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Abstract: Finite element analysis of complex bodies is frequently used in design to determine the
size of deformations. Successive iterations, with progressive refinement of mesh densities, are most
often required to obtain a sufficiently accurate convergent numerical solution. This process is costly,
time consuming, and requires superior hardware and software. The paper presents a quick and
effortless way to determine a sufficiently accurate value of the numerical solution. The mentioned
solution is obtained by amending the numerical solution resulting for a certain value of the mesh
density of the studied body with an adequate proportionality coefficient determined following the
deformation study of simple bodies differently subject to external forces. It is assumed that the elastic
displacement of the various bodies has a similar evolution as the mesh density increases and that
the values of the proportionality coefficients considered are approximately equal for identical mesh
densities. Examples presented are related to the reference body of the mechanical press PAI 25.

Keywords: FEA simulation; mesh density; influence analysis; complex parts; elastic displacements;
exact solution; numerical solution; estimation error

1. Introduction

Finite element analysis (FEA) has many and various uses in engineering. For numer-
ous applications, it is interesting to determine with sufficient precision, from the design
phase, the deformation of bodies or assemblies used in various branches of engineering,
mechanical engineering being one of them. In general, the finite element method is fre-
quently used because it provides a general and systematic approach [1] regardless the area
of application.

About elastic deformation of complex bodies, it is impossible to obtain the analytical
solution of the exact result, but Bathe [2,3] emphasizes that this solution exists, that it is
unique and, especially, that “an approximation of this exact solution can be obtained with
very high accuracy using finite-element methods”. Exact analytical solutions can only be
obtained when the studied bodies have quite simple geometries. For this reason, numerical
methods are often used to obtain reference solutions (Hiller and Bathe) [4]. There will
always be a difference between the exact solution, if it is revealed, and the approximate
numerical solution.

Establishing the mesh characteristics [5] is a key step, its density determining the
quality (accuracy) of the results obtained, the software and hardware requirements, the
duration of the study and its cost. The reference solution must be sufficiently precise for
each case. In agreement with Alwathaf [6], “the accuracy can be improved by using a
finer mesh or by using refined elements”. It is known that (Liu, 2013) [7] “the accuracy
of the FEA results is determined by the finite element size (mesh density)”. The use of
a progressively fine-grained mesh will lead to increasingly accurate results if the finite
element formulation meets the convergence criterion. It is possible to verify whether the
convergence rate is uniformly optimal either by an inf-sup numerical test or by tracing the
convergence to zero of the error norm (Hiller and Bathe) [4].
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Liu [7] emphasizes that it is particularly important to choose the right size of elements
“so that the created models will produce accurate FEA results”. This is exemplified by the
study of a rectangular steel plate subject to bending. The conclusion being that, for static
analysis, the finite element model ensures particularly good accuracy if the long side is
discretized into 10 divisions. The approximately 1% error is determined by reference to
the deformation corresponding to the finest discretization (160 divisions for each side),
and not by reference to the theoretically exact deformation which, for this simple case, is
easily accessible.

For a cantilever beam, Krishnamoorthi et al. [8] present yield values, using finite
element analysis with different fineness of discretization, compared to the exact value
determined analytically. The convergence of the numerical solution to the exact value of the
analytical solution is highlighted, the difference being small when the numerical solution
considers more than 1200 elements.

Hansbo and Larson [9] show, referring to plate deformation, that the type of network
has a considerable influence on the convergence of the numerical solution, which it is
compared with both the exact solution and the Morley approximation. Using a criss-cross
mesh “the solution is robust with respect to locking”, the blocking tendency is slightly
stronger in the case of an “unstructured mesh” and is evident when using directional mesh.

For the study of bodies with complex geometry, networks with particularly good
resolution are used. For example, Xu Z. et al. [10] used four models with remarkably
high mesh resolutions to highlight the convergence, with the number of elements being
between 204,097 and 1,603,938 (the number of nodes between 80,010 and 669,044). The
study showed that the difference between the maximum displacement corresponding to
mesh 3 (727,474 elements and 275,399 nodes) and mesh 4 (1,603,938 elements and
669,044 nodes) is less than 5% and as a result the study did not continue for a model
with even higher resolution.

Hutton [11] comparatively shows, as examples for quite simple bodies, values of the
deformation obtained as a result of the exact and numerical solution (obtained using FEA)
but using a network with very few elements.

For the study of strain and deformation states of a gearbox housing, also a complex
body, Cojocaru et al. [12] uses networks with a high number of nodes (between 77,400
and 475,459). Maximum displacement has a variation between 0% and 2.08%, taking as a
reference the result obtained for the model with the lowest resolution. The authors’ obvious
conclusion is that “the variation of maximum element size does not lead to major changes
in the distributions of the displacements”. Noticeably, the complexity of the studied body
does not allow the determination of an exact theoretical value of the maximum deformation.
It should be noted that the deviation (error) is usually determined (both for deformation
and strain) based on the result obtained for the network with the best resolution, the last in
the series of models studied, this being the relevant criterion for evaluating convergence.

For bodies in which one or more areas present a special interest, a much higher local
density of the mesh is used, a new concept in this sense being bicameral mesh gradation (or
anisotropic mesh size control) [13]. The use of anisotropic mesh, a patented method [14], is
not limited to the study of solid (complex) bodies [15], but is applied in various fields, such as
the study of fluid dynamics [16] (aerodynamics [17], the study of the atmosphere [18], etc.), of
the viscoelasticity [19], in the determination of the natural frequencies [1], and so on.

