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Abstract: In this paper a perfect absorber with a photonic crystal cavity (PhC-cavity) is numerically
investigated for carbon dioxide (CO2) gas sensing application. Metallic structures in the form of
silver are introduced for harnessing plasmonic effects to achieve perfect absorption. The sensor
comprises a PhC-cavity, silver (Ag) stripes, and a host functional material—Polyhexamethylene
biguanide polymer—deposited on the surface of the sensor. The PhC-cavity is implemented within
the middle of the cell, helping to penetrate the EM waves into the sublayers of the structure. Therefore,
corresponding to the concentration of the CO2 gas, as it increases, the refractive index of the host
material decreases, causing a blue shift in the resonant wavelength and vice versa of the device. The
sensor is used for the detection of 0–524 parts per million (ppm) concentration of the CO2 gas, with a
maximum sensitivity of 17.32 pm (pico meter)/ppm achieved for a concentration of 366 ppm with a
figure of merit (FOM) of 2.9 RIU−1. The four-layer device presents a straightforward and compact
design that can be adopted in various sensing applications by using suitable host functional materials.

Keywords: polyhexamethylene biguanide polymer; perfect absorber; plasmonic gas sensor; carbon
dioxide sensor; lithium niobate-based sensing

1. Introduction

Recent development in the field of photonics and optical technology has opened new
frontiers for researchers to explore their usage in various fields, such as integrated compo-
nents [1], biomedical devices [2], sensing applications [3], industry-based 4.0 era [4], and
many more [5]. Similarly, the burning issue of global warming is also being addressed using
photonics technology in terms of design and the investigation of different photonics sensors
to detect and calculate the number of different gases in the environment [6]. Regarding
global warming, CO2 is of utmost importance [7] and is the main constituent responsible for
climate change; therefore, necessary steps are required to tackle it efficiently [8]. The correct
measurement of CO2 is an important factor as it has already passed the threshold value of
350 parts per million (ppm) for unavoidable climate change, and is presently prevailing
at 420 ppm [9]. For this purpose, several methods/devices, i.e., phase-sensitive [10], opti-
cal fibers [11], pyro-phototronic [12], and refractive index [13] are continuously included
in the designing of CO2-based sensors. Similarly, photonic crystals (PhCs) are also one
of the most significant contenders serving as nanostructures that are capable of control-
ling light at wavelength scales [14]. PhCs are found in nature [15] and can be designed
and fabricated artificially as per the specification of the device, i.e., optical sensors [16],
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nanowires [17], DBRs [18], waveguides [19], and optical filters [20]. However, recently,
the localized surface plasmon polariton (LSPP) has gained the attention of researchers
both in the field of academia and industry due to their nature of high sensitivity [21] and
simplified materials usage [22]. LSPP-based devices require metal layers, i.e., gold (Au) or
silver (Ag), for their integration within optical sensors as they possess unique geometrical
shapes for this purpose [23]. As an acknowledgeable fact, the high dependency of the
surface plasmon resonances (SPR) on the perimeter of the sensors, geometrical shapes, and
refractive index of the environment make them ideal candidates for sensing applications
utilizing the properties of perfect absorbers.

Perfect absorbers are artificially created structures made of modified properties to
satisfy certain conditions of a device in terms of impedance matching, reflection, trans-
mission, and absorbance [24]. It comprises a periodic top layer allowing no reflection
of electromagnetic (EM) waves, followed by a layer to dissipate the EM wave and block
its transmission from the structure, respectively [25,26]. Moreover, it is shown through
research work performed in the areas of perfect absorbers that the material may or may not
always comprise MIM sequence as well, as studied in [27], using a dielectric material and a
vertical double-pillars sequence of meta-molecules covered by a layer of Au. Therefore,
single materials with designing techniques can also harness useful properties, as proven
in [28], using a mechanism of degenerate critical coupling (DCC) and quadrupole modes,
which have thus led to the creation of diverse applications in the field of sensing, such as
plasmonics-based sensors [29], refractive index-based sensors [30], and temperature sen-
sors, all by employing the phenomena of enhanced-optical utilization [31], time-reversed
lasers [32], and thin-layered structures [33].

