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Abstract: The percolation of the interfacial transition zone (ITZ) is generally regarded as an important
factor that may accelerate the penetration of aggressive agents in concrete materials, and its threshold
is largely determined by the features of aggregates. In most numerical studies about ITZ percolation,
both fine aggregates and coarse aggregates are assumed to be the particles of uniform shape, and
their size distributions are generally strung together by a single function, which is quite different
from reality. To quantify the ITZ percolation associated with the polydispersity of aggregate shapes
and size gradations in a more realistic way, the two-dimensional (2D) meso-scale model of concrete is
generated by simplifying coarse aggregates and fine aggregates as polygons and ovals, respectively.
Moreover, the size gradations of them are also represented by two separate expressions. By combining
these models with percolation theory, the percolation of ITZ in the 2D case is explicitly simulated,
and the influence of aggregate shape- and size-diversities on the critical threshold φagg,c is studied
in detail. Based on the simulated results of φagg,c, an empirically analytical expression is further
proposed to fast predict the ITZ percolation, and its reliability is verified. The results show that the
ITZ thickness, average aggregate fineness, coarse aggregate shape, and fine aggregate shapes are
the four main contributing factors to the ITZ percolation. Compared with the existing literature, the
proposed model here has a broader range of applications (e.g., mortar, concrete, and other granular
systems) in the 2D case and can provide the larger predicted results, which may be closer to reality.

Keywords: polyphase concrete; ITZ percolation; synergetic effect; aggregate shape; numerical modeling

1. Introduction

The interfacial transition zone (ITZ) [1–3] is commonly deemed to be an important
component around the aggregate particles in concrete, and its distinct characters (e.g.,
higher porosity, lower strength, and larger permeability) can facilitate the penetration of
aggressive ions into materials and the stress concentration to some extent, which in turn
leads to the degradation of material performance [4,5]. Specially, the ITZ percolation [6,7]
is mainly used to reflect the global connectivity of the ITZs around the aggregates, and its
critical threshold can be generally regarded as a contributing factor that determines the
micro-structure and macro-properties of materials. According to the percolation theory [8,9],
once the global connectivity of ITZs emerges, a dramatic and rapid change in material
properties may occur. Therefore, exploring the ITZ percolation in concrete is of great
significance for evaluating the effective performance of materials.
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Due to the complexity and changefulness of the ITZ phase in concrete, it is generally
difficult to experimentally identify and quantify the partial characteristics of the ITZ
phase, such as ITZ thickness, relative content, percolation behavior, etc. To remedy this
deficiency, computer simulation has become a powerful alternative tool in the field of
percolation [10–12]. Up to now, a large number of researches about the ITZ percolation in
concrete have been conducted by simulation, and considerable achievements have been
successively obtained. For instance, by assuming the aggregate particles as regular-shaped
particles (e.g., spheres [13–15], ellipsoids [16,17], polygons [18], polyhedrons [19], etc.)
with polydisperse sizes, the sensitivity of the ITZ percolation to the aggregate shapes
and sizes was studied individually, and the findings were concluded as below: (a) the
ITZ thickness is the dominant factor that determines the ITZ percolation [14–19]; (b) the
percolation threshold of ITZ is very sensitive to the specific surface areas (SSA) of particles
and shows an obviously downward trend with the increase of SSA [17–19]; (c) with the
increase of the aspect ratio of elongated ellipsoids [16,17] or the decrease of the number of
polygon edges [18] and polyhedron faces [19], the percolation threshold of ITZ around them
could be decreased significantly. All of these studies [14–19] supported the importance
of aggregate shape and size in the prediction of ITZ percolation. However, there are still
several problems that need to be improved because of two simplistic assumptions generally
used in the previous papers. The first assumption is that both coarse aggregates and
fine aggregates are commonly simplified as regular particles of uniform shape, which
overlooks the geometric differences between them [15,16,18,19]. As shown in Figure 1,
the aggregate particles in concrete can be roughly classified into two categories: coarse
aggregates (i.e., gravels) and fine aggregates (i.e., sands). Morphologically, the geometric
shapes of coarse aggregates are very similar to the regular/irregular convex polygons or
polyhedrons [18–23]. By contrast, the fine aggregates look more like the non-spherical
particles of smooth surfaces such as spheres [13–15], ellipsoids [16,17], and ovoids [7,24,25],
etc. In addition, the other simplistic assumption is that both the size distributions of coarse
aggregates and fine aggregates in the literature about ITZ features are generally strung
together and quantitatively represented by a single function [15,16,18–24], which is also
quite different from the reality in concrete. The oversimplification of aggregate shapes
and size distributions in previous studies may result in a greater deviation between the
predicted approximation and the reality.
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in actual concrete.