With the increase of the computer’s performance, it is possible to use of highly efficient
software packages [20], but complex, expensive, and with limited accessibility, as stated
in [21], “increasing the number of nodes can improve the accuracy of the results, but
at the same time, it increases the solution time and cost”. Moreover, for many complex
numerical simulations, large tetrahedral anisotropic networks are used, even with billions of
elements [22], which require parallel computing resources that correspond to higher costs.
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2. Problem Description
2.1. Preliminary Evaluation

When designing complex parts, variously loaded, at various design stages, it is impor-
tant to anticipate for areas of interest or criticality regions how they behave under a certain
level of external load, for example what is their most likely elastic deformation. As an exact
analytical solution is unavailable, the finite element method is used for such parts.

In the design process, the constructive solution of the part evolves, supporting various
changes and additions. Implicitly, the body’s response to external load also changes. Design
engineers are interested in repeatedly finding out this information, in a short time and
with a high degree of confidence, with common hardware and software resources. It is
preferable that the software used for FEA to be related to the software used for the design
and 3D modelling of the part in question.

A professional FEA analysis conducted after the completion of the geometrical design
of the complex part, to confirm that the appropriate constructive solution is chosen, is
not excluded.

This article took as its starting point the design routine of the authors and does not
intend to compare various FEM analyses. At the same time, the authors wanted to identify
a fast method for obtaining results with practical application without changing the default
FEM analysis parameters and not related to a certain software solution. The authors were
interested in identifying whether and how it would be possible, using a single iteration
in FEA, to obtain for a large and complex body a reliable result for elastic deformation,
obtained quickly and inexpensively using common hardware and software resources.

As a preview of the final conclusions, it was found that the degree of confidence of the
obtained result is dependent on the number of discretization elements and this rule also
applies to geometrically simple bodies for which exact solutions are available.

If for the latter a proportionality is identified between the deformation determined
analytically (the exact solution) and the one determined by FEA, then the same ratio should
also exist between a presumed exact analytical solution and the one obtained by FEA for
the complex geometric body, under the conditions that both the simple geometric body and
the complex body share the same external load, the same volume, are made from the same
material, and have the same level of discretisation. Therefore, it would be possible to obtain
a realistic result of the FEA analysis for a common level of discretization by applying an
appropriate proportionality coefficient determined for a simple geometric body for which
an exact analytical solution exists.

2.2. Reference Complex Body

Several studies [23,24] have analysed the deformation state of a family of inclined open
frames, in particular that of the single action mechanical crank press PAI 25, a cast body with
complex geometry, considered here as a reference. Its virtual 3D model, shown in Figure 1,
made in the ProEngineer environment, faithfully respects all the geometric characteristics of
the real frame (length 580 mm, width 910 mm, height 1600 mm). The volume of embedded
material is 0.144 m3. The frame is made of cast steel St 50-2 according to DIN, for which the
following values were considered: Young’s modulus E = 210,000 N/mm2, shear modulus
G = 80,000 N/mm2, and ν = 0.3 for the Poisson’s ratio.
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tween the bore axis of the main shaft and the plane of the workbench of the frame. For 
this frame, it was not possible to elaborate an analytical expression that would allow the 
determination of the exact solution of the elastic deformation of the frame. 
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ence body. 

The study was conducted for seven levels of mesh density. The resulting values for 
each iteration, i.e., number of proposed and resulting elements, number of nodes, elastic 

Figure 1. PAI 25 press and frame 3D model.

To determine, on real conditions the deformation state, the frame was loaded with the
nominal press force, FN = 250 kN, evenly distributed on the support surfaces of the main
shaft bores, and on the work surface of the table, on the other hand, as shown in Figure 1.
The elastic deformation was determined in the direction of the pressing axis between the
bore axis of the main shaft and the plane of the workbench of the frame. For this frame, it
was not possible to elaborate an analytical expression that would allow the determination
of the exact solution of the elastic deformation of the frame.

The finite element analysis was performed in Catia V5 R16, the software into which
the 3D model made in ProEngineering was exported. The 3D model was discretized into
tetrahedral elements, as shown Figure 2. The actual number of elements differs from the
number of elements indicated in the program.
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The study was conducted for seven levels of mesh density. The resulting values for
each iteration, i.e., number of proposed and resulting elements, number of nodes, elastic
deformation indicated by the program, and the deviation ζi of deformation yi from the
deviation indicated for the last iteration (y7), can be found in Table 1. In Table 2, the average
size of the elements for each discretisation level are presented.

Table 1. Values obtained at the study by finite element analysis of the PAI 25 press frame.

No. (i) No. of Proposed
Items (Required)

No. of
Nodes

No. of Resulted
Elements, (xi)

Indicated Elastic
Deformation, (yi) [mm]

Deviation,
ζi = [(y7 − yi)/y7] × 100, [%]

1 1000 851 2309 0.0937 50.504
2 5000 1731 5007 0.14 25.926
3 10,000 3258 9810 0.16 15.344
4 20,000 6744 22,182 0.176 6.878
5 50,000 13,925 48,728 0.182 3.370
6 75,000 20,957 76,129 0.187 1.058
7 100,000 27,721 103,410 0.189 0

Table 2. Average size of the elements.

No. of Proposed
Elements 1000 5000 10,000 20,000 50,000 75,000 100,000

Average size of the
elements, [mm3] 144 28.8 14.4 7.2 2.88 1.92 1.44

The values of the elastic deformations obtained for models with better and better
resolution are ordered in a strictly ascending row. The convergence condition, stated by
Bathe [2], is obviously respected, the variation of the deviation ζi being relevant. The
variation of the deformation according to the discretization levels suggests an equilateral
hyperbole law.

