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Abstract: As a promising nano-porous material for energy dissipation, the viscoelastic properties of
three-dimensional (3D) graphene foams (GrFs) are investigated by combining a dynamic mechanical
analysis (DMA) and coarse-grained molecular dynamic (CGMD) simulations. The effects of the differ-
ent factors, such as the density of the GrFs, temperature, loading frequency, oscillatory amplitude, the
pre-strain on the storage and loss modulus of the GrFs as well as the micro-mechanical mechanisms
are mainly focused upon. Not only the storage modulus but also the loss modulus are found to be
independent of the temperature and the frequency. The storage modulus can be weakened slightly
by bond-breaking with an increasing loading amplitude. Furthermore, the tensile/compressive
pre-strain and density of the GrFs can be used to effectively tune the viscoelastic properties of the
GrFs. These results should be helpful not only for understanding the mechanical mechanism of GrFs
but also for optimal designs of advanced damping materials.

Keywords: graphene-foam materials; viscoelastic properties; dynamic mechanical analysis; mi-
crostructure; coarse-grained molecular dynamics simulation

1. Introduction

Graphene foam (GrF), a new kind of polymer material assembled by plenty of
graphene sheets, has remarkable mechanical properties [1–3] and superior electrical conduc-
tivity combined [4,5], and shows potential applications in sensing [6], advanced composite
materials [7], stretchable electronic devices [4] and energy-storage components [8].

For conventional polymer materials or their composites, viscoelastic properties mea-
sured by the storage/loss modulus and the damping ratio are highly sensitive to tempera-
ture and loading frequencies; they vary by several orders of magnitude with a change in
temperature and loading frequency, e.g., the storage modulus of the graphene oxide filled
polyurethane nanocomposites [9] increases from 103 MPa to more than 104 MPa with an
increased loading frequency, and its storage modulus decreases from 400 to 10 MPa with
an increased temperature. The dynamic viscosity of the graphene-polymer nanocompos-
ites [10] decreases from 106 to 102 Pas with an increased frequency. It has been explained
by friction and movement between the polymer chains [9,10]. In contrast, it has been
found that the viscoelastic properties of GrFs are almost independent of temperature and
loading frequency and the change is less than one order of magnitude. For example, Luo
et al. [1] and Wu et al. [3] experimentally showed that the storage/loss modulus and the
damping ratio of the synthesized three-dimensional graphene foams are insensitive to
temperature in the range of −50 to 300 ◦C and to loading frequencies in the range of
1 to 20 Hz. Xu et al. [11] experimentally showed that the storage/loss modulus of the
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self-assembled graphene hydrogels are independent of the angular frequencies from 1 to
100 rad/s. Sun et al. [2] found that the assembled carbon aerogels had a stable storage/loss
modulus as the temperature varies in a range of −200 to 300 ◦C. The temperature and
loading frequencies adopted in the reported experiments [1–3,11] are in a limited range.
The viscoelastic properties of the GrFs under the condition of temperatures higher than
300 ◦C and loading frequencies higher than 20 Hz has not been reported. The identification
of the mechanism of the temperature- and frequency-independent viscoelastic properties is
lacking up to now. Furthermore, other influencing factors, such as the density of the GrFs,
the layer number of the constituent graphene sheets, the loading amplitude and pre-strain,
which are always encountered in practical applications and have great influence on both
the stiffness and strength of GrFs [3,12,13]. However, the effects of these factors on the
viscoelastic properties of graphene foams have not been studied up to now.

The coarse-grained molecular dynamic method has been widely used in the studies
of graphene foams [14–17] in recent years to analyze quantitatively the microstructure
and energy distribution of graphene foam. In this paper, we adopt both the experimental
dynamic mechanical analysis (DMA) method and the numerical coarse-grained molecular
dynamic simulation (CGMD) to systematically study the viscoelastic behaviors of GrFs
under temperature, frequency, amplitude, pre-strain and density of the graphene foam. The
outline of this paper is as follows. Details on the experimental materials and the DMA in-
strument, the numerical model proposed by Cranford et al. [14] and the DMA methodology
are given in Section 2. Section 3 shows the influence of the density temperature, frequency,
amplitude and pre-strain on viscoelastic properties on the graphene foam. Finally, the
conclusion is given.