To emphasize the effect of the shape diversity of granular components in materials,
a series of complex granular systems have been applied recently in the study of ITZ
percolation. For example, a combination body of ellipsoids and spheres is adopted to
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represent the fine aggregates and air-voids in the air-entrained mortar, and the dependence
of ITZ percolation on the shape features of both aggregates and air-voids is obtained [26].
All the specific surface areas of the fine aggregate and air void, ITZ thickness, and air-
void volume fraction can be regarded as crucial parameters to the ITZ percolation. In
the literature [27], the fine aggregates and lightweight (LWA) aggregates are respectively
assumed to be the spherical particles with the fixed thickness of ITZ and the spherical
particles with no ITZ, and the sensitivity of ITZ percolation to the relative content of
different types of aggregates is presented. The figures in this paper show that the volume
fraction of percolated ITZ for the LWA mortar is generally lower than that for the normal
mortar. In addition, by assuming the aggregates and fibers as ellipsoids and cylinders,
respectively, the effect of the features of aggregates and fibers (e.g., aggregate fraction,
gradation, fiber length, etc.) in high performance concrete (HPC) on the percolation of ITZ
around them is investigated [28], and the results show that although the ITZ regions in HPC
are thinner and not percolated, they can be re-percolated by the addition of just a few fibers.
According to the above studies [26–28] for the granular system composed of poly-shaped
particles here, it can be found that the variation of ITZ percolation in them would be much
more complicated than in the mono-shaped particle systems, which also indirectly proves
the necessity of distinguishing the geometric difference between coarse aggregates and fine
aggregates in the numerical prediction of ITZ percolation in the concrete systems.

In order to overcome these two simplistic assumptions mentioned above and deter-
mine the ITZ percolation associated with the polydispersity of aggregate shapes and size
gradations, the coarse aggregates and fine aggregates in concrete are respectively assumed
to be polygons and ovals based on their real morphologies in Figure 1. Moreover, the
size gradations of them are also expressed by two separate functions instead of a single
contiguous function as described in refs. [15,16,18–24]. On the basis of above two precondi-
tions, the sensitivity of ITZ percolation to the features of both coarse aggregates and fine
aggregates in a more realistic way is studied in this paper. Besides, it should be stressed
that to reduce the research difficulty and shorten the computation time, the whole work
here is conducted in the two-dimensional (2D) case.

The details of this paper are arranged as follows: first, the mathematical expressions
of both ovals and regular polygons, the modeling of uniform ITZ around them, and the
generating procedure of 2D meso-scale models of concrete are successively presented in
Section 2. By combining these models with continuum percolation theory, the effective
percolation of the uniform ITZ around both oval fine aggregates and polygonal coarse
aggregates is explicitly simulated in Section 3, and the effect of the polydispersity of
aggregate shapes and sizes (e.g., the aggregate shape, gradation, and sand ratio) on the
critical threshold φagg,c is quantitatively evaluated in detail then. Based on the simulated
results of φagg,c, an empirically analytical expression is further proposed by the linear
regression analysis, and the comparisons of the predicted value here and the numerical
results of the existing function are then presented. Finally, some interesting conclusions are
highlighted in Section 4.

2. Modeling and Methods
2.1. Meso-Scale Models of Concrete Containing Ovals and Polygons
2.1.1. Geometric Expressions of Ovals and Polygons

The oval is a catch-all term for a family of 2D non-centrosymmetric particles that
include circles, ellipses, egg-shaped particles, and other convex-shaped particles with
smooth contours, as shown in Figure 2. It has been widely used to characterize the essential
features of components in materials [29,30] due to its extensive representation. Based on
the geometric features of the oval particles in Figure 2, the profile of ovals can be simply
treated as an extension of ellipses, and their mathematical expression can be described by
Equation (1).

x2(
ζ a

b y + a
)2 +

y2

b2 = 1.0 , (1)



Materials 2023, 16, 2515 4 of 18

where ζ is a tapering coefficient that varies from 0.0 to 1.0, a and b are the semi-axis lengths
of the oval in the x- and y-axis directions, respectively, and the ratio of b to a is defined as
the aspect ratio of the oval.
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As shown in Figure 3, a set of regular polygons with different numbers of edges are
graphically displayed. According to the study in [18], the geometric topographies of these
polygons can be mathematically expressed via the collection of the subsets of vertices and
edges. Take the regular pentagon as an example; it is assumed that the centroid of the
particle is located at the origin of rectangle coordinates and the x-axis passes through one of
its vertices. The size and length of the pentagon are denoted by the notation l. Furthermore,
all the vertices Pi (i.e., P1, P2, P3, P4, and P5) of a particle can be symbolized by Equation (2).

Pi =


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l
2 csc

(
π
5
)
, 0
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(
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5
)
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)
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π
5
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(
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(
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.
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Moreover, the five edges of a pentagon are also symbolized by the notation Li (i.e., L1,
L2, L3, L4, and L5), and their detailed expressions can be further mathematically described
as: L1 = {P1, P2}, L2 = {P2, P3}, L3 = {P3, P4}, L4 = {P4, P5} and L5 = {P5, P1}. The relevant
geometric information for other kinds of regular polygons has been presented in [18] and
is not elaborated again.