The research conducted by the authors aimed to show that:

- a law can be established to link the deformations to the levels of the discretization;
- for various bodies, the most probable value of the elastic deformation can be deter-

mined;
- a coefficient of proportionality can be established between the theoretically exact

deformation and the deformation that corresponds to a certain level of discretization,
regardless of the complexity of the studied body;

- it is possible to obtain particularly good results in a short time, using common software
and hardware resources, as a result of a single FEA analysis for a reasonable mesh
density, related to the elastic deformation of complex geometry and large bodies.

3. Method and Results
3.1. Dependence of Deformation Values According to the Level of Discretization

As mentioned, the variation of the deformation according to the level of the discretiza-
tion suggests an equilateral hyperbole law. A simple enough variation law that corresponds
to the cases studied is the Equation (1)

f (x) = a − b/(x + c), (1)

where

x—the number of elements of the discretization network of the body subject to finite
element analysis,
y = f (x)—the deformation of the body (under the action of the force F) corresponding to the
discretization level to which corresponds the number x of elements of the network, and
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a = lim
x→∞

f (x) is the most probable value of the studied body deformation resulting from

the action of force F.

To determine the values of the constants a, b, and c, three sets of values are required (x;
f (x)) ≡ (x; y), in this case (x1; y1); (x2; y2), and (x3; y3).

Solving the system of Equation (2)
y1 = a− b/(x1 + c)
y2 = a− b/(x2 + c)
y3 = a− b/(x3 + c)

(2)

the expressions of the constants a, b, and c are obtained according to Equations (3)–(5):

a =
x1y1(y3 − y2) + x2y2(y1 − y3) + x3y3(y2 − y1)

y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)
, (3)

b =
(x2 − x1)(x3 − x1)(x3 − x2)(y2 − y1)(y3 − y1)(y3 − y2)

[y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)]
2 , (4)

c =
x1y1(x3 − x) + x2y2(x1 − x3) + x3y3(x2 − x1)

y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)
. (5)

Knowing the values of the constants a, b, and c, it is possible to determine with
Equation (1) the very probable value of the deformation corresponding to any value of
the number x of elements of the discretization network of the body undergoing finite
element analysis.

When performing the study for a number k ≥ 3 discretization levels, C3
k combinations

of value sets are available. Using Relation (3), for any set of three values (xi, yi), for the
constant a, a value ar-s-t (r < s < t, r ≥ 1, t ≤ k = imax) is determined.

For the example presented, the determination of the elastic deformation of the PAI 25
press frame in the direction of the application of technological force, performed by finite
element analysis for k = 7 different levels of discretization, C3

k = C3
7 = 35 different values

can be determined for the constant a, Table 3.

Table 3. The set of ar-s-t values of the probable theoretical elastic deformation of the PAI 25 press
frame, determined based on k = 7 FEA analyses with different discretization levels (in mm).

a1-2-3 = 0.18124 a1-3-4 = 0.19011 a1-4-6 = 0.19183 a2-3-4 = 0.19222 a2-4-6 = 0.19206 a3-4-5 = 0.18666 a3-6-7 = 0.19537
a1-2-4 = 0.18745 a1-3-5 = 0.18803 a1-4-7 = 0.19283 a2-3-5 = 0.18860 a2-4-7 = 0.19305 a3-4-6 = 0.19205 a4-5-6 = 0.23309
a1-2-5 = 0.18724 a1-3-6 = 0.19150 a1-5-6 = 0.19690 a2-3-6 = 0.19209 a2-5-6 = 0.19802 a3-4-7 = 0.19310 a4-5-7 = 0.20598
a1-2-6 = 0.19074 a1-3-7 = 0.19246 a1-5-7 = 0.19588 a2-3-7 = 0.19294 a2-5-7 = 0.19653 a3-5-6 = 0.19987 a4-6-7 = 0.19630
a1-2-7 = 0.19185 a1-4-5 = 0.18710 a1-6-7 = 0.19487 a2-4-5 = 0.18708 a2-6-7 = 0.19511 a3-5-7 = 0.19749 a5-6-7 = 0.19370

The limits amin = 0.1824 mm and amax = 0.23309 mm are identified, and the average
value amed = 0.19375 mm is determined. Analysing the values in Table 3 and their evolution
trend, most likely a = f (x→∞) = 0.191 . . . 0.192 mm. The following values are noticeable
a1-2-7 = 0.19185 mm, a1-3-6 = 0.1915 mm and a1-4-6 = 0.19183 mm, but also a2-3-6 = 0.19209 mm,
a2-4-6 = 0.19206 mm, a3-4-6 = 0.19205 mm.

Obviously, none of the determined ar-s-t values can be less than y7 = 0.189 mm, value of
the elastic deformation indicated by the study with the greatest level of discretization. As a
result, the following values should not be considered a1-2-3 = 0.18124, a1-2-4 = 0.18745,
a1-2-5 = 0.18724, a1-3-5 = 0.18803, a1-4-5 = 0.18710, a2-3-5 = 0.18860, a2-4-5 = 0.18708 and
a3-4-5 = 0.18666. High values that are significantly above average, such as those over
0.196 mm (namely a1-5-6 = 0.19690, a2-5-6 = 0.19802, a2-5-7 = 0.19653, a3-5-6 = 0.19987,
a3-5-7 = 0.19749, a3-6-7 = 0.19537, a4-5-6 = 0.23309, a4-5-7 = 0.20598 and a4-6-7 = 0.19630), can
also be excluded.
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Under these conditions, the corrected average value is amed-1 = 0.192688 mm against
which the new limits amin-1 = 0.19011 mm and amax-1 = 0.19588 mm deviate by −1.3379%
respectively +1.6565%.