In the literature, numerous sensing devices have been reported to efficiently mea-
sure the concentration of CO2 gas [34] using functional layers [35] in terms of poly-
hexamethylene biguanide (PHMB), which mostly produce a blue shift in the refractive
index [36]. An experimental study in [37] uses a functional layer to detect and sense dif-
ferent concentrations of CO2 gas in the range of 0–700 ppm using a Fabry–Perot cavity
with a maximum achieved sensitivity of 12.2 pm/ppm. To detect and sense different
concentrations of CO2 and hydrogen (H2) gases, the concept of silicon photonic-dual-gas
sensor based on wavelength-multiplexed micro-ring resonator array is given in [38], where
two different functional layers, i.e., palladium for H2 gas and PHMB for CO2, are used. Cor-
respondingly, experimental research using a functional layer-coated microbubble resonator
is investigated in [39], where a tapered fiber used to measure CO2 within a concentration
range of 200–700 ppm results in a sensitivity of 0.46 pm/ppm. A design approach in [40]
uses a metal-insulator-metal (MIM) waveguide-based structure coupled to a square-ring
cavity filled with PHMB functional material to sense the CO2 for a concentration range of
0–524 ppm. Concepts of dual-band CO2 gas sensor is employed in [41], using a metasurface
of metal-TiO2-metal covered with a functional material as a sensing polymer yielding
sensitivities around 1040 and 1330 nm/ppm for a range of 200–600 ppm of concentration. A
design of a CO2 gas sensor based on silicon micro-ring refractometric is investigated in [42],
using a coating of the functional layer to sense different concentrations, i.e., 0–500 ppm of
the CO2 gas, attaining a sensitivity value of 6 × 10−9 RIU/ppm. To design an efficient CO2
gas sensor, [43] uses a graphene layer on a nano-wall honeycomb structure with distributed
plasmonics particles, achieving an overall sensitivity of 874 nm/RIU. Moreover, silicon pho-
tonics is gaining attention over silicon electronics in terms of speed, power, and bandwidth,
specifically relating to the gas sensing applications as studied in [44], which investigates
different techniques and design approaches, such as the PhC-based gas sensor, dual gas
sensors, and trace gas sensors. Apart from these, using the long period gratings (LPG)
coupled to a single mode, propagation in the silicon layer is explored in [45] for the efficient
detection of the different concentrations of CO2 gas using a functional polymer layer of
PHMB. Similarly, on-chip optical sensors have vast applications in the field of gas-sensing
applications; a detailed study on different perspectives of this topic is investigated in [46],
using group-IV materials for the purpose.
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This research study presents a simple and compact design of the CO2 gas sensor,
comprising multi-structured layers of different materials providing high sensitivity and tun-
ability in the infrared-A region (IR-A) around 940–960 nm. The multi-structured layer com-
prises a perfect electric conductor (PEC), silicon dioxide (SiO2), lithium niobate (LiNbO3),
silver (Ag) stripes, and PHMB functional layer, resulting in the perimeters of the sensor in
(x and y) directions as being 1000 nm each with a height of 240 nm, including the PHMB
functional layer. Moreover, Ag stripes are used to achieve the plasmonic characteristics
of the sensor and act as active metal layers that help configure EM energy in producing
plasmons on the boundary of metal-polymer and metal-dielectric layers. Therefore, the
Ag stripes in combination with the Ag ring are enhancing this effect. Other alternative
materials can be Au, aluminum (Al), copper (Cu), and Ag. However, gold and silver
are the most widely used plasmonic materials for their non-corrosive effects and lesser
metal-induced losses. For the foundation base, LiNbO3 is used in this research, acting as a
better absorbing material in the case of plasmonics-based sensors [47] as compared to the
traditional dielectric materials, i.e., MgF2 and TiO2.

2. Sensor Design and Materials

The sensor is designed while keeping in mind the targets to keep the design compact
and at the same time achieve a good level of sensitivity. Therefore, the foundation base of
the sensor is made up of the LiNbO3 deposited on a layer of SiO2, which is a new entry
in the optical materials, having better electro-optic, piezoelectric, and nonlinear optical
characteristics [48] and is therefore limited to a thickness of 100 nm. Moreover, it also
helps in a better confinement and suppression of the energy within the structure when the
sensitivity of the IR-absorbers-based devices increases. Due to these factors, it is considered
a better choice in laser-based and other optoelectronic devices [49]. Similarly, for plasmonics
characteristics, Ag stripes are carved with cross-geometry on the LiNbO3 layer having a
height and width of 1 nm and 60 nm, respectively.

