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Abstract: Bimetal–organic frameworks (BMOFs) have attracted considerable attention as electrode
materials for energy storage devices because of the precise control of their porous structure, surface
area, and pore volume. BMOFs can promote multiple redox reactions because of the enhanced
charge transfer between different metal ions. Therefore, the electroactivity of the electrodes can be
significantly improved. Herein, we report a NiCo-MOF (NCMF) with a three-dimensional hierarchical
nanorod-like structure prepared using a facile solvo-hydrothermal method. The as-prepared NCMF
was used as the positive electrode in a hybrid pouch-type asymmetric supercapacitor device (HPASD)
with a gel electrolyte (KOH+PVA) and activated carbon as the negative electrode. Because of the
matchable potential windows and specific capacitances of the two electrodes, the assembled HPASD
exhibits a specific capacitance of 161 F·g−1 at 0.5 A·g−1, an energy density of 50.3 Wh·kg−1 at
a power density of 375 W·kg−1, and a cycling stability of 87.6% after 6000 cycles. The reported
unique synthesis strategy is promising for producing high-energy-density electrode materials for
supercapacitors.

Keywords: energy storage; electrode materials; MOFs; supercapacitor; hierarchical structure

1. Introduction

The rapid development of electric vehicles and the widespread use of portable elec-
tronic devices has increased the need for energy storage devices with high energy densities
and long cycle life. Primary energy storage devices, such as supercapacitors and batteries,
have their advantages and disadvantages. Supercapacitors offer high power density and
long cycle life but low energy density [1]. At the same time, traditional energy storage
devices cannot meet all the application requirements. In recent years, asymmetric super-
capacitors (ASCs) have attracted significant attention by combining the advantages of
batteries and supercapacitors, thereby allowing them to fulfill the requirements of pow-
ering electric vehicles and other multifunctional electronic products [1,2]. Therefore, the
development of such ASCs has emerged as the focus of supercapacitor research. However,
identifying suitable electrode materials for asymmetric devices is challenging because
such materials must not only exhibit good electrochemical activity but should also possess
comparable characteristics. Thus far, in most studies on asymmetric supercapacitors, elec-
trodes have been produced from various metal oxides through rational design. Generally,
activated carbon (AC) is used as a negative electrode. The performance of such asymmetric
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devices is not ideal [3]; therefore, new well-matched electrodes need to be developed to
realize ASCs with high energy densities.

Metal–organic frameworks (MOFs), which are known as porous coordination poly-
mers, are a new class of crystalline porous materials with periodic network structures
generated by organic ligands and metal-ion clusters. Owing to their tailored structures,
MOFs have large surface areas and multifunctional properties [4]. However, bare MOFs
generally exhibit low electrical conductivity, weak structural flexibility, and steric hindrance
for ion insertion; therefore, single-component MOFs are not suitable for application in
energy storage devices. However, MOFs may be converted into bimetal–organic frame-
works (BMOFs) using appropriate redox reactions. Compared with monometallic MOFs,
mixed-metal–organic frameworks or BMOFs exhibit better electrochemical performance
because of the enhanced charge transfer between the metal ions [5]. Owing to their inher-
ent advantages, MOFs have potential applications in many scientific fields. For example,
nickel- or cobalt-based MOFs exhibit good capacitance owing to their abundant redox
reactions, large electrolyte-accessible area, and high electrochemical conductivity, which
enable numerous active centers and fast charge transfer [6]. Therefore, nanostructures
based on bimetallic or hybrid MOFs are more promising than single-component MOFs for
further enhancing the energy storage capacity of electrochemical devices.

The enhanced energy storage of BMOF nanostructures is attributed to changes in
the local coordination environment and electronic structure owing to the incorporation of
metal cations [7,8]. Additionally, bimetallic species in MOFs enhance electrical conductivity
and redox chemical rates because of their multiple oxidation states. Furthermore, they can
act as electron mediators to accelerate charge transfer to metals through organic linkers,
thereby enhancing the energy storage capacity. However, the morphology of MOFs is also
crucial for the performance of hybrid devices. MOF-based materials possess hierarchical
nanostructures with enhanced capacitance and rate performance because the abundant
redox active sites provide multiple electron transport pathways. Therefore, recent studies
focus on the rational design of hierarchical redox-based MOFs with controllable geometries
for enhanced electrochemical activity.

Xiao et al. [9] developed a BMOF composed of Ni and Co metal ions with a 12
benzene-1,4-dicarboxylate (BDC) linker, which exhibited the highest specific capacitance of
1300 F·g−1 at 1 A·g−1 with good cycling stability (71% after 3000 cycles). Tian et al. [10]
developed flower-like nanosheet Ni-based BMOFs (composed of Zn, Cu, Fe, or Co) grown
on electrospun nanofibers. Among these BMOFs, NF@Co-Ni-MOF exhibited the highest
specific capacitance (1096 F·g−1 at 1 A·g−1). Furthermore, when used as the positive
electrode (with reduced graphene oxide (rGO) as the negative electrode) in hybrid de-
vices, it exhibited the highest energy density (Ed) of 94 W·kg−1 at a power density (Pd) of
1600 W·kg−1 with good cycling stability up to 10,000 cycles. He et al. [11] demonstrated
an Ed of 28.6 W·kg−1 at a Pd of 100 W·kg−1 for HPASD with BMOF-derived ZnCo2O4
as a positive electrode and nanoporous carbon obtained via carbonization with HCl at
900 ◦C as the negative electrode. Radhika et al. [12] reported a Ni/Co-MOF ACS electrode
synthesized by a facile hydrothermal method using trimesic acid as a structure directing
linker, which exhibited a high specific capacitance of 2041 F·g−1 at a scan rate of 2 mV·s−1