2. Experimental Materials and DMA Instrument, Numerical Model and Methodology
2.1. Experimental Materials

Ultralight GrF aerogels purchased from Jia Cai Technology Co., Ltd. (Sichuan, China)
are studied for DMA. The diameter, height and density of the material is 12 ± 2 mm,
12 ± 2 mm and 3–15 mg/cm3, respectively. Because the height of samples is supposed to
be less than 10 mm for the DMA instrument under a compression pattern, the samples
were cut in half by an ultraviolet picosecond laser precision machining system (Institute of
Mechanics, Chinese Academy of Sciences). Finally, the height of the samples is reduced to
be 6~8 mm and the diameter remains unchanged.

2.2. Experimental Instrument

The dynamic mechanical analysis (DMA) Q800 (Institute of Mechanics, Chinese
Academy of Sciences) is made using a TA Instrument Inc. (109 Lukens Drive, New Castle,
DE, USA) to study the viscoelastic properties of the GrFs as a function of temperature and
loading frequency. Based on the size of the GrF samples, the compression clamp is used in
the present work to fix the sample into the DMA instrument. When compared with the
range of temperatures and loading frequencies in the previous studies [1–3,11], a larger
temperature range of −50–500 ◦C and a frequency range of 0.1–30 Hz is be adopted and
the effect of the oscillation amplitude on the viscoelastic behaviors of the GrF samples is
explored using the experimental instrument. In addition, nitrogen is used to protect the
sample from oxidation in the DMA experiments. When considering the height of the GrF
samples and the loading frequency, the experimental strain rate is ~0.1 s−1.

2.3. Coarse-Grained Molecular Dynamics

We use the coarse-grained graphene model given by Cranford et al. [14], which is
proven effective in a series of studies about the mechanical deformations of a graphene
nanoribbon [14] and graphene macro-assemblies [15,16]. In this method, a square graphene
flake with a length of 2.5 nm and having 264 carbon atoms (Figure 1a-i) is reduced to a
coarse grain. So, a larger square graphene flake with a length of 75 nm can be represented
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by 900 coarse beads connected by a set of linear springs and angular ones as shown in
Figure 1a-ii,a-iii. The total energy of a graphene flake is calculated as:

Etotal = ∑NB
i=1 Ei

B + ∑Nϕ
i=1 Ei

ϕ + ∑Nθ
i=1 Ei

θ + ∑NLJ
i=1 Ei

LJ

where NB, Nϕ, Nθ and NLJ are the number of bonds (linear springs), in-plane angles,
out-of-plane angles and bead pairs, respectively; Ei

B, Ei
ϕ, Ei

θ and Ei
LJ are the bond energy,

in-plane angle energy, out-of-plane angle energy and van der Waals energy, respectively,
and are calculated by Equations (1)–(4) in our simulations; the parameters of kB, kϕ, kθ,
r0, ϕ0, θ0, ε, σ and r are described in detail in our previous paper [18,19]. In practical GrF
materials, a constituent graphene sheet contains about 1–10 graphene layers [4,20,21], in
this paper, the GrF is composed of five layer sheets and is used to study the influence
of temperature, frequency, oscillated amplitude, tensile and compressive pre-strain and
density on the viscoelastic properties of GrF. Although graphene sheets in graphene foam
materials are often imperfect, irregular in shape and have internal pores in real preparation
processes, for simplicity, the graphene foam sample is composed of perfect graphene sheets,
and the influence of the holes in the graphene sheets on the viscoelastic properties of the
graphene foams is not considered. All the parameters for the coarse-grained 1–10 layers
flakes are listed in the Table A1 at the end of this paper, which is obtained based on the
equivalent energy principle by Cranford et al. [14].