An adequate result is obtained if the results obtained for discretisation of the studied
body in 5000, 18,000–20,000, and 70,000 elements is considered.

To obtain confirmation, it is necessary to perform studies on bodies with low geometric
complexity for which the value of the elastic deformation can be determined analytically.

To be able to extrapolate the results, the volumes of the analysed bodies must be
identical to that of the PAI 25 press frame, be made of the same material, the discretization
levels must be comparable, and the external loads must be of the same value as PAI 25. In
this respect, three examples are presented, chosen to differ in the nature of the general load
of the bodies: compression, compression and bending only, and compression, bending,
and torsion.

3.2. The Study of Simple Bodies in Which the Elastic Deformation Is Analytically Determinable
3.2.1. Deformation Study of a Simple Pole-Type Body

For a pole-type body the following are considered: length l = 1000 mm and
section A = 380 × 380 = 144,400 mm2, and a simple compression force F = 250 kN evenly
distributed, Figure 3.
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The elastic deformation of the pole is determined analytically using the Relation
(6) [25] (p. 296)

δ =
F

E·A ·l =
250, 000

210, 000·144, 400
·1000 = 0.0082443 mm. (6)
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Finite element analysis was performed for seven levels of levels of discretization.
Similar to Table 1, the results for each study are shown in Table 4. It is noted that for
all levels of discretization the elastic deformation in the direction of the resulting force is
higher than the theoretically exact one, with (1.91% . . . 7.97%).

Table 4. Values obtained at FEA study at compression of simple parallelepiped pole body.

No. (i) No. of Proposed
Items (Required)

No. of
Nodes

No. of Resulted
Elements, (xi)

Indicated Elastic
Deformation, (yi) [µm]

Deviation,
ζi = [(y7 − yi)/y7] × 100, [%]

1 1000 296 1014 8.402 5.617
2 5000 791 3153 8.588 3.527
3 10,000 2243 8921 8.592 3.482
4 20,000 4855 20,400 8.672 2.584
5 50,000 12,746 55,517 8.744 1.775
6 75,000 16,724 69,660 8.831 0.798
7 100,000 26,878 123,673 8.902 0

Using Relation (3), the values for the constant a were calculated for all 35 combinations
of three levels of discretization, Table 5. The resulting extreme values a1-5-6 = 30.211 µm and
a4-5-7 = 6.9119 µm they are obviously aberrant, and value a2-5-7 = 10.003 µm is over the limit.
These are not considered. The values a2-5-6 = 8.3598 µm or a3-5-6 = 8.3222 µm, both lower
than any of the y values based on which the values of a2-5-6 are a3-5-6 were determined,
cannot be accepted. The average value of the 30 acceptable values of the deformation is
amed = 8.9006 µm, and extreme values are amin = 8.4796 µm and amax = 9.6634 µm (which
deviates from the average value by −4.73% and respectively by +8.57%). It should be
noted that the average value amed = 8.9006 µm determined this way is practically identical
with the deformation y7 = 8.902 µm resulting for a discretization in 123,673 elements of
the studied body (Table 4), its deviation from y7 being only +0.02%. Compared to the
theoretical elastic deformation δ = 8.2443 µm, the average amed value deviates by +7.96%.

Table 5. The set of ar-s-t values of the probable theoretical elastic deformation at the compression of a
loaded pole, determined based on k = 7 FEA analyses with different discretization levels (in µm).

a1-2-3 = 8.5935 a1-3-4 = 8.7823 a1-4-6 = 8.9604 a2-3-4 = 8.5787 a2-4-6 = 9.3085 a3-4-5 = 8.8074 a3-6-7 = 9.0575
a1-2-4 = 8.6880 a1-3-5 = 8.7977 a1-4-7 = 8.9972 a2-3-5 = 8.5459 a2-4-7 = 9.1666 a3-4-6 = 9.0372 a4-5-6 = 8.5925
a1-2-5 = 8.7561 a1-3-6 = 8.9150 a1-5-6 = 30.211 a2-3-6 = 8.5360 a2-5-6 = 8.3598 a3-4-7 = 9.0476 a4-5-7 = 6.9119
a1-2-6 = 8.8498 a1-3-7 = 8.9653 a1-5-7 = 9.1949 a2-3-7 = 8.4796 a2-5-7 = 10.003 a3-5-6 = 8.3222 a4-6-7 = 9.0600
a1-2-7 = 8.9174 a1-4-5 = 8.8030 a1-6-7 = 9.0352 a2-4-5 = 8.8574 a2-6-7 = 9.0784 a3-5-7 = 9.6634 a5-6-7 = 8.9449

If only reasonable values greater than the highest determined deformation are con-
sidered from Table 5, i.e., ar-s-t ε [8.902 µm; 9.5 µm], then the corrected average value
amed-1 = 9.084 µm is greater by 10.185% compared to theoretical elastic deformation
δ = 8.2443 µm.

3.2.2. Deformation Study of a Pole with Arm in the Console

A more complex load is considered in this case, compression and bending, and this
is applicable to a pole with arm in the console, shown in Figure 4, loaded with a force
F distributed linearly on the free end of the arm in the console. The pole is presented
schematically through the average geometric fibre of the two elements.
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Figure 4. Compression and bending deformation of a pole with arm in the console. Schematic
representation (a) and state of deformations (b).

To have the same volume (as the reference) of 0.144 m3, a square section with side
s2 = 300 mm was adopted for the studied body. The relevant geometric features are lengths
l1 = 950 mm and l2 = 650 mm, areas A1 = A2 = 300 × 300 = 90,000 mm2, with axial moments
of inertia I1 = I2 = (s2)4/12 = 675 × 106 mm4. The external force has the same value F = 250 kN.