For sensing the CO2 gas, a functional layer of PHMB is deposited over the top of
LiNbO3, which is a member of the guanidine polymer family and is known for capturing the
molecules of CO2 by sensing its different concentrations at room temperature and normal
atmospheric pressure [50]. Moreover, it is used due to its ability to vary its refractive index
in response to an ambient change in the concentration of CO2 gas in the environment, as
well as due to its unique property of effectively sensing CO2 gas without the need for water
vapor as a catalyst to make CO2 molecules heavier for better sensitivity calculations [51].
Moreover, during sensing, CO2 molecules are absorbed within the layer of the PHMB, due
to which, its refractive index and sensitivity change, and as a result produce a blue shift
in the resonant wavelength in the output spectrum. As the simulation data signifies, a
ring of Ag is also inserted alongside Ag stripes into the PhC-cavity for stronger and more
prominent plasmonic effects. The outer and inner radii of this ring are selected as 150 nm
and 140 nm, respectively, along with a thickness of 10 nm. The perfect absorber sensor
model is shown in Figure 1.

For a better penetration and absorbance of the electromagnetic (EM) waves within the
sub-layers of the design, a PhC-cavity is implemented within the middle of the structure.
The reflectance spectrum is plotted for the different radii of PhC ranges between 120 nm
and 170 nm as shown in Figure 2a. As the radius of the PhC varies, we can observe a slight
change in the resonant wavelength of the device. The reflectance versus PhC radius is
plotted in Figure 2b, which indicates that the lowest reflectance is obtained for the PhC
radius = 150 nm, delivering a maximum value of absorbance.
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Figure 2. (a) Values of the radii of the PhC-cavity for the optimization of the sensor. (b) Output spectra
showing a drop in the reflectance of the sensor with respect to the change in the PhC-cavity radius.

The optimized values of the sensor achieved through best-fitting results are presented
in Table 1.

Table 1. Optimized structural values of the CO2 sensor.

Layers (Bottom to Top) Materials Values

Layer 1 PEC (Ag) 10 nm

Layer 2 SiO2 100 nm

Layer 3 LiNbO3 100 nm

PhC-cavity Air 150 nm (radius)

Layer 4 Ag stripes 1 nm (height), 60 nm (width)

Layer 5 Functional layer (PHMB) 30 nm

3. Methodology

The design of the sensor is numerically investigated in CST STUDIO using the fre-
quency domain. Finite-element-method (FEM) is used, which is more efficient in terms
of computational power and resources relating to large computational problems [52]. Re-
garding the accuracy of the design, the tetrahedral meshing technique is used as shown
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in Figure 3, enclosed by a (dotted) square. Moreover, to save time and computational re-
sources, the unit cell model is used as given in Figure 3a,b. The Floquet periodic boundary
conditions (PBC) are used in the (x and y) directions to terminate the simulation domain
and open boundaries in the z-direction. Similarly, to absorb the unwanted EM radiations
and excitation of higher-energy order modes at the boundary, the perfect matched layers
(PML) are used in the open direction, i.e., the z-axis with structure placed in between the
source port and the output port. The source port is used to emit the incident EM waves,
which in turn are analyzed at the output port. Moreover, within these PML boundaries, two
Floquet ports, i.e., Zmax and Zmin, are introduced as shown in Figure 3c, acting as the source
and sink to produce the response of the system in terms of reflection and transmission
spectra of the EM waves in S-parameters.
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Figure 3. (a) Unit structure. (b) Unit structure with PHMB functional layer. (c) Unit structure
signifying source, sink, and PML boundaries of the structure. Moreover, the structure enclosed in the
(dotted) square represents the tetrahedral meshing technique for better accuracy in the design process.

To calculate the S-parameters of the transmission and reflection spectra, the ports used
for the purpose are S21 and S11 and are given by Equations (1) and (2), respectively.