and 980 F·g−1 at a current density of 2.5 A·g−1. Kurisingal et al. [13] showed that the
aqueous synthesis of a bimetallic MOF with Ni and Co as the active metal centers and
benzene-1,4-dicarboxylic acid as the linker has been achieved rapidly in high yield using mi-
crowave irradiation. The BET surface area and pore volume of Ni–Co MOF are 50.8 m2·g−1

and 0.183 cm3·g−1, respectively. Hong and co-workers [14] fabricated nanostructured
Ni-Co-MOF/graphene oxide composites as capacitor electrodes using 2-methylimidazole
as an inexpensive organic ligand. At a current density of 1 A·g−1, the maximum specific
capacitance was 447.2 F·g−1. A Ni/Co-based bimetallic MOF [CoNi(µ3-tp)2(m2-pyz)2] (tp
= terephthalic acid and pyz = pyrazine) was synthesized through a hydrothermal method
with metal centers equally occupied by Co2+ and Ni2+ ions [15]. The Ni/Co–MOF exhibited
an outstanding specific capacitance of 1049 F·g−1 at a discharge current density of 1 A·g−1
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in a 3 mol·L−1 KOH electrolyte. The Ni/Co-MOF synthesized via hydrothermal BTC route
with a dandelion-like hollow structure shows an excellent specific capacitance of 758 F·g−1

at 1 A·g−1 in the three-electrode system [16]. Rahmanifar et al. [17] adopted a one-pot
refluxing method to synthesize Ni/Co-MOF-rGO nanocomposite, which nanocompos-
ite demonstrates a high specific capacitance of 860 F·g−1 at 1.0 A·g−1. The asymmetric
activated carbon//Ni/Co-MOF-rGO device delivers specific energy of 72.8 W·kg−1 at
850 W·kg−1 and still holds 15.1 W·kg−1 under the high specific power of 42.5 kW·kg−1, as
well as a long cycle life (91.6% capacitance retention after 6000 charge-discharge cycles at
1 A·g−1).

The objective of this work is to construct a three-dimensional (3D) hierarchical nanos-
tructured structure that takes advantage of BMOF with a regular shape and submicron
size without additional conductive carbon. Herein, we fabricated a NiCo-bimetal–organic
framework (NCMF) with a 3D nanorod-like structure using a facile solvo-hydrothermal
method using 1,3,5-benzenetricarboxylic acid (C9H6O6 or trimesic acid, BTC) as an organic
compound. Furthermore, in the current study, single metal MOFs (Ni-MOF) with similar
morphologies to that of the bimetal–organic framework were prepared for comparison.
Structural and morphological properties of as-prepared NCMF are characterized by the
following different techniques: X-ray diffraction (XRD), X-ray photoelectron spectroscopy
(XPS), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spec-
troscopy (EDS), and Brunauer–Emmett–Teller (BET) analysis. The NCMF is investigated
as the positive electrode in an NCMF//AC asymmetric supercapacitor device with gel
electrolyte. The specific capacitance of the NCMFs was estimated in coin cell devices and
three-electrode systems. A maximum specific capacitance of 1243 F·g−1 was achieved at
0.5 A·g−1 for the NCMF electrode. This novel 3D hierarchical nanorod-like NCMF electrode
system could be interesting for the fabrication of high-performance supercapacitors under
gel electrolyte media.

2. Materials and Methods
2.1. Materials

Nickel(II) nitrate hexahydrate (Ni(NO3)2·6H2O), urea (CH4N2O), deionized water,
ethanol (C2H5OH), and 20% hydrochloric acid solution were purchased from Daejung Co.
Ltd. (Sasang-gu, Busan, South Korea). Cobalt nitrate hexahydrate(Co(NO3)2·6H2O) was
purchased from Junsei Chemical Co. Ltd. (Tokyo, Japan) Trimesic acid and polyvinylpyrroli-
done (PVP) Mw = 40,000 g·mol−1) were purchased from Sigma-Aldrich Co. Ltd. (Saint-
Louis, MI, USA) All commercial chemicals were used without any further purification.

2.2. Synthesis of Ni-MOF (i.e., NMF) or Co-MOF (i.e., CMF) or NCMF

Figure 1 shows the synthetic procedure for the preparation of NCMF. Mixture of
anhydrous ethanol, de-ionized (DI) water, and dimethylformamide (DMF) in the ratio
of 1:1:1 was stirred for 10 min to make solvent precursor. Add 411 mg of nickel nitrate
hexahydrate (Ni(NO3)2·6H2O), cobalt nitrate hexahydrate (Co(NO3)2·6H2O), and 1200 mg
of PVP to 80 mL of the solvent mixture. Add 615 mg of trimesic acid (BTC) to the remaining
130 mL of the solvent mixture. After stirring for 10 min to dissolve the material, dropwise
mixing of the BTC solution into the above resultant solutions. After mixing well to obtain
the precursor solution, pour the precursor solution into the autoclave reactor kept at 170 ◦C
for 6 h. The obtained precipitate was washed twice by centrifugation with pure water and
anhydrous ethanol, respectively, and dried in a vacuum oven at 80 ◦C for 10 h to finally
obtain NCMF. For NMF and CMF preparation, the same procedure was used to replace
the nickel precursor with cobalt nitrate hexahydrate (Co(NO3)2·6H2O). For comparison,
an NCMF specimen was prepared without PVP during synthesis, denoted as NCMF-NP.
Photographs of Ni-MOF, Co-MOF, and NiCo-MOF as-prepared powders are displayed in
Figure S1. After doping of Co ions, the light green color of NMF changes to brown, which
reveals that Ni ions have been substituted by Co ions in NCMF specimen.