EB = kB(r− r0)
2/2 (1)

Eϕ = kϕ(ϕ− ϕ0)
2/2 (2)

Eθ = kθ(θ − θ0)
2/2 (3)

ELJ = 4ε((σ/r)12 − (σ/r)6) (4)
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Figure 1. Coarse-grained model of GrFs and experiments of dynamic mechanical analysis. (a-i) A 
square full-atomic graphene sheet with a side length of 2.5 nm. (a-ii) A square coarse-grained gra-
phene sheet with a side length of 75 nm. (a-iii) Three deformation modes of stretching, in-plane 
shearing and out-of-plane bending of graphene sheet. (b) The initial state of a well-equilibrated 

Figure 1. Coarse-grained model of GrFs and experiments of dynamic mechanical analysis. (a-i)
A square full-atomic graphene sheet with a side length of 2.5 nm. (a-ii) A square coarse-grained
graphene sheet with a side length of 75 nm. (a-iii) Three deformation modes of stretching, in-plane
shearing and out-of-plane bending of graphene sheet. (b) The initial state of a well-equilibrated
coarse-grained GrF consisting of 100 coarse-grained graphene sheets. The crosslinks (green) are
added between neighbor beads in different sheets. (c-i) The experimental GrF, (c-ii) The SEM of GrF
and (c-iii) the crosslinks between sheets. (d-i) The DMA process image and (d-ii) schematic image
under compress pattern. (e) The cyclic strain and the stress as a function of the degree for the GrF
sample at 300 K with a loading frequency of 500 MHz in simulation.
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Figure 1b shows the initial state of the GrF sample with 100 five-layer graphene
sheets randomly distributed in the system as observed in the SEM experiment [20]. To
mimic the connection between the neighboring sheets by physical crosslinks or func-
tional groups [20,22], we use a crosslink model, which has been used to study the large-
deformation and fracture of both the buckypapers [22,23] and the graphene foams [16,24].
The detailed parameters of the crosslink, numerical synthesizing method, energy minimiza-
tion and the performed and visualized software are described in our previous paper [19].
As shown in Figure 1b, some crosslinks (green color) characterized by Equation (5) are
added between the neighboring sheets in all the samples to enhance the connections. A
macroscopic GrF sample and a local microstructure obtained by the SEM is shown in
Figure 1c-i and c-ii, respectively. Three types of point, line and surface crosslinks are quali-
tatively described using our numerical model in Figure 1c-iii. The DMA in a compression
pattern is shown in Figure 1d and the static force 0.1 N is applied to make the GrF stick to
the device.

EC = kC(r− r0)
2/2 (5)

2.4. Dynamic Mechanical Analysis

The viscoelastic properties of the GrFs are analyzed numerically by a dynamic mechan-
ical analysis (DMA), including the storage modulus, the loss modulus and the damping
ratio. As a sinusoidal strain ε = ε0sin(ωt) is applied at one end of the equilibrated GrF
sample in the x direction, a response of the stress σ = σ0 sin(ωt + δ) is activated as shown
in Figure 1e, where ε0 and σ0 are the strain and the stress amplitude, respectively, δ is the
phase angle, ω and t are the loading frequency and time. The storage and the loss modulus
are Y′ = σ0cos δ/ε0 and Y′′ = σ0sinδ/ε0, respectively. The damping ratio is calculated by
tan δ. The loading amplitude is set to be a smaller value than 2 nm to ensure a linearly
viscoelastic deformation. In the dynamic mechanical simulations, one atmosphere is main-
tained in the y and z direction as the dynamic loading is imposed in the x direction. Due
to the limitation in the current computing power, the loading frequency in the CGMD
simulations in this paper is in the range of 107–109 Hz, much higher than that in the DMA
experiments. Considering the size of the numerical GrF samples and the high loading
frequencies of up to 107 Hz, the numerical strain rate is ~106 s−1, much larger than that in
the experiments.