2.1.2. Modeling of ITZ around Complex-Shaped Aggregates

In the field of material science, the importance of interphase thickness has been
widely acknowledged. For the concrete systems, the thickness of ITZ tITZ around aggregate
particles generally fluctuates in a certain range (e.g., [15 µm, 50 µm] in [31], [50 µm, 200 µm]
in [32], [100 µm, 200 µm] in [33], etc.), and its specific value may also be differential at
different locations around a single aggregate. Strictly speaking, the values of ITZ thickness
in concrete would be closely conditioned by a variety of factors such as the composition, test
method, curing condition, mixture ratio, production technology, and so on, which is deemed
to be a very complicated issue. However, to accurately describe the quantitative relationship
between the ITZ thickness and the structural features (or properties) of materials, the ITZ
thickness around the aggregates is generally assumed to be a constant in the numerical
modeling of concrete. As the relationship between them is formulized, the corresponding
expression can be directly applied by substituting the statistical average of ITZ thickness in
real material into it. In this study, the commonly used assumption mentioned above is also
adopted for the sake of simplicity. That is to say, all the ITZs in the models are assumed to
be the uniform interfacial layers coated on the surface of particles, and the overlap of them
can freely occur.

To generate the ITZ with a uniform thickness, various techniques were developed
based on the geometric shapes of particles. For the ovals, the outer contour of ITZ around
them can be discretized into a limited number of points (i.e., (xITZ, yITZ)), and the mathe-
matical expression of these discrete points can be further derived by combining the generic
formula of ovals (i.e., Equation (1)) and the unit normal vectors (nx, ny) of the points on the
contour of these particles as follows:

∂F(x, y)
∂x

=
2x(

ζ a
b y + a

)2 , (3)

∂F(x, y)
∂y

=
−2aζx2

b
(
ζ a

b y + a
)3 +

2y
b2 , (4)

(
nx, ny

)
=

∂F
∂x

/

√(
∂F
∂x

)2
+

(
∂F
∂y

)2
,

∂F
∂y

/

√(
∂F
∂x

)2
+

(
∂F
∂y

)2
 , (5)

{
xITZ = x + nx · tITZ ,
yITZ = y + ny · tITZ ,

(6)

where tITZ is the thickness of the uniform ITZ around aggregates, (x, y) represent the spatial
coordinates of the points on the contour of the oval.

For the regular polygons, the outer contour of ITZ around them can be generally
subdivided into the part of vertices and the part of edges, as described in [18]. The part of
the vertices on the contour of ITZ can be viewed as the circular arcs, which are composed
of a limited number of discrete points at a fixed distance from the vertexes. The part of the
edges on the contour of ITZ can be treated as the line segments, which are parallel to the
original edges of the polygon, and they can be constructed by translating the original edges
by a preset distance along the normal line of these edges.

2.1.3. Generation of the 2D Meso-Scale Models of Concrete

Actually, both coarse aggregates and fine aggregates in concrete are assemblies of
polysized particles. To ascertain the influence of aggregate size distributions on the features
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of ITZ around them, two common functions (i.e., the EVF function and Fuller function
described by Equation (7)) used in the modeling of concrete materials are adopted here
to characterize the size gradation (PSG) of these aggregate particles by reference to the
literature [34]. Moreover, to uniformly symbolize the sizes of these non-spherical parti-
cles with different sizes, the equivalent diameter Deq, which is defined as the diameter
of a circle having the same area as that of a 2D complex-shaped particle, is further intro-
duced. Finally, by combining a series of the above preconditions with the RSP algorithm
in Figure 4, meso-scale models of polyphase concrete composed of oval fine aggregates,
polygonal coarse aggregates, uniform ITZ, and homogeneous cement matrix can be gener-
ated in 2D space. The detailed algorithms and technique have been presented in previous
studies [18,29,34–37]. To avoid duplication, they are not stated in detail in this paper.

FA
(

Deq
)
=


D1/2

eq −D1/2
eq,min

D1/2
eq,max−D1/2

eq,min
Fuller distribution,

ln(Deq)−ln(Deq,min)
ln(Deq,max)−ln(Deq,min)

EVF distribution,
(7)

where FA(Deq) is the area-based cumulative probability function, Deq,min and Deq,max are
the minimum and maximum equivalent diameters of particles, respectively.
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As shown in Figure 5, taking the Fuller function in Equation (7) as an example, one
sample of the 2D model of concrete comprising of pentagonal coarse aggregates, oval fine
aggregates, uniform ITZ, and cement matrix with the periodic boundary conditions is
displayed graphically. In this model, the size length L of a square container is equal to
100 mm. The total fraction φagg of aggregate particles is 0.75, and the sand ratio βs (i.e., the
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area ratio of fine aggregates to the sum of both coarse aggregates and fine aggregates) is
0.40. Besides, all the values of tITZ around the aggregates are set to 100 µm.
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2.2. Percolation Simulation of ITZ around Polydisperse Aggregates