The elastic deformation of the body was determined analytically using the Castigliano
theorem [25] (p. 461), based on which the Relation (7) is obtained for the considered case.

δ = F
E·A1

l1 + F
E·I1

l1·l2
2 +

1
3 ·

F
E·I2

l3
2

= 250,000·950
210,000·90,000 + 250,000·950·6502

210,000·675,000,000 + 250,000·6503

3·210,000·675,000,000

= 0.012566 + 0.707892 + 0.161449 = 0.881808 mm.

(7)

The finite element analysis was performed for seven discretization levels, as in the
study performed on the PAI 25 press frame. Consistent with the reasoning used in
Tables 1 and 4, the resulting values for each iteration (number of proposed and result-
ing elements, number of nodes, elastic deformation indicated by the program and deviation
ζi of deformation yi from the deviation indicated for the last iteration (y7)) are presented in
Table 6.

Table 6. Deformation values obtained at compression and bending study of a pole with arm in the
console by using finite element analysis.

No. (i) No. of Proposed
Items (Required)

No. of
Nodes

No. of Resulted
Elements, (xi)

Indicated Elastic
Deformation, (yi) [mm]

Deviation,
ζi = [(y7 − yi)/y7] × 100, [%]

1 1000 338 1099 0.74 22.105
2 5000 1307 4922 0.867 8.737
3 10,000 2696 10,804 0.891 6.211
4 20,000 5129 21,575 0.919 3.263
5 50,000 13,289 58,786 0.926 2.526
6 75,000 17,143 74,515 0.944 0.632
7 100,000 22,519 100,429 0.95 0
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Using Relation (3), the values for the constant a were calculated for all C3
k = C3

7
= 35 combinations of three levels of discretization, as shown in Table 7.

Table 7. The set of ar-s-t values of the probable theoretical elastic deformation at the compression
and torsion loaded of a pole with arm in the console, determined based on k = 7 FEA analyses with
different discretization levels (in mm).

a1-2-3 = 0.9121 a1-3-4 = 0.9549 a1-4-6 = 0.9557 a2-3-4 = 1.0103 a2-4-6 = 0.9577 a3-4-5 = 0.9287 a3-6-7 = 0.9728
a1-2-4 = 0.9378 a1-3-5 = 0.9352 a1-4-7 = 0.9599 a2-3-5 = 0.9388 a2-4-7 = 0.9619 a3-4-6 = 0.9558 a4-5-6 = 0.9141
a1-2-5 = 0.9323 a1-3-6 = 0.9555 a1-5-6 = 1.0562 a2-3-6 = 0.9637 a2-5-6 = −0.853 a3-4-7 = 0.9605 a4-5-7 = 0.904
a1-2-6 = 0.951 a1-3-7 = 0.9593 a1-5-7 = 0.9957 a2-3-7 = 0.966 a2-5-7 = 1.0422 a3-5-6 = 0.7978 a4-6-7 = 0.9798
a1-2-7 = 0.9556 a1-4-5 = 0.9301 a1-6-7 = 0.9691 a2-4-5 = 0.9298 a2-6-7 = 0.972 a3-5-7 = 1.1721 a5-6-7 = 0.9561

The value a2-5-6 = −0.85313 mm is aberrant, and the values a3-5-6 = 0.79783 mm and
a3-5-7 = 1.17208 mm are exaggerated. These are eliminated and the average for the remaining
values amed = 0.959 mm determined. This is higher than the deformation y7 = 0.95 mm,
resulting for the finest discretization of the studied body, with only +0.92%. The minimum
and maximum values are amin = a4-5-7 = 0.90398 mm and amax = a1-5-6 = 1.05624 mm,
respectively. Compared to the theoretical elastic deformation δ = 0.881808 mm ≈ 0.882 mm,
the values amin, amed, and amax deviate by +2.51%, +8.71%, and +19.78% respectively.

If only reasonable values, greater than the highest determined value, are taken from
Table 7, i.e., ar-s-t ε [0.95 mm; 1.0 mm], then the corrected average value is amed-1 = 0.9633 mm,
being 9.24% higher than the theoretical elastic deformation δ = 0.882 mm.

3.2.3. Deformation Study of a Pole with Double Arm in the Console

Another case of loading–compression, bending and torsion–is exemplified by a pole
with double arm in the console as in Figure 5. Geometric characteristics (square section
with side s3 = 280 mm, lengths l1 = 940 mm, l2 = 500 mm, and l3 = 400 mm, areas A1 = A2 =
A3 = 280 × 280 = 78,400 mm2) ensure that the body volume is 0.144 m3. Axial moments
of inertia are I1 = I2 = I3 = (s3)4/12 = 512.2 × 106 mm4 and the moment of polar inertia is
(Ip)2 = (s3)4/6 = 1024.43× 106 mm4. The body is loaded (compression, bending and torsion)
with a force F = 250 kN evenly distributed at the end of the arm.
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The elastic deformation of the body was determined analytically using the Castigliano
theorem [25] (p. 461), based on which the Relation (8) is obtained for the considered case.

δ = F
E·A1

l1 +
F·(l2

2+l2
3)

E·I1
l1 + 1

3 ·
F

E·I2
l3
2 +

F·l2
3

G·(Ip)2
l2 + 1

3 ·
F

E·I3
l3
3

= 250,000·940
210,000·78,400 +

250,000·(5002+4002)
210,000·512,213,333.3 ·940 + 250,000·5003

3·210,000·512,213,333.3

+ 250,000·4002·500
80,000·1,024,426,666.7 + 250,000·4003

3·210,000·512,213,333.3

= 0.014274 + 0.895739 + 0.096841 + 0.244039 + 0.049583 = 1.300476 mm.