S21 =

(
1 − Z2)Γ

1 − Z2Γ2 (1)

S11 =

(
1 − Γ2)Z
1 − Z2Γ2 (2)

where, Z is the impedance parameter, while Γ is the coefficient of the transmission or
reflection spectrum depending on the design of the sensor. Moreover, S-parameters, also
known as S-matrix or scattering parameter, is used for describing a system in terms of
ports in a network or circuit. Here, because the Floquet-boundary ports are used, the
S-parameters provides an insight into the relationship between incident EM waves with
transmitted or reflected waves at each port. S11 is the ratio between the reflected wave and
the incident wave, whereas S21 is the ratio between the transmitted and incident wave [53];
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hence, all the required parameters can be obtained using these ports analogy. Similarly, the
absorbance can also be calculated by Equation (3):

A = 1 – T – R (3)

However, the value of the absorbance in this research study depends entirely on the
value of reflection as the transmission is approximately zero. Therefore, when the value of
the reflectance of the sensor reaches zero, i.e., at the time of the perfect coupling of energy,
the value of the absorbance reaches unity at that instant. Similarly, the orientation of the
incident source is set in an ‘inward’ direction during the designing process.

4. Results

The performance of the sensing device in the presence of different concentrations of
the CO2 gas in terms of change in the refractive index of the PHMB functional layer is deter-
mined; thus, the values of the refractive index determining these different concentrations
of the CO2 gas used are referenced from [34], and given in Table 2.

Table 2. Refractive index values of the PHMB functional layer for different concentrations of the CO2 gas.

Refractive Index (n) CO2 Gas Concentration

1.55 0

1.54 215

1.53 262

1.52 328

1.51 366

1.49 434

1.48 524

To observe the spectral properties of the designed sensor, the reflectance/transmittance/
absorbance (R/T/A) spectra of the sensor are shown in Figure 4. The spectra show zero
transmission and high absorbance at the resonant wavelength. The resonant oscillations in
the perfect absorber can be tailored to match the frequency and polarization of the incoming
radiation, leading to a highly efficient absorption of the radiation. This is achieved by
tuning the geometrical parameters of the resonant elements, such as their size, shape, and
spacing, to achieve a specific resonant response.

Therefore, after depositing a PHMB layer on the surface of the device, the value of
the refractive index is varied and presented against different concentrations of the CO2
gas, as shown in Figure 5a, investigating a blue shift in terms of the resonant wavelength
λres of the sensor, i.e., 955–946 nm. This is due to the fact, that initially, when there is
no ambient CO2 gas, the value of the refractive index of the PHMB layer is 1.55 and the
distribution of molecules within the PHMB layer is uniform and homogenous. However,
after increasing the concentration of the CO2 gas, i.e., 0 to 524 ppm, the value of refractive
index of the PHMB layer tends to decrease, i.e., 1.55–1.48, as molecules of the CO2 starts
binding with the molecules of PHMB layer that in turn causes an increase in variation in the
distribution formation of the previously homogenous molecules into a more heterogenous
cluster within the layer. This effect has a direct impact on the refractive index of the
monitoring layer. Figure 5b,c investigate the plasmonic effects and confinement of energy
by the sensor, respectively.
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In all types of sensors, sensitivity is a vital aspect that is considered imperative in the
design phase. It is also considered a key element to verify the performance and working
of a sensor according to the provided conditions. The sensitivity is defined as the ratio of



Materials 2023, 16, 2629 8 of 13

change in the resonant wavelength δλres to that of change in the concentration of the CO2
gas (δconc.), as given in Equation (4)

S =
δλres

δconc.
(4)

Furthermore, the sensor presents a linear correlation for 0–524 ppm of the concentra-
tion of the CO2 gas as shown in Figure 6, which is desirable for the measurement of the
atmospheric CO2 gas. Considering the performance of the sensor, it achieves the highest,
i.e., 17.32 pm/ppm, and lowest, i.e., 9.5 pm/ppm, values of sensitivity for different concen-
tration values of the CO2 gas. It is important to note that the relationship of sensitivity of
the sensor with that of the concentrations of CO2 gas is not linear, but rather, it increases
gradually up to 366 ppm of a concentration of the CO2 gas and provides the highest value at
366 ppm; however, later on it plummets very slightly, as shown in Table 3. This effect is not
fully understood by the authors, but considered normal according to certain design or ma-
terial factors, albeit the overall sensitivity of the sensor remains considerably higher for the
remaining concentration sample values of the CO2 gas, i.e., 366–524 ppm, which increases
the significance of the designed sensor. Table 3 exhibits a comprehensive performance of
the sensor in terms of sensitivity and change in the resonance wavelength δλres.
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Table 3. Detailed performance of the sensor using different concentrations of the CO2 gas.