3. Results and Discussions
3.1. Effect of Density on Viscoelastic Properties of GrF

Density is the most important parameter to tune to the mechanical properties of porous
materials. As shown in Figure 2a, we count the density and the size of the graphene sheets
in our numerical samples (the red points) and the experimental samples (the yellow area)
from Jia Cai Technology Co., Ltd. (Sichuan, China) and find that the density of the GrFs
is nonlinearly dependent on the size of the constituent graphene sheets as shown in the
red curve fitted using a power-law relationship r/r0= a(l/l0)n, where r is the density of the
GrFs, l is the size of the graphene sheets and the two fitting parameters are a = 1496 ± 53.64,
n = −0.49 ± 0.01. We further count the storage/loss modulus and the density of the GrFs
in our simulations (square points) and those in the other experiments [2,3,25] (pentagram
points) as shown in Figure 2b, and find that the storage/loss modulus is almost linearly
dependent on the density as illustrated by the fitting curve y = a + b × r, the coefficients
of the storage (aS and bS) and the loss modulus (aL and bL) are 3.23 ± 0.15, 2.07 ± 0.07,
2 ± 0.16 and 2.31 ± 0.07, respectively. The mechanism of the effect of density on the
mechanical properties of the graphene foams was discussed in our previous work [24] and
the work performed by Zhao Qin et al. [26]. For graphene foam to have a larger density,
the connection points between the graphene sheets would have to be stronger because
these connection points are always strengthened by the adhesion or crosslinks between
the neighboring sheets. In this case, the deformation mode would be changed from the
bending dominated to the stretching dominated, due to the in-plane stretching modulus
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of a paper-like graphene sheet (~1 TPa) that is much larger than the out-of-plane bending
modulus, which can be used to qualitatively explain the huge increase in the storage
modulus of the graphene foams as their density increases. In addition, according to our
previous work [17] about the dissipation of graphene foams, all channels (rippling, sliding
and impacting of the graphene sheets), the energy dissipation in the graphene foams is
related to the connection between the graphene sheets, as the density of the graphene foam
increases, The number of these microscale events of energy dissipation would undoubtedly
increase, which can be used to qualitatively explain the increase in the loss modulus of the
graphene foams.
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lated by the contact area between all the sheets divided by the system volume and cross-
link density (the number of crosslinks between the sheets divided by the volume of the 
system). The areal density of the GrF is larger when the density of the GrF is larger as 
shown in Figure 2c. It is indicated that under the same amplitude and frequency, the GrFs 

Figure 2. The density effect on viscoelastic properties of GrFs. (a) The relation between the density of
GrFs and the length of constituent sheets (the red points are simulated data, the yellow circle signifies
the range of experimental data from Jia Cai Technology Co., Ltd. (Sichuan, China). (b) The storage
and loss modulus vary with the density of experimental samples (pentagram points) and numerical
ones (square points). (c) The relation between the areal density (the contact area between all sheets
divided by the volume of the system) and the density of numerical GrF samples. (d) The relation
between the crosslink density (the number of inter-sheet crosslinks divided by the volume of the
system) and the density of numerical GrF samples.

To understand the linear dependency of the storage/loss modulus of the GrFs on
density, we further examine the influence of density on the contact areal density calculated
by the contact area between all the sheets divided by the system volume and crosslink
density (the number of crosslinks between the sheets divided by the volume of the system).
The areal density of the GrF is larger when the density of the GrF is larger as shown in
Figure 2c. It is indicated that under the same amplitude and frequency, the GrFs of a higher
density possess a larger sliding area; therefore, the loss modulus of the GrF increases as the
density of the GrF increases. The crosslink density (the number of crosslinks between the
sheets divided by the volume of the system) is larger when the density of the GrF is larger
as shown in Figure 2d. The crosslinks enhance the connections between the sheets and it is
not easy to slide apart these sheets, therefore the storage modulus of GrF increases as the
density of the GrF increases.
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3.2. Effect of Temperature