As of now, a wide variety of percolation models with HCSS networks and numerical
techniques (e.g., forest fire models, tree-burning algorithms, etc.) have been developed
recently [7,9,15,17–19,26]. In these HCSS models, the criticality of the emergence of the
connected paths is generally represented by the critical threshold, which is commonly
symbolized by the critical fraction φagg,c of particulate components. To quantify the ITZ
percolation around the mixture of ovals and polygons, a commonly used numerical method
in ref. [15] is also adopted in this study, and the detailed procedure for searching the
percolation path of ITZ is shown in Figure 6. Firstly, the 2D polyphase model with the
periodic boundary condition is generated, as shown in Figure 6a. By taking the left and
right edges of the container as an example, the first step is to search for the aggregate
particles around which the ITZs can intersect with the left edge and label them with a new
tag (i.e., the blue in Figure 6b). Afterward, search further for the aggregate particles around
which the ITZs can intersect with the ITZs around the preceding labeled particles and label
them with the same tag, as shown in Figure 6c. The above process is performed iteratively
until there are no additional particles. Finally, judge whether or not the ITZs around these
labeled aggregates can intersect with the right edge of the container. If there exists the
interconnectivity among ITZs throughout the whole system, as shown in Figure 6d, the
ITZ percolation is deemed to occur in this sample.
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oval fine particles and polygonal coarse particles: (a) The generation of 2D polyphase model; (b) The
identification of the particles that can intersect with the left edge; (c) The identification of the particles
that intersect with the labeled particles; (d) The realization of the ITZ percolation path.
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In light of the independence of each sample, the occurrence of ITZ percolation in the
finite-sized system can be regarded as a Bernoulli probability variable. For a large number
of trials, the number of successes could be mathematically represented by the binominal
distribution, and the number ratio of the percolating samples Npcl to the total samples Ntotal
(i.e., PITZ = Npcl/Ntotal) is generally defined as the percolation probability PITZ. A great
number of studies [13,15,18,19,37] have clearly shown that the stability of PITZ is closely
dependent on the value of Ntotal. To improve the statistical stability of PITZ, Ntotal is set to
be 2000 here by referring to the description in [18]. Furthermore, as the probability PITZ
for the finite-sized systems with different L and φagg is obtained, the critical percolation
threshold φagg,c can be further determined by the curve-fitting method with the following
formula (i.e., Equation (8)).

PITZ
(
φagg, L

)
=

1
2
·
{

1 + erf
[

φagg − φagg,c

∆(L)

]}
, (8)

where φagg, is the relative content of aggregate particles, φagg,c is the critical percolation
threshold of ITZ, and ∆(L) is the percolation transition width.

According to the study by Pan et al. [26], the size length L of percolation models
would mainly affect the value of ∆(L), but has no great influence on the critical percolation
threshold φagg,c. By reference to the findings (i.e., L ≥ 5Deq,max) in [19] and the criterion for
determining the representative volume element (REV) in [38] (i.e., the RVE size should be
at least 3~5 times of the maximum particle diameter), the size lengths of all the generated
models here are set to not less than 5 times of the maximum size Deq,max,P of polygonal
coarse aggregates (i.e., L/Deq,max,P ≥ 5.0).

3. Results and Discussion

In the section, a series of parametric analyses about the effect of aggregate features
on the critical threshold φagg,c of ITZ percolation are conducted. Based on the simulated
results of φagg,c, an approximately analytical function is further developed to fast evaluate
the ITZ percolation in the 2D case of polyphase composite systems.

3.1. Effect of Particle Shapes on the ITZ Percolation

By assuming the coarse aggregates as regular pentagons, the sensitivity of the critical
threshold φagg,c to the shape of oval fine aggregates is studied first in Figure 7. The curved
surfaces clearly show that the threshold φagg,c is an apparently ζ- and b/a-dependent
argument, which possesses the obviously different trends with the parameters ζ and b/a.
On the one hand, as ζ increases from 0.0 to 1.0, φagg,c basically shows a slightly decreasing
trend under a constant b/a. On the other hand, when the coefficient ζ is fixed, all the φagg,c-
b/a curves could be subdivided into two stages (i.e., the upward stage and the downward
stage) with the increase of b/a in [0.2, 2.5], and the inflection points are basically located at
b/a = 1.0. In the upward stage, the value of φagg,c increases rapidly with the increasing b/a
from 0.2 to 1.0 in the parabolic manner. However, with the further growth of b/a, φagg,c
presents a very slowly descending trend. Overall, the maximal threshold φagg,c appears
at ζ = 0.0 and b/a = 1.0, which indicates that the ITZ percolation paths are least likely to
be formed if the fine aggregates are assumed to be circular. In [29], the variation curves
of the percolation threshold εc,mm of porous systems composed of oval pores with b/a in
[0.2, 5.0] and ζ in [0.0, 0.5] were presented. By comparison, one can clearly see that the
variation of φagg,c with b/a and ζ here is commendably consistent with these results. These
comparisons indirectly indicate the reliability of the variation of φagg,c.

