A higher magnification (original magnification
×1000) reveals hackles (white dotted lines) pointing to the crack origin in the incisal part of the
retainer wing (white arrow). RBFDP, resin-bonded fixed dental prosthesis.

4. Discussion

Based on the findings of this in vitro study, a superior initial bonding performance of
NAC RBFDPs was observed. However, after aging, there was no difference in the bonding
performances between the NAC and APA RBFDPs, exhibiting comparable LBC values.
Therefore, the null hypothesis was partially accepted. Further, the experimental model was
successfully confirmed with FEA.

The bonding capacity of different surface pretreatments was evaluated, using an
experimental model based on non-retentive RBFDPs, in order to closely relate to clinical
conditions. The study focused on investigating the resin–zirconia interface, since it is
considered to be less predictable and has been frequently reported as the predominant
failure site of zirconia RBFDPs [32,37,47]. Milled zirconia abutment teeth excluded the
enamel–resin interface and standardized the test [48,49], by avoiding natural tooth-related
variables such as anatomic variability, different enamel quality, and enamel dehydration.
In addition, stable experimental conditions, such as the same bonding surface area and
preparation geometry, prevented the variability of stress distributions at the adhesive
interface, causing different failure patterns [50].

To in vitro test the bonding capacity of zirconia pretreated with different surface
pretreatments, the resin–zirconia interface was maximally stressed, by employing a minimal
recommended bonding area [41] and a horizontal loading direction under 45 degrees [35].
During quasi-static loading, the load was transferred on the incisal edge, simulating the
worst-case scenario of accidentally biting into a hard bolus [37]. This way, LBC could be
compared with maximal incisive forces, which were previously measured in an edge-to-
edge position of incisors [51].

Before artificial aging, all pretreatment methods provided clinically adequate bonds,
with LBC values exceeding the maximal incisive mastication force (Table 1), which is
around 300 N [51]. The NAC group exhibited significantly higher initial LBC values than
the APA group (Table 1), exceeding the maximal incisal mastication force by a factor of two.
While higher microroughness provided by APA was measured, the NAC’s nanoroughness
could not be determined by contact profilometry. However, an approximately 500 nm
thick NAC layer provides an increase of the zirconia surface bonding area of 5 to 6 times,
facilitating resin cement penetration into nano-scaled inter-lamellar spaces, forming a
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hybrid layer, which enhanced the resin–zirconia bond [31]. After aging, the AM debonded
spontaneously, while LBC in the NAC group significantly decreased, becoming comparable
to the clinically accepted APA, which is in line with short-term clinical survival rates of
NAC and APA RBFDPs [32].

The negative influence of artificial aging, on the resin bond to NAC-coated zirconia,
contrasts with previous findings [30,31,42], which could be ascribed to a highly rigorous
aging protocol [52] being adopted in the present study. The generated thermomechanical
stresses at the resin–zirconia interface, and a prolonged water exposure facilitating the
hydrolysis of the polymer matrix at the resin–zirconia interface [53], might simulate more
than five years of RBFDP’s long-term exposure to intraoral conditions [54]. A durable
bond in the APA-prepared specimens, corroborates previous findings, where a combination
of MDP monomer and APA was shown to facilitate stable resin–zirconia bonds [55–57].
While recent findings have reported comparable initial strengths provided by different
organophosphate primers, the absence of mechanical roughening led to strength degrada-
tion after artificial aging [58].

The predominant debonding failure pattern observed in our study correlated to
previous studies, especially when non-retentive preparation geometry was employed.
Bishti et al., using the same aging protocol, reported a 75% debonding rate of posterior
non-retentive RBFDPs, exhibiting mainly cohesive or mixed failure mode [52]. Sterzenbach
et al. loaded zirconia RBFDPs in two stages, increasing the loading force in the second stage,
which led to a higher failure rate, with a predominant debonding event [47]. Rosentritt et al.
employed similar aging conditions and preparational geometry to our study, and reported
an increase in the debonding rate when non-retentive RBFDPs geometry was used [38]. In
a study by Brunner et al., zirconia inlay-retained fixed dental prostheses (IRFDP) exhibited
the lowest in vitro performance [59], while Gresnigt et al. reported 60% of the specimens
debonded during the aging process, despite being properly prepared with APA and MDP
monomer [37]. On the contrary, despite the non-retentive preparation geometry used in
our study, all of the APA and NAC-treated specimens survived the aging.