Figure 3a shows the effect of temperature, in the range of −50 to 500 ◦C, has on the
storage/loss modulus and the damping ratio. It is found that all three viscoelastic quantities
are almost insensitive to the temperature, showing a temperature-independent viscoelastic
characteristic. Here, we noted that the loss modulus decreases slightly as the temperature
increases and the change is within an order of magnitude. As we only performed a
group of experiments and cannot give the mean and variance of the loss modulus, it is
not clear whether the slight reduction in the loss modulus is the actual response of the
material or the experimental fluctuation. However, when compared with other viscoelastic
materials (e.g., rubber), which is highly sensitive to temperature, the viscoelastic behavior
that are almost independent on temperature are still the most distinctive characteristics of
graphene foam materials. A similar phenomenon was also observed in the experiments [1,3].
Furthermore, in order to break through the limitation of the experimental instruments
on the temperature range, we adopted the CGMD simulations to study the effect of the
viscoelastic properties of the GrFs using a wider temperature range from −200 to 1000 ◦C.
As shown in Figure 3b, the storage/loss modulus and the damping ratio of the numerical
GrF samples exhibit a similar temperature-independent characteristic as that observed
in our experiment and others. Here, we note that another carbon-based material of the
buckypaper, which is an assembly of a large number of carbon nanotubes that has the same
temperature-independent viscoelastic properties. The underlying mechanism is ascribed to
the good thermostability of carbon materials and the existence of inter-sheet adhesion and
crosslinking, limiting the aggregation and crimping behavior of the thick graphene sheets.
Due to this reason, the structures of the GrFs under cyclic loadings are almost unchanged
at varied temperatures of −200, 400 and 1000 ◦C as shown in Figure 3c. It is much different
from the traditional temperature-dependent polymer materials [27,28] and polymer-based
composites [9,29].
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Figure 3. The effect of temperature on the viscoelastic properties of (a) the experimental GrF sample at
a given low frequency in a temperature range and (b) the numerical sample at a given high frequency
in a temperature range. (c) Similar microstructures and a local edge-surface contact in numerical
samples of GrFs at different temperatures of −200, 400 and 1000 ◦C.

Although both experimental samples and numerical ones have the same temperature-
insensitive viscoelastic properties, the storage/loss modulus of the experimental samples is
much smaller than that of the numerical samples. The great difference of the storage/loss
modulus is mainly induced by the density of the samples as discussed in Figure 2b. The
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density of the experimental samples is about 10 mg/cm3, almost an order of magnitude
smaller than that of numerical ones (about 100 mg/cm3). Due to the restriction of the
computation condition, it is difficult for us to construct a numerical sample of graphene
foams with a small density and similar microstructures as that of the experimental samples.
This is because the density of the graphene foam is highly related to the size of the graphene
sheets, for a numerical graphene foam with a small density ~10 mg/cm3 as that in the
experiments, the size of the constituent graphene sheets should be as large as ~1 micrometer.
If the coarse-grained scheme of the graphene sheet is adopted, the system will contain
16 million coarse grains, which is beyond the computation ability of my group.

3.3. Effect of Frequency

To study the effect of a wider loading frequency on the viscoelastic properties of the
GrFs, we combine both the experimental and numerical DMA to apply cyclic loadings with
both a low and high frequency to our experimental/numerical samples, respectively. Fig-
ure 4a shows the storage modulus, loss modulus and the damping ratio of the experimental
samples as a function of the frequency in a broad range from 0.1 Hz to 30 Hz, which is
larger than that reported in the references [1,3]. There is a small peak at 15 Hz in the curve
of the loss modulus, which may be a larger experimental fluctuation because we did not
observe any differences in the experiment process as the frequency is set to 15 Hz. It can
be seen that the three quantities are almost unchanged in the whole frequency spectrum.
Interestingly, the similar frequency-insensitive characteristics of the viscoelastic properties
of the GrFs can be reproduced in our numerical samples in the DMA simulations at a high
loading frequency from 107 to 109 Hz as shown in Figure 4b. As discussed in Figure 3, the
density of our numerical samples is ~100 mg/cm3,which is an order of magnitude larger
than that of the experimental samples ~10 mg/cm3. This difference in density should be
responsible for the huge increase in the storage/loss modulus of the numerical samples
when compared to the experimental ones as discussed in Figure 2b.