In the literature [18], the aggregate shapes are uniformly symbolized by the circularity
c2D (i.e., the perimeter ratio of circles to non-circular particles having the same area), and
the critical threshold φagg,c is formulized as a function of c2D. By referring to this strategy,
the circularities c2D,O of ovals with b/a in [0.2, 2.5] and ζ in [0.0, 1.0] are calculated, and
the sensitivity of φagg,c to the circularity c2D,O is further graphically presented based on
the results of φagg,c in Figure 7. It can be seen that all the data points in Figure 8 are
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roughly converging to a quadratic increasing curve, which means that the smaller the
circularity c2D,O of fine aggregates is, the more easily the percolation paths of ITZ around
them are formed. The above trend indicates that the circularity can be well used to represent
the quantitative relationship between the ITZ percolation threshold and the oval shapes.
This provides the foundation for the derivation of the analytical model of φagg,c in the
following sections.
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In Figure 9, the sensitivity of ITZ percolation to the shape of polygonal coarse aggre-
gates is further studied. The results clearly show that no matter what the shape of fine
aggregates is, φagg,c always possesses a similar trend with the shape shifting of coarse ag-
gregates (i.e., Circle > Decagon > Octagon > Hexagon > Pentagon > Square > Triangle). By
combining with the circularity c2D,P of these polygons, the value of φagg,c here also shows
the downward trend with the increasing c2D,P and the attenuation amplitude of φagg,c is
largely dependent on the relative difference of c2D,P for different polygons. However, by
contrast with the dataset in [18], it can be found that the impact degree of aggregate shape
(i.e, c2D,O or c2D,P) on the value of φagg,c here is significantly weakened, which indicates that
the analytical formula in the previous paper [18] may not be directly applicable. Overall,
the ITZ percolation would be influenced by the synergy of both fine aggregate shapes
and coarse aggregate shapes. It is very necessary to distinguish the geometric difference
between fine aggregate and coarse aggregate in the modeling of concrete.
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3.2. Effect of Particle Sizes on the ITZ Percolation

Size-polydispersity of particles inevitably exists in most granular materials, and a
number of studies about the ITZ percolation involving the polysized aggregates have been
conducted recently [13,15,18,19,26], but the size distribution difference between fine aggre-
gates and coarse aggregates is often overlooked. In the section, the dependence of critical
threshold φagg,c on the size distributions of both fine and coarse aggregates is separately
analyzed. Figure 10a,b show the sensitivity of φagg,c to the maximum diameter Deq,max,O of
fine aggregates and maximum diameter Deq,max,P of coarse aggregates, respectively. It can
be seen that all the curves of φagg,c-tITZ possess a remarkable inverted parabolic downward
trend with the increasing tITZ in [0.03 mm, 0.11 mm]. This is mainly due to the fact that
the thicker the ITZ thickness is, the greater the collision probability of ITZ around different
aggregates is, which in turn promotes the formation of ITZ percolation paths in concrete.
Besides, when the value of Deq,min,O or Deq,min,P is held constant, the threshold φagg,c shows
the various degrees of growth with the increase of Deq,max,O or Deq,max,P. That is to say, the
smaller the value of Deq,max,O or Deq,max,P is, the more easily the ITZ percolation paths are
formed. By comparison, it is not difficult to find that the dependence of φagg,c on the size
Deq,max,P is significantly lower than the size Deq,max,O. Hence, for the sake of simplicity, the
effect of the size ranges of coarse aggregates on the ITZ percolation can be negligible in
some cases.
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By using Equation (7), the effect of PSG of both fine aggregates and coarse aggregates
on the ITZ percolation is further shown in Figure 10c. One can clearly see that the PSG
of fine aggregates has a significant influence on the critical threshold φagg,c. The value
of φagg,c for EVF gradation is much smaller than the corresponding threshold for Fuller
gradation. This is largely due to the fact that the number of small-sized aggregates in the
system for EVF gradation is generally larger than that for Fuller gradation. The above trend
of φagg,c here is in good agreement with the existing findings for the mono-shaped particle
system in [15,18,19,26]. In contrast to that, the PSG of coarse aggregates has little effect on
the ITZ percolation around them. This phenomenon has not yet been reported in previous
literature and needs to be given enough consideration.

According to the study in [18], the influence of all the size-polydispersities of aggre-
gate particles on the ITZ percolation φagg,c can be attributed to the aggregate fineness,
which is commonly symbolized by the specific surface area CA. Based on this view, the
average specific surface area Cavg

A of both oval aggregates and polygonal aggregates is
derived here to represent the fineness of aggregate particles in concrete, as expressed by
Equations (9)–(11).