(8)

Once more, the finite element analysis was performed for seven discretization levels.
Similar to Tables 1, 4 and 6, the resulting values for each FEA analysis are presented in
Table 8. It is noted that elastic deformation in the force direction determined by FEA is
higher than the theoretically one, only if the level of discretization considered exceeds
63,000 elements. For the maximum level of the discretization considered, at which the
number of elements is xi ≈ 100,000 elements, the value of elastic deformation indicated in
the FEA analysis (yi = 1.35 mm) is 3.85% higher than the elastic deformation analytically
determined using the Relation (8).

Table 8. Values obtained at FEA study at compression, bending and torsion of a pole with double
arm in the console.

No. (i) No. of Proposed
Items (Required)

No. of
Nodes

No. of Resulted
Elements, (xi)

Indicated Elastic
Deformation, (yi) [mm]

Deviation,
ζi = [(y7 − yi)/y7] × 100, [%]

1 1000 324 1027 0.953 29.407
2 5000 1285 4857 1.15 14.815
3 10,000 2730 10,673 1.23 8.889
4 20,000 4937 20,097 1.26 6.667
5 50,000 12,271 50,772 1.28 5.185
6 75,000 17,364 75,224 1.32 2.222
7 100,000 22,653 99,194 1.35 0

By using Relation (3), for all 35 combinations and three levels of discretisation, the
values of the constant a, as shown in Table 9, were calculated.

Table 9. The set of ar-s-t values of the probable theoretical elastic deformation at the compression,
bending and torsion of a pole with double arm in the console determined based on k = 7 FEA analyses
with different discretization levels (in mm).

a1-2-3 = 1.3311 a1-3-4 = 1.2983 a1-4-6 = 1.3466 a2-3-4 = 1.2931 a2-4-6 = 1.3502 a3-4-5 = 1.2929 a3-6-7 = 2.4026
a1-2-4 = 1.3101 a1-3-5 = 1.2948 a1-4-7 = 1.3802 a2-3-5 = 1.2936 a2-4-7 = 1.3874 a3-4-6 = 1.3668 a4-5-6 = 1.2202
a1-2-5 = 1.2991 a1-3-6 = 1.3387 a1-5-6 = 1.4416 a2-3-6 = 1.3392 a2-5-6 = 1.5526 a3-4-7 = 1.4168 a4-5-7 = 1.1861
a1-2-6 = 1.3381 a1-3-7 = 1.3697 a1-5-7 = 1.4619 a2-3-7 = 1.3719 a2-5-7 = 1.5587 a3-5-6 = 0.9415 a4-6-7 = 0.6597
a1-2-7 = 1.3671 a1-4-5 = 1.2938 a1-6-7 = 1.4845 a2-4-5 = 1.2929 a2-6-7 = 1.565 a3-5-7 = 0.477 a5-6-7 = 1.578

Compared to the elastic deformation values obtained by FEA for the higher lev-
els of the discretization (Table 8), the values a3-5-6 = 0.94147 mm, a3-5-7 = 0.47699 mm,
a4-5-6 = 1.22024 mm, a4-5-7 = 1.18606 mm and a4-6-7 = 0.65967 mm are small, and the value
of a3-6-7 = 2.40260 mm is exaggerated. By removing these values, the minimum and max-
imum values, amin = a3-4-5 = 1.29288 mm, amax = a5-6-7 = 1.57798 mm are identified, and
the average value amed = 1.37979 mm is determined. The latter is higher than the defor-
mation y7 = 1.35 mm, resulting for the finest discretization level of the studied body, by
+2.21%. The values a2-5-6 = 1.55263 mm, a2-5-7 = 1.55865 mm, a2-6-7 = 1.56498 mm, and
a5-6-7 = 1.57798 mm are also unrealistically high. Excluding these values, the value of
amax-1 = a1-6-7 = 1.48448 mm becomes the maximum, and the corrected average value is
amed-1 = 1.35038 mm, extremely close (deviation of only +0.03%) to the deformation cor-
responding to the finest mesh considered in the study, y7 = 1.35 mm. Compared to the
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theoretical elastic deformation δ = 1.300476 mm, the values amin, amed, amed-1, amax, and
amax-1 deviate by −0.58%, +6.10%, +3.84%, +21.34%, and +14.15%, respectively.

3.3. Relevant Proportionality Coefficients

Knowing the deformations yi (from Tables 4, 6 and 8) obtained from the finite element
analysis for each level i = 1 . . . 7 of discretization, the theoretical elastic deformation δ,
the mean amed value of the reasonable values ar-s-t and an estimated value as the most
probable for the deformation of the body studied under the action of the force F, for
example amed-1 (corrected average elastic deformation), for each level i of discretization
can be highlighted values of the proportionality coefficients (kδ)i = δ/yi, (km)i = amed/yi
and (ke)i = amed-1/yi. For the three simple cases presented, the values of the proportionality
coefficients mentioned are given in Tables 10–12.