Materials 2023, 16, 2423 4 of 19Materials 2023, 16, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Schematic diagram of the Ni/Co MOF synthesis process. 

2.3. Pre-Treatment of Ni-Foam 
Foam nickel with a thickness of 2 mm was used as substrate. Before cleaning, the 

nickel foam was cut into rectangles of 15 × 5 mm2. Then immerse the nickel foam in a 
solution of 20% hydrochloric acid solution and deionized water mixed in a ratio of 3:1 and 
wash in an ultrasonic cleaner for 14 min to remove the surface oxide. After that, soak the 
nickel foam in deionized water and clean it in the ultrasonic cleaner for 14 min replace 
with new deionized water when finished, ultrasonic clean for 1 min, and repeat six times. 
Finally, replace the deionized water with ethanol and clean with the same procedure to 
remove the residual acid and organic matter from the surface. Dry in a vacuum oven at 
90 °C for 12 h. 

2.4. Characterizations 
The structural features of as-prepared materials were analyzed by powder X-ray dif-

fraction (X-ray diffractometer model XRD-6100, Shimadzu, Kyoto, Japan) with CuKα X-
ray radiation (λ = 0.15406 nm). The morphological features were examined by scanning 
electron microscopy (FESEM, Hitachi, S-4800 and HRTEM, Tecnai G2 F20 S-Twin at an 
accelerating voltage of 200 kV). The elements of active materials were recognized using 
energy-dispersive X-ray spectroscopy (EDS) attached to the SEM. Sample mappings were 
obtained using annular dark-field imaging in a scanning transmission electron micro-
scope (STEM) equipped with a high-angle annular dark field (HAADF) detector. The 
chemical states of the materials were tested using a Thermo Scientific X-ray photoelectron 
spectroscopy (XPS) instrument utilizing Al Kα radiation (λ = 1486.6 eV). The Brunauer–
Emmett–Teller (BET) specific surface area was examined by N2 adsorption-desorption 
measurements in a Micromeritics ASAP 2420 surface area analyzer. The samples were 
evacuated at 150 °C before the N2 adsorption test. The BET surface area was estimated by 
the multipoint BET method based on the adsorption data in the P/P0 range of 0.0–1.0, 
where P and P0 correspond to the equilibrium and saturation pressures of the adsorbates 
at the temperature of adsorption, respectively. 

2.5. Electrochemical Tests 
The electrochemical activity of the electrodes was tested using a standard three-elec-

trode cell, which consists of Hg/HgO and platinum mesh as the reference electrode and 
counter electrode. The working electrode was organized by mixing the active material, 
carbon black, and polyvinylidene difluoride (PVDF) in a mass ratio of 8:1.5:0.5 with N-
methyl-2-pyrrolidone (NMP). This obtained slurry was then covered on nickel foam via 
the drop-casting technique and dried in an oven at 90 °C for 12 h. Cyclic voltammetry 
(CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectros-
copy (EIS) were used to assess the electrochemical activity of the electrodes. The CV tests 
were carried out at several scan rates, ranging from 5 to 300 mV s−1 at a potential of 0.0 V 
to 0.7 V in a 1 mol L−1 KOH aqueous solution. The GCD tests were executed within the 
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2.3. Pre-Treatment of Ni-Foam

Foam nickel with a thickness of 2 mm was used as substrate. Before cleaning, the
nickel foam was cut into rectangles of 15 × 5 mm2. Then immerse the nickel foam in a
solution of 20% hydrochloric acid solution and deionized water mixed in a ratio of 3:1 and
wash in an ultrasonic cleaner for 14 min to remove the surface oxide. After that, soak the
nickel foam in deionized water and clean it in the ultrasonic cleaner for 14 min replace
with new deionized water when finished, ultrasonic clean for 1 min, and repeat six times.
Finally, replace the deionized water with ethanol and clean with the same procedure to
remove the residual acid and organic matter from the surface. Dry in a vacuum oven at
90 ◦C for 12 h.

2.4. Characterizations

The structural features of as-prepared materials were analyzed by powder X-ray
diffraction (X-ray diffractometer model XRD-6100, Shimadzu, Kyoto, Japan) with CuKα
X-ray radiation (λ = 0.15406 nm). The morphological features were examined by scan-
ning electron microscopy (FESEM, Hitachi, S-4800 and HRTEM, Tecnai G2 F20 S-Twin
at an accelerating voltage of 200 kV). The elements of active materials were recognized
using energy-dispersive X-ray spectroscopy (EDS) attached to the SEM. Sample mappings
were obtained using annular dark-field imaging in a scanning transmission electron mi-
croscope (STEM) equipped with a high-angle annular dark field (HAADF) detector. The
chemical states of the materials were tested using a Thermo Scientific X-ray photoelectron
spectroscopy (XPS) instrument utilizing Al Kα radiation (λ = 1486.6 eV). The Brunauer–
Emmett–Teller (BET) specific surface area was examined by N2 adsorption-desorption
measurements in a Micromeritics ASAP 2420 surface area analyzer. The samples were
evacuated at 150 ◦C before the N2 adsorption test. The BET surface area was estimated
by the multipoint BET method based on the adsorption data in the P/P0 range of 0.0–1.0,
where P and P0 correspond to the equilibrium and saturation pressures of the adsorbates at
the temperature of adsorption, respectively.