Cavg
A = βs ·CA,O + (1− βs) ·CA,P , (9)

CA,O =

∫ Deq,max,O
Deq,min,O

CO
(

Deq,O
)
· fN

(
Deq,O

)
dDeq,O∫ Deq,max,O

Deq,min,O
AO
(

Deq,O
)
· fN

(
Deq,O

)
dDeq,O

, (10)

CA,P =

∫ Deq,max,P
Deq,min,P

CP
(

Deq,P
)
· fN

(
Deq,P

)
dDeq,P∫ Deq,max,P

Deq,min,P
AP
(

Deq,P
)
· fN

(
Deq,P

)
dDeq,P

, (11)

where CA,O and CA,P are the specific surface areas of oval fine aggregates and polygonal
coarse aggregates, CO(Deq,O), AO(Deq,O) and fN(Deq,O) are the perimeter, area and number-
based probability function for oval fine aggregates, respectively; CP(Deq,P), AP(Deq,P), and
fN(Deq,P) are the perimeter, area, and number-based probability function for polygonal
coarse aggregates, respectively.

For the Fuller function and EVF function in Equation (7), the corresponding number-
based probability functions can be expressed as below:

fN
(

Deq
)
=


3

2D5/2
eq

(
D−3/2

eq,min−D−3/2
eq,max

) Fuller distribution,

2
D3

eq

(
D−2

eq,min−D−2
eq,max

) EVF distribution.
(12)

By substituting Equation (12) into Equations (10) and (11), the theoretical solution of
CA for different types of particles can be further derived, and the detailed formulas (i.e.,
Equation (13)) are expressed as a function of c2D.

CA(c2D) =


4·
(

D−1/2
eq,max−D−1/2

eq,min

)
c2D·

(
D1/2

eq,min−D1/2
eq,max

) Fuller distribution,

4·
(

D−1
eq,max−D−1

eq,min

)
c2D·[ln(Deq,min)−ln(Deq,max)]

EVF distribution.

(13)

Finally, by incorporating Equation (13) into Equation (9), the average specific surface
area Cavg

A of aggregate particles for all the cases in Figure 10 is obtained, and the compar-
isons of them are shown in Figure 11a–c. From these figures, the following trends can be
found: (a) as shown in Figure 11a,b, with the increase of Deq,max,O or Deq,max,P, the value of
Cavg

A is also increased significantly, and its sensitivity to the size range of fine aggregates
is much bigger than that for coarse aggregates; (b) The PSG of coarse aggregates has little
influence on the value of Cavg

A , however, when the PSG of coarse aggregates is fixed, Cavg
A

for the fine aggregates with EVF gradation is significantly greater than the value of Cavg
A
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with Fuller gradation, as shown in Figure 11c. By combining with the curves in Figure 10,
a relatively consistent trend can be provided (i.e., the greater the average specific surface
area of aggregate particles is, the smaller the percolation threshold of ITZ φagg,c tends to
be), which also provides a direction for the derivation of the model of φagg,c.
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3.3. Effect of Sand Ratio on the ITZ Percolation

The sand ratio βs is an important factor that affects the workability and mechanical
properties of concrete materials. Under the assumption of Deq,O = Fuller 0.15–4.75 mm and
Deq,P = Fuller 5–16 mm, the sensitivity of the critical threshold φagg,c to the sand ratio βs is
investigated in Figure 12. One can see that all the curves of φagg,c-βs show an apparently
linear decreasing tendency, which is dependent on the specific thickness of ITZ. That is
to say, the greater the proportion of fine aggregates in concrete is, the more easily the
ITZ percolation path is formed. Actually, the effect of βs on φagg,c can also be mapped
to the variation of aggregate fineness. As the sand ratio βs increases, the number of fine
aggregates is also on the rise, which in turn leads to the rapid growth of the average specific
surface area of aggregate particles, as shown in Figure 13.
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3.4. Formulation and Verification

Through a series of in-depth analyses and comparisons, it can be found that the ITZ
thickness, aggregate fineness, and aggregate shape can be deemed to be the main contribut-
ing parameters that affect the ITZ percolation when the synergetic effects of aggregate
shapes and aggregate sizes are taken into consideration. To quantitatively characterize the
sensitivity of the critical percolation threshold φagg,c to all of the aforementioned factors,
a new argument η (i.e., Equation (14)) is proposed here by referring to the form of the
proposed parameter (i.e., −ln(tITZCA)) in [18] and all the simulated results of φagg,c in
Figures 7, 9, 10 and 12 are plotted as a function of η, as shown in Figure 14.

η = − ln{tITZ[CA,P(1− βs) + CA,Oβs]}+ [c2D,P(1− βs) + c2D,Oβs]

= − ln
(

tITZCavg
A

)
+ [c2D,P(1− βs) + c2D,Oβs] .