Materials 2023, 16, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 3. The effect of temperature on the viscoelastic properties of (a) the experimental GrF sample 
at a given low frequency in a temperature range and (b) the numerical sample at a given high fre-
quency in a temperature range. (c) Similar microstructures and a local edge-surface contact in nu-
merical samples of GrFs at different temperatures of −200, 400 and 1000 °C. 

3.3. Effect of Frequency 
To study the effect of a wider loading frequency on the viscoelastic properties of the 

GrFs, we combine both the experimental and numerical DMA to apply cyclic loadings 
with both a low and high frequency to our experimental/numerical samples, respectively. 
Figure 4a shows the storage modulus, loss modulus and the damping ratio of the experi-
mental samples as a function of the frequency in a broad range from 0.1 Hz to 30 Hz, 
which is larger than that reported in the references [1,3]. There is a small peak at 15 Hz in 
the curve of the loss modulus, which may be a larger experimental fluctuation because we 
did not observe any differences in the experiment process as the frequency is set to 15Hz. 
It can be seen that the three quantities are almost unchanged in the whole frequency spec-
trum. Interestingly, the similar frequency-insensitive characteristics of the viscoelastic 
properties of the GrFs can be reproduced in our numerical samples in the DMA simula-
tions at a high loading frequency from 107 to 109 Hz as shown in Figure 4b. As discussed 
in Figure 3, the density of our numerical samples is ~100 mg/cm3,which is an order of 
magnitude larger than that of the experimental samples ~10 mg/cm3. This difference in 
density should be responsible for the huge increase in the storage/loss modulus of the 
numerical samples when compared to the experimental ones as discussed in Figure 2b. 

 
Figure 4. The effect of frequency on viscoelastic properties of GrFs by (a) experiments and (b) sim-
ulations. 

Figure 4. The effect of frequency on viscoelastic properties of GrFs by (a) experiments and (b) simulations.

3.4. Effect of Loading Amplitude

Figure 5 shows the effect of the strain amplitude, i.e., the quantity ε0 in the strain
load ε = ε0sin(ωt) on the storage modulus, loss modulus and the damping ratio of the GrF
materials by using both the experimental and numerical DMA. In Figure 5a, the storage
modulus of the experimental samples decreases constantly with an increased loading
amplitude, while the loss modulus increases as the amplitude is smaller than ~50 µm and
keeps nearly constant. The variation in the two moduli is within an order of magnitude.
Interestingly, the similar characteristics can be observed in the corresponding numerical
graph as shown in Figure 5b. These phenomena can be well explained using our previous
studies on the elasticity [24] and energy dissipation [29] of the GrFs under uniaxial tension
and compression According to our studies, the elasticity of GrFs would be weakened
with an increased tensile strain due to bond breaking and some irreversible reconstitution
of the microstructures, while the dissipation ability would be strengthened due to the



Materials 2023, 16, 2457 8 of 11

enhanced ripping, sliding and impacting of the graphene sheets under a cyclic loading
with a larger strain. However, if the loading magnitude is too large, the phenomenon of
the deformation localization would emerge, which would in turn deteriorate the ability of
energy dissipation.
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3.5. Effect of Compressive and Tensile Pre-Strain