2.5. Electrochemical Tests

The electrochemical activity of the electrodes was tested using a standard three-
electrode cell, which consists of Hg/HgO and platinum mesh as the reference electrode
and counter electrode. The working electrode was organized by mixing the active material,
carbon black, and polyvinylidene difluoride (PVDF) in a mass ratio of 8:1.5:0.5 with N-
methyl-2-pyrrolidone (NMP). This obtained slurry was then covered on nickel foam via
the drop-casting technique and dried in an oven at 90 ◦C for 12 h. Cyclic voltammetry
(CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy
(EIS) were used to assess the electrochemical activity of the electrodes. The CV tests were
carried out at several scan rates, ranging from 5 to 300 mV·s−1 at a potential of 0.0 V to
0.7 V in a 1 mol·L−1 KOH aqueous solution. The GCD tests were executed within the
range of 0–0.5 V vs. Hg/HgO at various current densities. The electrochemical impedance
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spectroscopy (EIS) measurements were carried out in the frequency range from 100 Hz to
1 MHz at the open-circuit potential. All electrochemical experiments were performed using
a Biologic SP-200 electrochemical workstation.

2.6. Preparation of Gel Electrolyte

In order to prepare the alkaline polyvinyl alcohol/potassium hydroxide (PVA/KOH)
gel electrolyte, initially 5.6 g of PVA was dissolved in 50 mL of pure deionized water at
90 ◦C the temperature with continuous vigorous stirring to obtain a clear solution. As a
result, after 1 h we obtained a clear, viscous solution. In total, 6 g of KOH was liquefied
in 10 mL deionized water, then dropped into the cleared PVA solution with continuous
stirring until complete dissolution and formation of a gel-like solution; finally, PVA/KOH
gel electrolyte was cooled to room temperature for further use.

2.7. Ni/Co-MOF//AC Device Fabrication

A hybrid pouch-cell-type asymmetric supercapacitor device (HPASDs) was developed
with in-situ synthesized Ni/Co-MOF@NF nanostructure as positive electrode, and active
carbon and PVDF with Nafion (5 µL) in a mass ratio of 95:5 slurry was drop cast on a
nickel foam to act as the negative electrode, separated with filter paper as separator. The
Ni/Co-MOF@NF nanostructure was estimated from weight change of the nickel foam
before and after deposition. The specific capacitance (Cs) from charge–discharge curves in
a three-electrode cell was intended using Equation (1) as follows [10]:

Cs =
I∆t

m∆V
, (1)

where I (mA) and t (s) are the discharge current and discharge time, ∆V (V) is the voltage
drop upon discharging (apart from the IR drop), and m (mg) is the mass of the active
material. In addition, the energy density (Ed) (W·kg−1) and power density (Pd) (W·kg−1)
of the device were estimated on the total mass of the active materials, as per Equations (2)
and (3) as follows:

Ed =
1
2

Cs

(
Vf −Vi

)2

3.6

, (2)

Pd =
3600× Ed

∆t
, (3)

where ∆t and (Vf −Vi

)
are discharge time (s) and potential window for discharge process

(V), respectively.

3. Results and Discussion
3.1. Structural and Morphological Studies

Figure 2 shows the XRD patterns of Ni-MOF (NMF), Co-MOF (CMF), NCMF, and
NCMF-NP. The XRD patterns of NMF and CMF are very similar, and the sharpness of the
respective peaks indicates crystallinity. For NMF, the diffraction peaks at approximately
12◦ are assigned to the (300) plane [18]. NCMF shows an XRD pattern alike to that of NMF,
indicating that the crystal structure is not affected by the addition of the PVP, which is
a non-ionic polymer with C=O, C-N, and CH2 functional groups that is widely used in
nanoparticle synthesis. The contribution of PVP to obtaining nanostructured materials
has been investigated by Kozkur et al. [19]. PVP can serve as a surface stabilizer, growth
modifier, nanoparticle dispersant, and reducing agent. As shown with examples, its role
depends on the synthetic conditions. This dependence arises from the amphiphilic nature
of PVP along with the molecular weight of the selected PVP. Cao et al. [20] showed that
PVP facilitated the subsequent nucleation and growth of MOF particles on their surfaces.
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Recently, Liu et al. [21] used PVP as a protective layer and dispersant for the synthesis of
nanoparticles with concave cube morphology via a self-template eco-friendly method.
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The XRD peaks of the NCMF sample are observed at 12.67◦, 25.1◦, and 36.8◦, which is
consistent with previous reports on NCMF [14]. The main peaks of NCMF at 12.67◦ and
25.1◦ correspond to d-spacings of 0.39 nm of the (110) plane and 0.19 nm of the (200) plane,
respectively [22]. The XRD pattern for synthesized samples is identical to the reported
data [14,22]. The position of the peak matched well with the simulated Ni-MOFs (Crystal
Cambridge Data Center (CCDC) No. 1274034) [23]. The structure of Ni-MOF is composed
of zigzag chains constructed from two symmetry-inequivalent tetra-aqua nickel(II) units
and BTC ligands, as shown in Figure S2. In NCMF, the 2D layers are formed by the
octahedral coordination of both Ni and Co atoms by six oxygen atoms from BTC, such that
each 2D bimetal layer is separated by the linker molecules.

Figure 3 presents the FE-SEM images of NMF and NCMF-NP samples. Figure 3a–d shows
that the tiny nanoparticles are well-arranged in a ribbon-like structure, while NCMF-NPs
(Figure 3e–h) show randomly distributed multifaceted nanorod-like structures. Figure 4
displays the typical morphological features of NCMF, as analyzed via field-emission scan-
ning electron microscopy. The morphology of the NCMF samples comprises aggregated
and stacked microspheres with an average diameter of 1–3 µm, which consist of tightly
connected bundles of extended nanorods, some of which are unfolded at their centers.
These widely open distribution architectures favor the formation of large, exposed gaps
with abundant exposed active sites, which can promote ion-inserted active centers through
adequate contact with the electrolyte, thereby enhancing electrochemical activity.