(14)
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The curve of φagg,c-η in Figure 14 clearly shows that φagg,c possesses an apparently
monotonical uptrend with the increase of η in a quadratic manner. By the linear regression
analysis method, a numerical fitting formula is obtained in Figure 14, and the approximately
empirical expression of φagg,c (i.e., Equation (15)) can be further derived by incorporating
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the argument η into this quadratic formula. To validate the reliability of the proposed
function of φagg,c, the comparison of the simulated values of φagg,c in some extra cases with
the predicted approximation obtained by Equation (15) is shown in Figure 15a. It can be
seen that all the curves of φagg,c-tITZ here are in excellent agreement with the simulated
results. Figure 15b further displays the quantitative comparison of the theoretical solution
of φagg,c with the numerical results reported by Zheng et al. [15], and the approximate
agreement between them can also be observed clearly. All these comparisons suggest
that the proposed analytical formula of φagg,c can reproduce the results of φagg,c with the
satisfying accuracy, and it can be well used to quickly evaluate the ITZ percolation in 2D
polyphase systems.

Materials 2023, 16, x FOR PEER REVIEW 15 of 19 
 

 

analysis method, a numerical fitting formula is obtained in Figure 14, and the approxi-
mately empirical expression of ϕagg,c (i.e., Equation (15)) can be further derived by incor-
porating the argument η into this quadratic formula. To validate the reliability of the pro-
posed function of ϕagg,c, the comparison of the simulated values of ϕagg,c in some extra cases 
with the predicted approximation obtained by Equation (15) is shown in Figure 15a. It can 
be seen that all the curves of ϕagg,c-tITZ here are in excellent agreement with the simulated 
results. Figure 15b further displays the quantitative comparison of the theoretical solution 
of ϕagg,c with the numerical results reported by Zheng et al. [15], and the approximate 
agreement between them can also be observed clearly. All these comparisons suggest that 
the proposed analytical formula of ϕagg,c can reproduce the results of ϕagg,c with the satis-
fying accuracy, and it can be well used to quickly evaluate the ITZ percolation in 2D pol-
yphase systems. 

 

Figure 15. Comparisons of the numerical solutions of ϕagg,c predicted by Equation (15) with (a) the 
simulated results of ϕagg,c in some extra cases; (b) the reported results in [15]. 

( ) ( ){ }
( ) ( ){ } ( )

2avg
agg,c ITZ A 2D,P s 2D,O s

avg 2
ITZ A 2D,P s 2D,O s

0.043 ln C 1

0.415 ln C 1 0.105 R 0.998 .

t c c

t c c

φ β β

β β

 = − − − + − 

 − − + − = 

 (15)
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φagg,c = −0.043
{

ln
(

tITZCavg
A

)
− [c2D,P(1− βs) + c2D,Oβs]

}2
−

0.415
{

ln
(

tITZCavg
A

)
− [c2D,P(1− βs) + c2D,Oβs]

}
− 0.105

(
R2 = 0.998

)
.

(15)

As shown in Figure 16, it is assumed that the ITZ thickness tITZ around aggregates
is fixed to be 0.05 mm. The size distributions of aggregate particles are respectively set to
Deq = Fuller 0.15–10 mm and Deq = Fuller 0.15–16 mm. As we know from the calculation,
the corresponding sand ratio βs in them can be separately equal to 0.50 and 0.65. Take the
above cases as the study object, and the predicted approximation of φagg,c by the proposed
functions (i.e., Equations (9), (13) and (15)) here is presented, and compared with the
analytical results predicted by the formula in [18]. It can be seen that with the decrease
of c2D,O in [0.5, 1.0] or c2D,P in [0.75, 1.0], the critical threshold of ITZ φagg,c also decreases
apparently. Moreover, when the circularities of both fine aggregates and coarse aggregates
are identical (i.e., c2D,O = c2D,P), the proposed functions generally provide slightly larger
results of φagg,c. than the results in [18], and the smaller the particle circularity is, the larger
the relative error between them would be. This can be blamed on two main reasons. The
first one is that the analytical formula in [18] was mainly derived by analyzing the large
bodies of data for the ITZ percolation around circles with its size less than 5 mm and the
small amount of data for the models of polygons. Literally, the published expression may
be more applicable for the 2D mortar systems that composed the circular aggregates. Once
it is extended to the concrete systems, including the non-circular aggregates with sizes
larger than 5 mm, its effectiveness and accuracy may be limited to some extent. The second
reason is that, compared with the existing literature, the size gradations of both coarse
aggregate and fine aggregates in this work are separately expressed, which is more practical
than the single function. Besides, the size ranges of aggregate particles used in this work
are also much larger and wider than before. Simultaneously, some other important factors
(e.g., the aggregate shapes and sand ratio) are also considered in this work. All of the above
conditions make the predicted results here more accurate and comprehensive. Through the
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above figures, it can also be seen that the proposed model here is applicable not only to the
granular systems of mono-shaped particles (c2D,O = c2D,P), but also to the systems involving
the effect of the shape diversity (c2D,O 6= c2D,P)and relative content (βs) of different particles.
Overall, the model here is bound to have a much broader range of applications in the 2D
case compared with the published formula from the previous paper.
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According to the curves of φagg,c in Figures 7–14, it can be found that all the afore-
mentioned factors including ITZ thickness (tITZ), aggregate fineness (Cavg

A ) and aggregate
shapes (i.e., c2D,P and c2D,O) can be deemed to the contributing factors for the percolation
properties of ITZ around the 2D poly-shaped poly-sized aggregates. However, given that
all the work in this paper is conducted based on the 2D simplified granular systems, the
proposed formulas here can only be applicable to the 2D granular structures. That is to say,
it is still difficult to be directly applied in engineering. But, the variation trends of the ITZ
percolation with the influencing factors should be basically consistent in both the 2D and
3D cases. Hence, the work in this paper can still play a positive role in the development of
similar research in 3D composite systems.