Table 10. Values of the proportionality coefficients (kδ)i, (km)i and (ke)i for a column (simple geometric
body) subject to compression (δ = 8.2443 µm; amed = 8.9006 µm; amed-1 = 9.084 µm).

i 1 2 3 4 5 6 7

yi (in µm) 8.402 8.588 8.592 8.672 8.744 8.831 8.902
(kδ)i = δ/yi 0.9812 0.9600 0.9595 0.9507 0.9429 0.9336 0.9261

(km)i = amed/yi 1.0593 1.0364 1.0359 1.0264 1.0179 1.0079 0.9998
(ke)i = amed-1/yi 1.0812 1.0578 1.0573 1.0475 1.0389 1.0286 1.0204

Table 11. Values of the proportionality coefficients (kδ)i, (km)i and (ke)i for a pole with arm in the
console, subject to compression and torsion (δ = 8.2443 µm; amed = 8.9006 µm; amed-1 = 9.084 µm).

i 1 2 3 4 5 6 7

yi (in mm) 0.74 0.867 0.891 0.919 0.926 0.944 0.95
(kδ)i = δ/yi 1.1916 1.0171 0.9897 0.9595 0.9523 0.9341 0.9282

(km)i = amed/yi 1.2959 1.1061 1.0763 1.0435 1.0356 1.0159 1.0095
(ke)i = amed-1/yi 1.3018 1.1111 1.0811 1.0482 1.0403 1.0204 1.0140

Table 12. Values of the proportionality coefficients (kδ)i, (km)i and (ke)i for a pole with double arm
in the console, subject to compression, bending and torsion (δ = 8.2443 µm; amed = 8.9006 µm;
amed-1 = 9.084 µm).

i 1 2 3 4 5 6 7

yi (in mm) 0.953 1.15 1.23 1.26 1.28 1.32 1.35
(kδ)i = δ/yi 1.36461 1.13085 1.05730 1.03212 1.01600 0.98521 0.96332

(km)i = amed/yi 1.44784 1.19982 1.12178 1.09507 1.07796 1.04530 1.02207
(ke)i = amed-1/yi 1.41698 1.17424 1.09787 1.07173 1.05498 1.02302 1.00028

The following preliminary conclusions emerge from the analysis of the coefficients
(kδ)i, (km)I, and (ke)i. presented in Tables 10–12.

As the level of discretization increases, the values of the coefficients (kδ)i become
subunit, i.e., the analytically determined deformation is smaller than the one resulting from
the FEA, regardless of whether the body load is simple or more complex. For low levels
of discretization, the differences between the values of the coefficients (kδ)i are relatively
large regardless of whether the body is subject to simple (e.g., only compression) or more
complex (e.g., compression, bending, and torsion) loads. However, for high discretization
levels (10,000 elements or more), the differences between the values of the coefficients (kδ)i
fade, becoming less than 4%.

Similarly, the values of the coefficients (km)i and (ke)i decrease with the increase of the
discretization level of the studied bodies, with an asymptotic variation towards 1 being
evident. For low discretization levels (characterized by xi ≈ 1000 elements), the values of
the coefficients (km)i and (ke)i are significantly higher than the asymptotic limit, even by
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more than 40%, the magnitude of the deviation being even as the complexity of the body
is rising.

Knowing values of the coefficients (kδ)i, (km)I, and (ke)i determined according to the
level of discretization of some bodies with relatively simple geometry, bodies for which
it is possible to analytically determine the elastic deformation corresponding to a certain
external load, it is sufficient to determine by FEA the elastic deformation for a certain
discretization level to be able to estimate with sufficient precision values of interest of
the respective body deformation, such as theoretical elastic deformation δ, average elastic
deformation amed or corrected average elastic deformation amed-1. They are obtained simply
as a product of the value of the elastic deformation determined through FEA for the level
of discretization adopted and the value of the coefficient kδ, km, or ke corresponding to that
level of discretization.

Obviously, this approach can also be applied to the PAI 25 press frame, the yi values
of the elastic deformation determined using FEA for different levels of discretization being
known (Table 1). The frame mentioned is subject to complex load and, as a result, the
values of the coefficients (kδ)i, (km)I, and (ke)i shown in Table 12 will be taken into account.
The values thus estimated for the elastic deformation δi, the average elastic deformation
(amed)i, and the corrected average elastic deformation (amed-1)i, corresponding to each of
the discretization levels are given in Table 13.

Table 13. Estimated values δi, (amed)i and (amed-1)i, for PAI 25 press frame determined through
amendment of elastic deformation yi with the values of proportional coefficients (kδ)i, (km)i and (ke)i.

i yi (kδ)i (km)i (ke)i δi = yi·(kδ)i (amed)i = yi·(km)i (amed-1)i = yi·(ke)i

[mm] - - - [mm] [mm] [mm]

1 0.0937 1.36461 1.44784 1.41698 0.127864 0.135663 0.132771
2 0.14 1.13085 1.19982 1.17424 0.158319 0.167975 0.164394
3 0.16 1.05730 1.12178 1.09787 0.169168 0.179485 0.175659
4 0.176 1.03212 1.09507 1.07173 0.181653 0.192732 0.188624
5 0.182 1.01600 1.07796 1.05498 0.184912 0.196189 0.192006
6 0.187 0.98521 1.04530 1.02303 0.184234 0.195471 0.191305
7 0.189 0.96332 1.02207 1.00028 0.182067 0.193171 0.189053

By reference to the elastic deformation δ7 determined for the finest discretization,
to the average elastic deformation amed and to the corrected average elastic deformation
amed-1, the deviations of the values δi, (amed)i and respectively (amed-1)i, determined using
the proportionality coefficients kδ, km, and ke, are shown in Table 14.