Almost complete delamination of the resin cement from both zirconia substrates in the
AM group (Figures 6 and 7a), confirmed the necessity of surface roughening and cleaning
before priming with adhesive monomer [55–57,60]. That there were no differences in the
residual cement ratios between the abutment tooth and complementary retainer wing
for the NAC and NAC_APA groups (Figure 6), indicates a comparable resin bond to the
prepared zirconia substrates after aging. In the NAC and NAC_APA groups, the retainer
wing’s areas of adhesive failure were mostly covered with a thin film of NAC remnants
(Figure 7c). Consistent with previous studies [31,32], these large areas of NAC residue
suggest that the calcination firing protocol that follows NAC synthesis, provided strong
bonds between NAC and the zirconia surface.

The in vitro results and failure modes were in accordance with the calculated FEA
results, verifying the current experimental model, as recommended previously [39,61].
While critical stresses within restorations did not exceed zirconia fracture toughness, the
calculated shear stresses at both interfaces (Figure 8c,d) exceeded previously reported
resin–zirconia shear bond strengths to APA and NAC-prepared zirconia [42], explaining
the predominant adhesive failure in all the groups. The high debonding rate, in agreement
with previous in vitro findings [37,38,47,62], might also be attributed to the experimental
model involving stiff zirconia substrates, providing higher stress concentrations in the
cement layer and the resin–zirconia interface [63]. In addition, calculated tensile stresses
in the lateral area of the retainer wing (Figure 8a) exceeded the reported diametral tensile
strength of resin cement [64], facilitating cohesive delamination fracture of the resin cement.
This is well reflected by the cement fracture pattern observed in most of the specimens,
where a cohesive fracture indeed occurred in the highly stressed area (Figure 9a). Since the
stresses in the cement layer increase with the increase of the elastic modulus of the cement,
care should be taken in choosing the appropriate cement for bonding zirconia RBFDPs [65].
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The aged APA RBFDP, fractured at the connector site involving the retainer wing
(Figure 9b). The fracture origin in the retainer wing documented in the present study has
rarely been shown in vitro [36]. However, the FEA showed high-stress generation in the
medial part of the retainer wing (Figure 8b), in agreement with the present failure pattern.
In addition, the minimal thickness of the highly stressed retainer wing, may facilitate such
a failure pattern [66]. Although the 3Y-TZP zirconia used in our experiment is less prone to
APA’s damaging effect [67], APA might have weakened the mechanical properties of the
zirconia retainer wing, causing it to fracture. Furthermore, according to the FEA, tensile
stresses in the retainer wing approximated the reported strengths of translucent zirconia
with increased yttria concentration of up to 5 mol.%. Since these ceramics are also more
susceptible to APA’s damaging effect, APA may be detrimental to RBFDPs fabricated from
novel translucent zirconia materials [19,20,68]. In these cases, the use of non-invasive
zirconia pretreatment with NAC, providing comparable long-term bonding performance
to APA, may be advisable.

The present in vitro study did not include novel translucent zirconia generations as
a material for RBFDP fabrication, which may be a limitation. However, the study aimed
to evaluate the influence of different surface pretreatments on the bonding properties of
zirconia RBFDP, focusing on restoration debonding. Therefore, to minimize the frequency
of other failure types, especially restoration fractures, novel translucent zirconia generations
with inferior mechanical properties were excluded [19,20]. In addition, it has previously
been shown that NAC similarly affects the bonding performance of zirconia containing 3,
4, or 5 mol.% yttria [21].

5. Conclusions

Based on the findings of this in vitro study, the following conclusions were drawn:

1. The in vitro result, fracture initiation sites, and failure modes were in accordance with
the FEA results, verifying the current experimental model.

2. Both APA and NAC provided an effective long-term bond of resin cement to zirconia
RBFDPs, with comparable LBC values (p < 0.05) exceeding average and maximum
mastication forces.

3. NAC might present a viable non-damaging pretreatment alternative to APA for pre-
treating monolithic RBFDPs fabricated from more damage-prone translucent zirconia.

Author Contributions: Conceptualization, T.M., R.P., A.K. and P.J.; methodology, T.M., A.A., A.K.
and R.P.; investigation, T.M. and R.P.; writing—original draft preparation, T.M.; writing—review and
editing, P.J. and A.K.; formal analysis, T.M.; supervision, P.J. and A.K.; funding acquisition, A.K. and
P.J.; project administration, P.J.; validation, A.K. and P.J.; visualization, T.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Slovenian Research Agency funding, through research
project ‘Preclinical and Clinical Investigations of Zirconia dental ceramics fabricated by additive
manufacturing technologies (ZIRAMDENT)’ (J3-6064) and research program ‘Ceramics and comple-
mentary materials for advanced engineering and biomedical applications’ (P2-0087).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Peter Supancic from Montanuniversität Leoben for an insight-
ful discussion regarding finite element analysis of the experimental model. The study was presented
at the 2022 PER-IADR Oral Health Research Congress in Marseille, as a part of an oral presentation
that was awarded the Senior Robert Frank award, 2nd prize.