Application Area Refractive Index
(n)

Concentration
CO2 (ppm) λres (pm) δλres (pm) Sensitivity

(pm/ppm)

CO2 gas sensing

1.55 0 955,210 - -

1.54 215 953,170 2040 9.5

1.53 262 951,480 3730 14.23

1.52 328 950,170 5040 15.36

1.51 366 948,870 6340 17.32

1.49 434 947,870 7340 16.91

1.48 524 946,670 8540 16.29
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Figure of merit (FOM) is another parameter used to verify the device’s suitability and
reliance on a specific task. It is a quantitative measure of a sensor’s overall performance,
usually expressed as a single value that combines several important parameters. FOM can
help in comparing different sensors and selecting the most appropriate one for a particular
application. It is defined as the ratio of the sensitivity of a sensor to the full width at half
maximum (FWHM) of the peak value, which is provided by Equation (5) as:

Figure o f Merit (FOM) =
S

FWHM
(5)

The FWHM of the proposed sensor is measured as 6.0 nm with the bulk sensitivity at
17.32 pm/ppm. As a result, the FOM value achieved by the sensor according to Equation
(5) is 2.90 RIU−1. Figure 7a,b present the H-field distribution for λ = 900 nm and λ = 949 nm,
respectively. It can be seen that at the non-resonant wavelength (Figure 7a), no EM energy
is confined in the cavity, whereas at the resonant wavelength (Figure 7b), maximum field
power is confined in the cavity, resulting in the maximum absorption of light at resonant
wavelength, using the basic modes of polarization.
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A comparative study of the designed sensor with previously investigated structures is
given in Table 4. The sensors that are close to the design and sensitivity of this research are
selected in terms of designing layers, compactness, and overall sensitivity.

Table 4. Comparative study of the research with previously investigated studies.

Sensor Designs Sensitivity (pm/ppm) Research Work

Quartz layer + Au layer + nano atoms + functional layer 17.30 [34]

Fabry–Perot cavity + single mode fiber + functional layer 12.20 [37]

Micro-bubble + tapered fiber + functional layer 0.46 [39]

LiNbO3 layer + silver stripes + nano-cavity + functional layer 17.32 This work

5. Suggested Fabrication Steps

The complete fabrication process of the structure is shown in Figure 8. Mainly, the
fabrication steps involve the deposition of thin films, the lithography process, and etching.
In the first step, the layer of PEC, i.e., Ag, can be deposited on a glass substrate to form the
base of the design using electron beam-assisted thermal evaporation [54], followed by a
layer of SiO2, which can be deposited using plasma-enhanced chemical vapor deposition
(PECVD) or ion-beam sputter deposition (IBSD) [55]. In the third step, a layer of LiNbO3 can
be deposited via the procedure of pulse laser deposition (PLD), providing better accuracy
and control over the deposition process [56]. For the implementation of the PhC-cavity,
focused ion-beam (FIB) technology can be used. Similarly, the Ag stripes can be deposited
using the focused electron-ion beam-induced deposition (FEBID) technique [57]. After
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completion of the structural layout of the sensor, the functional layer of PHMB can be
deposited using spin coating [58]. Moreover, by controlling the speed of the spin coating
and solution concentration, the desired thickness of the PHMB layer can be achieved.
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6. Conclusions

A plasmonics-based perfect absorber CO2 gas sensor using LiNbO3 is investigated
in this research study. The sensor comprises PhC-cavity, Ag stripes, and a host-functional
material, i.e., polyhexamethylene biguanide polymer (PHMB), for sensing CO2 gas. The
LiNbO3 layer is used to enhance EM fields, with PhC-cavity implemented within the
middle of the cell to enable penetration of the EM waves further into the sublayers and Ag
stripes for the plasmonics effects. Therefore, on sensing the CO2 gas, the refractive index of
the host material decreases due to the fact that, as the CO2 gas molecules are absorbed by
the functional material, it causes variation in the distribution of the molecules/electrons of
the functional layer. As a result, its refractive index decreases, producing a blue shift in the
resonant wavelength in its reflection spectra. The sensor thus provides a sensing capability
to different concentrations of the CO2 gas in the range, i.e., 0–524 ppm, with a maximum
sensitivity of −17.23 pm/ppm achieved for 366 ppm of the concentration with a FOM value
of 2.9 RIU−1. Therefore, the concluded approach presents a simple and compact design of
the sensor. In relation to the sensor performance and sensitivity, it can be used in several
fields for the detection of gases using suitable host-functional material.
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