The detailed morphological features of NCMF were investigated via high-resolution
transmission electron microscopy (HRTEM) and elemental mapping. Figure 5 shows the
typical HRTEM images of NCMF at different magnifications. These pictures evidence that
a rod-like structure formed by Ni/Co NPs is tightly intertwined with dense and tiny NPs,
which can enlarge the electrochemically active sites. The corresponding elemental maps
analyzed by the high-angle annular dark field (HAADF) technique confirm the introduction
of Ni, Co, and O species into NCMF. The Ni and Co plots are brighter than those of other
elements, indicating higher content levels of Ni and Co. In Figure 5f, the d-spacings of 0.19
and 0.39 nm correspond to the (200) and (110) planes, respectively.
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Brunauer–Emmett–Teller (BET) analysis was carried out to estimate the specific surface
area (SSA) and the mesoporous nature of the NCMF specimen from its nitrogen adsorption–
desorption isotherms. The pore size distribution (PSD) was estimated by the Barrett–
Joyner–Halenda (BJH) method. The N2 adsorption-desorption isotherm and pore size
distribution of NCMF are shown in Figure 6a,b, respectively. The estimated BET SSA
is 75 ± 5 m2·g−1. The standard isotherm of NCMF reveals that the MOFs contain both
micropores and mesopores with maxima centered at 2 and 17 nm, respectively. The BET of
NMF has already been documented, and we have considered and compared this source
material. Li and co-workers reported a BET surface area of 67 m2·g−1 and an average pore
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size of 8.55 nm [24]. NCMF has a typical type IV isotherm with an H4-type hysteresis
loop and a large apparent BET SSA, which is attributed to the hierarchical aggregation of
NPs into rod-like structures and then into microspheres that may facilitate the exposure
of electrochemically active sites [25]. Therefore, the large specific surface area of the
NCMF is expected to afford good electrochemical performance. The obtained specific BET
surface area for the NCMF compared with data in the literature are summarized in Table
S1 [12,13,15,23,26–29]. These data show that the specific hydrothermal process assisted
by PVP as a reducing agent provides a hierarchical inner pore structure favorable to high
electrochemical activity.
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3.2. XPS Studies

The survey scan spectrum of NCMF in the binding energy range 0–1000 eV, demon-
strating the main component signals (Ni, Co, and O), is shown in Figure S3. In the
high-resolution Ni 2p spectrum of NCMF (Figure 7a), the two major peaks at 855.47 and
873.02 eV (peak separation ∆Eb = 17.55 eV) are ascribed to the Ni2+ 2p3/2 and Ni2+ 2p1/2,
respectively. Additionally, the corresponding satellite peaks are detected at 860.94 and
879.43 eV (with ∆Eb = 18.49 eV), respectively. The results indicate that Ni exists in the
divalent state [30]. Figure 7b shows the Co 2p XPS spectrum of NCMF; the two major peaks
at 780.72 and 796.51 eV (with a binding energy difference ∆Eb = 15.79 eV) are attributed to
Co 2p3/2 and Co 2p1/2, with satellite peaks at 785.76 and 802.45 eV (with ∆Eb = 16.69 eV),
respectively; these observations confirm the presence of Co2+ in NCMF [31].

Materials 2023, 16, x FOR PEER REVIEW 9 of 20 
 

 

area for the NCMF compared with data in the literature are summarized in Table S1 
[12,13,15,23,26-29]. These data show that the specific hydrothermal process assisted by 
PVP as a reducing agent provides a hierarchical inner pore structure favorable to high 
electrochemical activity. 

 
Figure 6. (a) N2 adsorption-desorption isotherm of NCMF and (b) pore size distribution determined 
by the BJH method. 

3.2. XPS Studies 
The survey scan spectrum of NCMF in the binding energy range 0–1000 eV, demon-

strating the main component signals (Ni, Co, and O), is shown in Figure S3. In the high-
resolution Ni 2p spectrum of NCMF (Figure 7a), the two major peaks at 855.47 and 873.02 
eV (peak separation ΔEb = 17.55 eV) are ascribed to the Ni2+ 2p3/2 and Ni2+ 2p1/2, respectively. 
Additionally, the corresponding satellite peaks are detected at 860.94 and 879.43 eV (with 
ΔEb = 18.49 eV), respectively. The results indicate that Ni exists in the divalent state [30]. 
Figure 7b shows the Co 2p XPS spectrum of NCMF; the two major peaks at 780.72 and 
796.51 eV (with a binding energy difference ΔEb = 15.79 eV) are attributed to Co 2p3/2 and 
Co 2p1/2, with satellite peaks at 785.76 and 802.45 eV (with ΔEb = 16.69 eV), respectively; 
these observations confirm the presence of Co2+ in NCMF [31]. 

 
Figure 7. (a) XPS narrow scan spectra of (a) Ni 2p and (b) Co 2p of NCMF specimen. 

 

3.3. Electrochemical Studies—Three Electrode System 
Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurements 

have been performed to evaluate the specific capacitance, energy density, and power 

Figure 7. (a) XPS narrow scan spectra of (a) Ni 2p and (b) Co 2p of NCMF specimen.