In order to demonstrate the dependency of viscoelasticity of the GrFs on their defor-
mations, we apply a compressive and tensile strain before conducting the numerical DMA
simulations. The graphene foam sample, as given in Figure 1b, was first compressed or
stretched to a certain strain, and then, the deformed sample is chosen to conduct the DMA
simulations to study the viscoelastic response of the graphene foam sample at a certain
pre-strain. We, in total, chose nine intermediate configurations with varied compressive
strains and eight intermediate configurations with varied tensile strains for the following
numerical dynamic mechanical analysis. As shown in Figure 6a, the storage modulus
increases constantly with the increased compressive strain. This phenomenon can be well
explained by our previous work [24] on the elasticity of the GrFs under compression. As
the compressive strain increases, more graphene sheets are bended and more bended sheets
experience larger bending deformations. These bended graphene sheets, especially those
laminated thick sheets, act as storage units and contribute to the increased modulus. The
loss modulus, however, is almost unchanged considering the large standard deviations.
We also study the viscoelasticity of the GrFs after a tensile strain, as shown in Figure 6b,
the storage modulus is decreased due to some bonds between the neighboring graphene
sheets breaking as the tensile strain increases. Considering the large standard deviations,
the loss modulus is almost unchanged.
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and loss modulus and the damping ratio vary with compressive pre-strain. (b) The storage and loss
modulus and the damping ratio vary with tensile pre-strain.



Materials 2023, 16, 2457 9 of 11

4. Conclusions

In this paper, a combination of the DMA experiments and the CGMD simulations
is adopted to study the viscoelastic behaviors of GrF materials. The effect of density of
the GrFs, temperature, loading frequency, oscillation amplitude, pre-strain on the storage
and loss modulus as well as the damping ratio of the GrFs are considered. We first give
the density dependence of the storage/loss modulus of the GrFs using the data from the
present work and other references, and it is found that the storage/loss modulus is almost
linearly dependent on the density as illustrated by the fitting curve y = a + b × r, the
coefficients of the storage and loss modulus are 3.23 ± 0.15, 2.07 ± 0.07, 2 ± 0.16 and
2.31 ± 0.07, respectively. Furthermore, we explain the physical mechanism of the effect
of density, that is, as the density of the graphene foams increases the storage modulus
increases greatly because the deformation mode of more constituent sheets changes from
the bending dominated to the stretching dominated; the loss modulus increases because
more contact points between the graphene sheets participate in the energy dissipation
process. Then, benefiting of the advantages of both the experiment and CGMD method,
we study the viscoelastic behaviors of the GrFs with a larger range of GrF densities,
temperatures (from −20 to 1000 ◦C) and loading frequencies (0–30 Hz in the experiments
and 107–109 Hz in the CGMD). Although the value of the storage/loss modulus varies
greatly from about 107–104 Pa in the CGMD simulations and the DMA experiments due
to the variation in the GrF density and the inter-sheet crosslinks, the temperature- and
frequency-independent viscoelastic behaviors of the GrFs are observed both in our CGMD
simulations and in the experiments. For the effect of strain amplitude, it can be observed in
both the CGMD simulations and experiments that the storage modulus decreases slightly
as an increasing strain amplitude due to the bond-breaking, and the loss modulus increases
slightly when the strain amplitude is relatively small and then saturates. Furthermore, the
tensile/compressive pre-strain can be used to effectively tune the storage modulus of the
GrFs. The storage modulus increases constantly with an increased compressive strain while
it decreases due to some bonds between the neighboring sheets breaking as the tensile
strain increases. The loss modulus is almost unchanged in both cases. These results would
be helpful not only for understanding the mechanical mechanism of GrFs but also for the
design of GrFs with advanced properties.
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Appendix A

Table A1. The parameters of the main force field.

Parameters
No. of Graphene Layers Units

1 2 3 4 5 6 7 8 9 10

kT 470 930 1396 1860 2323 2787 3253 3720 4190 4663 kcal
mol−1Å−2

kϕ 16,870 33,740 50,610 67,480 84,350 101,220 118,090 134,960 151,829 168,698 kcal
mol−1rad−2

σ 2.98 5.96 8.78 11.92 15.20 18.35 21.27 23.84 25.89 27.30 Å

kθ 144.9 8970 28,782 82,731 185,601 351,166 595,220 933,087 1,379,947 1,951,198 kcal
mol−1rad−2
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