Conflicts of Interest: The authors declare that there are no conflict of interest.



Materials 2023, 16, 2646 13 of 15

References
1. Zitzmann, N.U.; Arnold, D.; Ball, J.; Brusco, D.; Triaca, A.; Verna, C. Treatment strategies for infraoccluded dental implants.

J. Prosthet. Dent. 2015, 113, 169–174. [CrossRef] [PubMed]
2. Mombelli, A.; Muller, N.; Cionca, N. The epidemiology of peri-implantitis. Clin. Oral. Implants Res. 2012, 23 (Suppl. 6), 67–76.

[CrossRef] [PubMed]
3. Pieri, F.; Aldini, N.N.; Marchetti, C.; Corinaldesi, G. Esthetic outcome and tissue stability of maxillary anterior single-tooth

implants following reconstruction with mandibular block grafts: A 5-year prospective study. Int. J. Oral Maxillofac. Implants 2013,
28, 270–280. [CrossRef] [PubMed]

4. Kolerman, R.; Nissan, J.; Mijiritsky, E.; Hamoudi, N.; Mangano, C.; Tal, H. Esthetic assessment of immediately restored implants
combined with GBR and free connective tissue graft. Clin. Oral Implants Res. 2016, 27, 1414–1422. [CrossRef]

5. Kern, M.; Passia, N.; Sasse, M.; Yazigi, C. Ten-year outcome of zirconia ceramic cantilever resin-bonded fixed dental prostheses
and the influence of the reasons for missing incisors. J. Dent. 2017, 65, 51–55. [CrossRef]

6. Sasse, M.; Kern, M. Survival of anterior cantilevered all-ceramic resin-bonded fixed dental prostheses made from zirconia ceramic.
J. Dent. 2014, 42, 660–663. [CrossRef]

7. Sasse, M.; Kern, M. CAD/CAM single retainer zirconia-ceramic resin-bonded fixed dental prostheses: Clinical outcome after
5 years. Int. J. Comput. Dent. 2013, 16, 109–118.

8. Sailer, I.; Hammerle, C.H. Zirconia ceramic single-retainer resin-bonded fixed dental prostheses (RBFDPs) after 4 years of clinical
service: A retrospective clinical and volumetric study. Int. J. Periodontics Restor. Dent. 2014, 34, 333–343. [CrossRef]

9. Klink, A.; Huttig, F. Zirconia-Based Anterior Resin-Bonded Single-Retainer Cantilever Fixed Dental Prostheses: A 15- to 61-Month
Follow-Up. Int. J. Prosthodont. 2016, 29, 284–286. [CrossRef]

10. Shahdad, S.; Cattell, M.J.; Cano-Ruiz, J.; Gamble, E.; Gamboa, A. Clinical evaluation of all ceramic Zirconia framework resin
bonded bridges. Eur. J. Prosthodont. Restor. Dent. 2018, 26, 201–211.

11. Chen, J.; Cai, H.; Ren, X.; Suo, L.; Pei, X.; Wan, Q. A Systematic Review of the Survival and Complication Rates of All-Ceramic
Resin-Bonded Fixed Dental Prostheses. J. Prosthodont. 2018, 27, 535–543. [CrossRef]

12. Ozcan, M.; Bernasconi, M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes.
Dent. 2015, 17, 7–26.

13. Quigley, N.P.; Loo, D.S.S.; Choy, C.; Ha, W.N. Clinical efficacy of methods for bonding to zirconia: A systematic review. J. Prosthet.
Dent. 2021, 125, 231–240. [CrossRef]

14. Zhang, Y.; Lawn, B.R.; Rekow, E.D.; Thompson, V.P. Effect of sandblasting on the long-term performance of dental ceramics.
J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71, 381–386. [CrossRef]

15. Zhang, Y.; Lawn, B.R.; Malament, K.A.; Van Thompson, P.; Rekow, E.D. Damage accumulation and fatigue life of particle-abraded
ceramics. Int. J. Prosthodont. 2006, 19, 442–448.

16. Wang, H.; Aboushelib, M.N.; Feilzer, A.J. Strength influencing variables on CAD/CAM zirconia frameworks. Dent. Mater. 2008,
24, 633–638. [CrossRef]

17. Oblak, C.; Verdenik, I.; Swain, M.V.; Kosmac, T. Survival-rate analysis of surface treated dental zirconia (Y-TZP) ceramics. J. Mater.
Sci. Mater. Med. 2014, 25, 2255–2264. [CrossRef]
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