3.3. Electrochemical Studies—Three Electrode System

Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurements
have been performed to evaluate the specific capacitance, energy density, and power
density of the fabricated electrodes. The electrochemical performances of NMF and NCMF
electrodes were initially examined via cyclic voltammetry (CV) using the standard three-
electrode configuration in a 1 mol·L−1 KOH electrolyte solution. The CV responses were
recorded at various scan rates (2–50 mV·s−1) within the potential range of −0.1–0.8 V vs.
Hg/HgO (Figure 8a,b). The voltammograms clearly display the distinct redox peaks during
the anodic and cathodic sweeps and their contribution to the Faradaic pseudocapacitance.
With the increase of scan rate from 2 to 50 mV·s−1, the redox peak separation ∆Eredox
increased from 160 to 400 mV because of the electrode overpotential. Even at a high scan
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rate of 50 mV·s−1, the redox peaks are still significantly resolved, indicating the good rate
capability of the NCMF electrode material.
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Figure 8. Three-electrode performance: CV curves of (a) NMF, (b) NCMF, (c) comparison of CV
curves of bare nickel foam, NMF, and NCMF at 20 mV·s−1, (d) analysis of b value of the cathodic and
anodic peaks of NCMF at different scan rates, (e) capacitive and diffusion contribution of NCMF, and
(f) capacitive and diffusive contribution of NCMF electrode at 5 mV·s−1.

The NCMF electrode exhibits a higher current density than the NMF electrode, which
is attributed to the redox properties of Ni and Co. To demonstrate the supercapacitive
performance of the NCMF, the CV curves of NF, NMF, and NCMF electrodes are compared
in the potential window of 0.7 V at 20 mV·s−1 scan rate (Figure 8c). The current response
of nickel foam is insignificant, whereas the NCMF electrode shows a larger CV curve area
than that of NMF, indicating that the NCMF electrode material is more electrochemically
active and has considerable specific capacitance. The larger CV curve area of NCMF is
attributed to the greater number of redox sites and exposure of these active sites, thus
enhancing the electrochemical activity.
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In order to distinguish the relative charge storage contribution from diffusion-controlled
and surface effects, the general approach for the analysis of the peak current ip can be
described by a power law ip = Kνb, where ν is the scanning rate and K and b are arbitrary
coefficients. The coefficient b can vary from 0.5 to 1.0, with b = 0.5 being characteristic
of a pure diffusion-limited process (charge storage via ion insertion) and b = 1.0 being
characteristic of a capacitance process (charge storage via surface capacitance effects). From
the slope of log ip vs. log ν (Figure 8d), the calculated b values of the anodic peaks for
the NMF and NCMF electrode materials are 0.74 and 0.65, respectively, indicating that the
simultaneous pseudocapacitive response is the result of a combination of capacitive an
insertion (Faradaic) process. It is worth noting that the electrochemical behavior of the
NCMF electrode displays a more dominant Faradaic contribution because of the presence
of cobalt sites in its framework. The capacitive contributions of NCMF at scan rates of 1, 2, 5,
10, 20, and 30 mV·s−1 are 15.08, 20.07, 28.42, 35.96, 44.27, and 49.31%, indicating a capacitive
effect on the total capacitance with respect to the sweep rate (Figure 8e). The capacitive
contribution increases with the scan rate owing to the increase in the ion transport motion
and shortening of the diffusion pathways. Figure 8f shows the diffusive and capacitive
contributions of the CV curve at 5 mV·s−1, revealing that the diffusive contribution is
predominantly associated with the NCMF electrode, owing to the dual effect of Ni and Co
ions on the electrochemical performance.

Figure 9a,b present the galvanostatic charge–discharge (GCD) curves of NMF and
NCMF electrodes at various current densities in the range 0.5–3.5 A·g−1. Figure 9c compares
the GCD curves for NF, NMF, and NCMF electrodes recorded at 0.5 A·g−1. The NCMF
electrode exhibits a longer discharge time than the NMF electrode, indicating a larger
capacitance of the former. The recorded potential profiles of both electrodes show nonlinear
GCD patterns that are comparable to the redox properties and indicate a battery-like
behavior, i.e., the occurrence of quasi-reversible Faradaic reactions. Because of these
Faradaic reactions, the charge/voltage ratio does not remain constant and varies with time.
The longest discharge time of the NCMF electrode is attributed to the redox properties of
Ni and Co ions, which is in good agreement with the CV curves.
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The porous NCMF electrode exhibits a faster ion transfer rate to the interior, which en-
hances its electrochemical performance with a rapid I−V response. Based on the discharge
curves, the specific capacitance (Cs) of the NCMF electrode material at different constant
discharge currents can be calculated according to the expression given in Equation (1).

Figure 10a shows the specific capacitance with respective current densities for both
NMF and NCMF electrodes. The specific capacitance of the NCMF electrode is 1243,
842, 631, and 501 F·g−1 at 0.5, 1.0, 2.0, and 3.5 A·g−1, respectively. At the same current
densities, the NMF electrode exhibits specific capacitance values of 313, 209, 149, and
86 F·g−1, respectively. Therefore, the estimated specific capacitance of the NCMF electrode
is approximately 4 times that of the NMF electrode, which is attributed to the synergetic
interaction between Ni and Co ions, demonstrating its better rate capability facilitating
faster electron transport and more efficient diffusion of ions into the redox sites of the
composite material. The above comparative study also confirmed that the NCMF elec-
trode would yield much higher current values. A comparison of the electrochemical
performance of supercapacitors with various concentrations of KOH electrolyte is given in
Table S2 [15,17,24,32–35]. Data show that the type and acid-base of the electrolyte so-
lution have an impact on the electrochemical performance of the material tested in the
three-electrode system.
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Considering that the electrode life span is a crucial parameter of electrochemical
devices, the cycling stabilities of the electrodes were assessed. Figure 10b displays the
capacitance cyclability and the Coulombic efficiency (CE) of the NCMF electrode over 2000
cycles. The good long-term cycling stability of this electrode is confirmed as its capacitance
retention is retained at 88.8% after 2000 cycles at 2 A·g−1. The electrochemical reversibility
is evidenced by the last three GCD profiles exhibited in the inset. The NCMF electrode
exhibits a CE of 98.22% at the first cycle and demonstrates a CE of 99.03% after 2000 cycles.