Finally, strictly speaking, the geometric features of aggregate particles in actual con-
crete materials are much more complex and diverse than that in the models here. By
reference to the proposed formula (i.e., Equation (15)) here, an analytical formula of ITZ
percolation for the more complex systems is preliminarily suggested, as expressed by
Equation (16). The specific values of the parameters (i.e., a1, a2, and a3) and the feasibility
of Equation (16) need to be further studied. It is hoped that this hypothesis may provide
some help for others in their research.

φagg,c = a1 ·
[

ln

(
tITZ

N

∑
i=1

CA,i · βi

)
−

N

∑
i=1

c2D,i · βi

]2

+ a2 ·
[

ln

(
tITZ

N

∑
i=1

CA,i · βi

)
−

N

∑
i=1

c2D,i · βi

]
+ a3 , (16)

where a1, a2 and a3 are three coefficients, CA,i and c2D,i are the specific surface area and
circularity of the ith types of particles, respectively, βi is defined as the relative fraction of
the ith types of particles and the sum of β1 + β2 + . . . βi . . . + βN−1 + βN is exactly equal to
1.0, in which N is the total number of particle species in the system.

4. Conclusions

In this paper, the sensitivity of ITZ percolation to the features of both coarse aggregates
and fine aggregates is studied in a 2D case. To highlight the effect of the shape and size
difference between coarse aggregates and fine aggregates in a more realistic way, they
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are respectively simplified as polygons and ovals here based on the real morphologies of
these aggregates. Moreover, the size gradations of them are also expressed by two separate
functions instead of the single contiguous function in the literature. By coupling the
generated 2D polyphase models of concrete systems with the continuum percolation, the
percolation behavior of the uniform ITZ around aggregates is simulated and the effect of the
polydispersity of aggregate shapes and sizes on the critical threshold φagg,c is quantitatively
analyzed, respectively. Numerical variation of the threshold φagg,c reveals that: (a) the ITZ
thickness (tITZ), average aggregate fineness (Cavg

A ), coarse aggregate shape (c2D,P), and fine
aggregate shape (c2D,O) are four important factors to the ITZ percolation, (b) the sand ratio
βs is also an important parameter to the ITZ percolation and its effect can be mapped to the
aggregate fineness (i.e., the larger the ratio βs is, the larger the average specific surface of
aggregates would be, which in turn leads to the smaller values of φagg,c).

By adopting the linear regression analysis, an approximately analytical expression of
φagg,c (i.e., Equations (9), (13) and (15)) is further proposed and its applicability is verified
by comparing with the numerical results, which indicates that the proposed formulas here
can reproduce the results of φagg,c with the satisfying accuracy. Moreover, by comparing
the proposed model with the existing prediction expression, it can be found that the model
can produce slightly larger results for the ITZ percolation threshold φagg,c, which may be
closer to reality. Finally, it can not only be applied to the mortar or concrete but also to
some other similar granular systems in the 2D case.
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Nomenclature

a, b
semi-axis lengths of oval in x- and y-direction,
respectively

φagg,c
critical aggregate fraction (i.e., the critical percolation
threshold)

ζ tapering coefficient φagg fraction of aggregate particles
l size length of polygon ∆(L) percolation transition width
Pi ith vertex of polygon c2D circularity of particle
Li ith edge of polygon c2D,O, c2D,P circularity of oval and polygon, respectively
tITZ thickness of ITZ around aggregate particles Deq,max,O maximum equivalent diameter of oval
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nx x-axis component of unit normal vector Deq,min,O minimum equivalent diameter of oval
ny y-axis component of unit normal vector Deq,max,P maximum equivalent diameter of polygon
βs sand ratio Deq,min,P minimum equivalent diameter of polygon
FA area-based cumulative probability function CA specific surface area of particle
Deq equivalent diameter of particle CA,O, CA,P specific surface area of ovals and polygons, respectively
Deq,max maximum equivalent diameter of particle CA,i specific surface area of the ith type particle

Deq,min minimum equivalent diameter of particle Cavg
A

average surface area of both fine and coarse aggregate
particles

Deq,O equivalent diameter of oval CO, AO perimeter and area of oval, respectively
Deq,P equivalent diameter of polygon CP, AP perimeter and area of polygon, respectively
Npcl number of the percolating samples f N number-based probability function of particles
Ntotal number of the total samples βi fraction of the ith types of particles
PITZ percolation probability a1, a2, a3 three coefficients
L size length of 2D square models
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