Table 14. Deviations of estimated values δi, (amed)i and (amed-1)i from values δ7, amed and amed-1 for
PAI 25 press frame.

i ∆δi
= (y7 − δi)/y7·100%

∆(amed)i
= ((amed − (amed)i)/amed·100%

∆(amed-1)i
= ((amed-1 − (amed-1)i)/amed-1·100%

1 32.347 29.981 31.095
2 16.233 13.303 14.684
3 10.493 7.363 8.837
4 3.887 0.525 2.109
5 2.163 −1.259 0.354
6 2.521 −0.888 0.718
7 3.668 0.299 1.887

For discretization levels in 20,000 items or more, the deviations of all three values are
becoming smaller, within a maximum range of 4%, acceptable for mainstream practical
applications. For bodies with the complexity of the PAI 25 press frame, the mentioned
deviations are large or much too large for discretization levels of up to 20,000 elements
and as a result a study at such a level cannot be recommended. Based on the results
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presented in Table 14, it is recommended to determine the elastic deformation by FEA
studies with mesh with 20,000-100,000 elements. Very small deviations, for all three
analysed values are identified for discretization levels 5 and 6, i.e., for x5 ≈ 50,000 elements
and x6 ≈ 75,000 elements respectively. These are accessible levels of discretion for common
software and hardware resources and allow particularly good results in a short time in
terms of the value of elastic deformation of large and complex bodies.

4. Conclusions

There is a great interest in determining the elastic deformation of various bodies with
complex structure and varied loaded with external forces. For such bodies, most often,
an exact analytical solution is not achievable, but FEA offers the possibility of obtaining a
close approximate solution. However, more iterations are needed, with increasingly fine
densities, which requires time, supplementary hardware, and software resources.

There are several scientific papers which, for bodies with simple geometry, show
values of deformations obtained numerically compared to the exact value determined
analytically. The numerical solution converges to the analytically determined value for
sufficiently fine discretization levels of the studied bodies. Examples addressed in this
paper only partially confirm the convergence of the numerical solution to the analytical
solution. As the mesh density increases (100,000 elements or more), the numerical solution
becomes larger than the analytical solution by 4–8%. Maximum differences between FEA
and analytical results were obtained in the case of a simple body subjected to compression.
It would have been expected that such (relatively large) differences would be identified in
more complex loaded bodies, in which the analytical model took into account the geometric
mean fibre and not the undeformed mean fibre.

The convergence to zero of the deviation of the numerical solution allows the high-
lighting of a function of variation for the values of the numerical solution depending on the
level of the discretization of the investigated body. This law is one with an asymptotic in-
crease towards the most probable value of the numerical solution of the elastic deformation
related to the body under study. A value for the numerical solution is determined for each
mesh density, and further analysis of such values leads to the determination of relevant
values, i.e., the average value amed of the reasonable values of the numerical solutions and
the corrected average elastic deformation amed-1 (value estimated to be the most probable
for deformed body studied).

For the simple geometrically studied bodies, knowing the deformations obtained from
the finite element analysis for each mesh density (theoretical elastic deformation δ, mean
amed value of reasonable values and corrected average elastic deformation amed-1), the
proportionality coefficients kδ, km, and ke, were determined for each i level of discretization
for which the study was performed. As the level of discretization increases, the values of
the coefficient kδ become subunit, i.e., the analytically determined deformation is smaller
than that the one resulting from the FEA, regardless of complexity of force loading. For
high mesh density (10,000 elements or more) the differences between the values of the
coefficient kδ are diminishing, becoming less than 4%. The values of coefficients km and
ke are decreasing with the increase of the discretization level of the studied bodies, being
evident an asymptotic variation towards 1.

As a future development, it will be studied whether, at least for some applications, the
law of variation of the deformation’s values, according to the discretization levels proposed
by Relation (1), should be replaced with a similar one in which the denominator is of higher
order, e.g., the one presented in Relation (9)

f (x) = a − b/(x2 + c). (9)

For such a variation, the convergence towards the most probable deformation of the
numerically determined values is much faster, being evident especially for discretization in
a relatively small number of elements.
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Knowing values of the coefficients kδ, km, and ke determined according to the dis-
cretization level of some bodies with relatively simple geometry for which the analytical
solution is easily determined, it is sufficient to determine by FEA the elastic deformation
for a certain discretization level to be able to estimate with sufficient precision, by simi-
larity, values of interest of the deformation of a complex body, such as δ, amed, or amed-1.
They are obtained simply as a product of the value of the elastic deformation determined
through FEA for the discretization level adopted and the value of the coefficient kδ, km, or
ke corresponding to that discretization level.

This approach was applied to the PAI 25 press frame, for which elastic deformation
values were determined using FEA for different discretization levels. To determine the
elastic deformation for bodies with the complexity of the PAI 25 press frame, discretization
levels in 20,000 elements or more for FEA studies are recommended, levels for which
the deviations of the values of the coefficients kδ, km, and ke become small, within a
maximum range of 4%, acceptable for many practical applications. Discretion levels of
20,000–100,000 elements are accessible for common software and hardware resources and
allow in a reasonable time to obtain particularly reliable results for the elastic deformation
of large and geometrically complex bodies.
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Abbreviations

xi
effective number of discretisation items, for discretization
level i

yi
the indicated elastic deformation (numerical solution),
for level i of discretization

imax i level for maximum discretisation

ar-s-t (r < s < t, r ≥ 1, t ≤ k = imax)
any value of the probable theoretical elastic deformation
determined based on a presumed law of variation

amin, amax, amed
the minimum, maximum and average values for a

r-s-t set
of values

amin-1, amax-1, amed-1

minimum, maximum, and corrected average value
(estimated value as the most probable) resulting from
disregarding values ar-s-t that are aberrant and unrealistic

δ analytically determined theoretical deformation

(kδ)i, (km)i, (ke)i

proportionality coefficient for the theoretical elastic
deformation δ determined analytically, for the mean amed
value of the numerical solutions ar-s-t, and respectively for the
mean amed-1 value of the numerical solutions ar-s-t, for
discretization level i

ζi deviation for discretization level i
k maximum level of discretization
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