The electrochemical impedance spectroscopy (EIS) measurements were carried out
over the frequency range from 100 Hz to 1 MHz at the open-circuit potential. The Nyquist
plots −Z”(ω) vs. Z′(ω) of the NMF and NCMF electrodes are shown in Figure S4. The
impedance spectra were fitted with an analogous circuit model (Figure S5). These graphs
are composed of a depressed semicircle at the high-frequency region and a steeper line in the
low-frequency range. The depressed semicircle corresponds to the charge transfer resistance
(Rct) caused by Faradaic reactions. The steeper line evidences the capacitive nature of the
electrode (it should be a vertical line for an ideal capacitor). The ohmic resistance (Rs) of
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the electrode is calculated from the intercept of the real axis at the high-frequency range.
Rs is the sum of the intrinsic resistance of electrode materials, the bulk resistance of the
electrolyte, and the contact resistance at active materials/electrolyte/current collector
interfaces. For both systems, Rs is 1.5 Ω. The calculated charge transfer resistances of
the NMF and NCMF electrodes are 18.0 and 8.9 Ω, respectively, indicating an excellent
charge transfer rate. Table S3 compares the electrochemical activities of NMF and NCMF
electrodes with other popular MOF-based electrodes in previous reports, indicating that
NCMF electrodes exhibit remarkable electrochemical activity [24,27,33–46].

3.4. Hybrid Pouch-Type Asymmetric Supercapacitor Device (HPASD)

Based on the high electrochemical activity of the NCMF electrode, an NCMF//AC
HPASD with the alkaline PVA/KOH gel electrolyte was fabricated and characterized.
Figure 11a shows the CV curves of positive and negative electrodes recorded at a scanning
rate of 20 mV·s−1, i.e., the NCMF three-electrode configuration in the potential range
0–0.7 V and the AC electrode in the potential range from −0.6 to 0 V. Figure 11b exhibits the
CV profiles of the NCMF//AC HPASD at different applied potentials (0.6–1.5 V), implying
that 0–1.5 V is the optimal potential window for HPASD. Figure 11c displays the CV profiles
obtained at an optimized working potential of 1.5 V at different scan rates in the range
of 2–200 mV·s−1. A steady increase in the CV curve area with scan rate indicates a good
electrochemical behavior of the asymmetric device. Additionally, the charge–discharge
curves of HPASD (Figure 11d) at different current densities in the range of 0.5–4 A·g−1

suggest a good rate capability. Figure 11e exhibits the plot of specific capacitance vs. current
density for the HPASD. The estimated specific capacitances of the HPASD are 161, 147, 124,
112, and 91 F·g−1 at 0.5, 1, 2, 3, and 4 A·g−1, respectively. Note that the specific capacitance
decreases almost linearly with the increase of current density at the rate of 19.3 F A−1.
Figure 11f shows the EIS pattern of the HPASD along with the fitted curve. The estimated
Rs and Rct values for HPASD are 30.93 and 7.49 Ω, respectively. The straight line with a
slope of 45◦ in the low-frequency region expresses the Warburg diffusion impedance.

Energy and power densities are key parameters for the validation of the electrochem-
ical performance of a hybrid asymmetric supercapacitor. The Ragone plot (Figure 12a)
of HPASD, derived from the GCD curves based on Equations (2) and (3), shows that
the HPASD delivers an energy density (Ed) of 50.3 W·kg−1 at a power density (Pd) of
375 W·kg−1. A comparison of energy and power densities of hybrid pouch-type asym-
metric supercapacitor devices reported in the literature is provided in Table 1 [47–64]. The
electrochemical characteristics of the as-fabricated HPASD are superior to the reported val-
ues in the literature [17,61–63]. Particularly, Tao et al. [61] demonstrated an Ed of 36 W·kg−1

at a Pd of 852 W·kg−1 combining the merits of MOF derivatives and the free-standing
core–shell heterostructure leaf-like Co3O4@NiCo2O4 nanoarray electrode. Ye et al. [45]
assembled a Ni–Co MOF//AC device with polybenzimidazole (PBI)/KOH as a solid
electrolyte, which achieved a high specific capacitance of 172.7 F·g−1 at 0.5 A·g−1 in a large
potential window of 1.8 V. The corresponding Ragone values, i.e., Ed of 77.7 W·kg−1 and Pd
of 0.45 kW·kg−1, are close to that of our HPASD, but the construction implying solid-state
interfaces is trickier than the PVA/KOH gel technology. Figure 12b shows a 3D plot of the
energy vs. power density vs. discharge time. The significant energy-power densities and
their long-term stability are crucial parameters for device applications. Figure 12c shows
the stability–durability test results for the HPASD over 6000 charge-discharge cycles at a
current density of 0.5 A·g−1. In this test, the NCMF//AC HPASD retained 87.6% of its
initial capacitance, indicating a very high level of stability. To demonstrate the excellent
charge storage properties of the developed asymmetric supercapacitor device, two HPASDs
were connected in series, powering a red light-emitting diode (LED) (Figure 12d), and were
able to power it for 70 s. This test suggests the potential applications of such NCMF//AC
supercapacitors for wearable electronics.
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Figure 11. Electrochemical performance of the NCMF//AC device: (a) Comparison of the CV curves
of AC and NCMF using three-electrode configuration at 20 mV·s−1, (b) CV curves of HPASD at
different potentials; (c) CV profiles at different scan rates with a potential window of 1.5 V, (d) GCD
profiles with different current densities, (e) specific capacitance vs. current densities, and (f) Nyquist
plot with fitting curves of HPASD.
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Figure 12. (a) Ragone plot (inset shows a laboratory prototype of the fabricated device) compared
with data in the literature (Ma et al. [53], Shang et al. [54], El-Deen et al. [55], Javed et al. [56], Liu
et al. [57]), (b) 3D plot of the electrochemical performance of the asymmetric supercapacitor prototype
(energy density vs. power density vs. discharge time, (c) stability of the HPASD tested at 0.5 A·g−1

current density, and (d) Practical applications of the AC//Ni/Co-MOF device: digital images of a
red-LED lit by the HPASD.

Table 1. Comparison of energy and power densities of hybrid pouch-type asymmetric supercapacitor
devices previously reported in the literature.

HPASD Energy Density
(W·kg−1)

Power Density
(W·kg−1) Ref.

Ni/Co-TC//AC 37 801 [47]
ZnCo2O4-C//AC 49.5 700 [48]
NiCoP//graphene films 33 1301 [49]
ZnCo2O4–ZnWO4//AC 24 400 [50]
NiO–C–rGO//AC 36 749.1 [51]
ZnCo2O4–MnO2//AC 29.4 628 [52]
ZnCo2O4@NG//AC 24 500 [53]
ZnCo2O4//AC 30 399 [54]
NiCo2O4/CNFs//carbon fibers 39 1600 [55]
Zn/Co–O//NPC 118 1491 [56]
CoFe2O4/CNFs//AC 21.4 850 [57]
O–NiCoP@rGO//AC 21 775 [58]
CoFe2O4/MWCNTs//AC 27 319 [59]
Ni–Co–MOF//AC 55.7 1000 [12]
CoNi2O3/CFP//AC 27 1450 [60]
Ni–Co–MOF//AC 34.3 375 [28]
Co3O4/NiCo2O4//AC 36 852 [61]
NCMF//rGO 42.2 800 [62]
Ni-Co MOF//AC 12.8 372 [63]
Ni-Co MOF//AC 77.7 450 [64]
Ni/Co-MOF//AC 20.9 800 [16]
Ni/Co-MOF-rGO//AC 72.8 850 [17]
NCMF//AC 50.3 375 this work
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4. Conclusions

In summary, a bimetallic Ni/Co metal–organic framework has been developed as elec-
trode material for asymmetric supercapacitor devices. The Ni/Co MOF was successfully
synthesized using a simple solvo-hydrothermal synthesis. The composition-tuned and
morphology-controlled of the nanostructured Ni-MOF are important issues to enhance the
electrochemical performance of supercapacitors. In the synthesis process, PVP has served
as a surface stabilizer, growth modifier, nanoparticle dispersant, and reducing agent. As
shown with examples, its role depends on the synthetic conditions. This dependence arises
from the amphiphilic nature of PVP along with the molecular weight of the selected PVP.
The coordinatively unsaturated transition-metal centers (Ni2+ and Co2+) are the dominant
active sites for electrochemical reactions. The comparison of NMF and NCMF evidence
that the incorporation of Co metal ions in the NMF matrix (Ni:Co = 50:50) greatly improves
the capacitive properties.

As-prepared NCMF exhibited a 3D hierarchical nanorod structure with a high spe-
cific surface area and exhibited a maximum capacitance of 1243 F·g−1 at 0.5 A·g−1 and
good cycling stability (88.8% after 4000 cycles). These results were attributed to the pro-
nounced redox effect of Ni and Co species and to desirable morphological properties
(rod-like structure, high specific surface area, well-defined pores, and good mesoporous
characteristics). Additionally, NCMF was used without carbon additive as an electrode for
HPASD (pouch-type assembly with AC as the negative electrode). The fabricated device
exhibited high energy (50.3 W·kg−1) and power densities (375 W·kg−1). Furthermore,
the proposed HPASD was able to power a red LED for 70 s. The energy density/power
density ratio is the highest value reported so far after 6000 cycles, with a cycling stability
of 87.6%. We believe that the ion (electrolyte) and pore (bimetallic MOF material) size has
been properly matched for a better redox process. The increased capacitance and cyclic
stability of bimetallic MOF-based SCs are clearly demonstrated as compared to mono metal
MOF-based SCs, which could be attributed to the effect of bimetal ions on the electronic
properties and to the high intrinsic porosity and surface area of nanorod-like particles.
These results suggest that bimetallic MOFs could function as promising and innovative
electrode materials for asymmetric supercapacitors to power wearable electronics. In di-
verse applications and especially in energy storage, a bimetallic MOF is expected to behave
markedly differently from MOF, and it should possess sufficient stability in electrochemical
reactions to last longer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16062423/s1, Preparation of materials and fabrication of
supercapacitors. Figure S1: Photographs of Ni-MOF, Co-MOF and NiCo-MOF as-prepared powders
via solvo-hydrothermal synthesis. Figure S2: The suggested structure of the bimetal MOF framework
with Ni as the metal centers surrounded by the organic linker. Table S1: Comparison of BET surface
area and of NCMF with values reported in the literature. Figure S3: XPS survey scan of the NCMF
nanostructure. Table S2. Comparison of electrochemical performance with previous reports. Figure S4:
Nyquist plots of NMF and NCMF electrodes (inset shows the magnified image of Nyquist plots
in the high-frequency range). Figure S5: Equivalent circuit used for Nyquist plot fitting. Table S3:
Comparison of electrochemical activity of NCMF electrode and other popular MOF-based electrodes
in previous reports.
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