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Abstract: The crucial task of the diagnosis of an existing masonry structure is to assess the current
values of the mechanical parameters of the materials from which the structure was erected—usually
bricks and mortar. The article presents the results of minor-destructive tests carried out on bed
joints of three-brick-masonry prisms prepared in the laboratory. Three types of mortars used in
the masonry were tested, which differ by the type and amount of binder. In order to determine
mortar compression strength, three modern diagnostic methods were used: double punch test (DPT),
standard penetrometric test (PT) and torque penetrometric test (TPT). Tests were carried out after
4, 12 and 90 weeks. The mortar strength determined in each of these tests was compared with the
mortar reference strength determined on the beam specimen according to the methodology given in
EN 1015-11. The results of the conducted tests confirmed the high usefulness of all three diagnostic
methods. However, limitations in the application of the PT test were noticed—only lime mortars and
weak cement–lime mortars can be tested with this method. In the case of mortars with an increased
amount of cement binder, the impact energy is too low to estimate the compressive strength of
the mortar in the brick wall joint. Technical limitations in the use of TPT and DPT tests were also
indicated—weak lime mortars with low cohesion do not allow for obtaining reliable results. It was
shown that DPT results strongly depend on two factors, specimen slenderness and mortar strength.
Due to this fact, simple non-parameter conversion from mortar compressive strength according to the
DPT test into mortar reference strength may lead to significant overestimation. As the results show, in
newly built masonry, proper selection of diagnostic method is crucial due to the strong dependence of
mortar curing dynamics on its location in the joint. This paper helps to match diagnostic techniques
with the condition and type of mortar in the existing structure.

Keywords: masonry; mortar compressive strength; minor-destructive testing; in situ diagnostic;
penetrometric test; double punch test; structural health monitoring; mortar curing; empirical equations

1. Introduction

Very often, when assessing the possibility of increasing the live loads in a building, its
expansion or even periodic inspection of its technical condition, the mechanical parameters
of the structure should be determined. The most appropriate way is to measure them
directly during destructive tests (DT) [1]. Due to the characteristic feature of historical
masonry—which is a large heterogeneity of the structure—the number of specimens to
be tested and their size must be large. However, the cutting out of masonry prisms is
rarely encountered due to the fact that it damages the structure considerably, is expensive
and often difficult to implement due to the low fragmentation resistance of the specimen
taken. A modern alternative is the flat-jacks test, which is conducted in situ. During the
test, the actual stress–strain relationship of the wall is recorded. Despite its versatility
and numerous advantages, the use of this method is strongly limited. The necessity to
have specialized equipment and personnel with extensive experience in interpreting the
obtained results are the most important limitations, also confirmed by the author’s own
experience [2]. A cylindrical specimen of 100–150 mm diameter obtained as boreholes are an
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increasingly popular alternative [3]. However, due to technical problems with keeping the
specimens undisturbed during the extraction from the wall and the unfavorable influence
of water cooling the blade during the drilling, this method requires the researcher to have
prior practice.

An easier, and thus often used, method of estimating the compressive strength of a
brick wall (as a leading mechanical parameter) is to determine the compressive strength of
mortar and bricks separately. The desired compressive strength of the wall is determined on
the basis of correlations obtained empirically and published in the literature. This method
is especially sanctioned in modern design codes such as EN 1996-1-1 [4]. The strength of
bricks is determined in a very simple way directly on whole bricks taken from the structure
or on their halves. In order to reduce the number of bricks to be taken for the study, small
cylindrical or cube samples are also used; however, taking into account the anisotropy of
the bricks and the influence of scale effect on the results is needed [3,5]. It is incomparably
more difficult to estimate the compressive strength of the mortar in the existing structure,
which results from two basic factors: small joint thicknesses (usually below 20 mm) and
degradation of the surface layer of mortar in the joint. The dimensions of the mortar
specimen for strength tests required by EN 1015-11 [6] should be 4 × 4 × 8 cm3, which
excludes the application of the research methodology of this standard in the case of existing
buildings. Sometimes few mortar samples of similar dimensions to those required can be
extracted from oversized vertical joints of the masonry, where the mortar is, unfortunately,
characterized by noticeably lower compaction. Alternatively, the samples of dimensions
close to 4 × 4 × 4 cm3 can be obtained by gluing together three samples (of dimensions
4 × 4 cm2 in the plane) cut from the bed joint (average 13 mm thick) [7]. However, the
results obtained by this method are understated [8]. Currently, no general European
standard contains a consistent methodology for determining the compressive strength of
the mortar based on in situ tests, which is a very undesirable state.

The aim of this article is to evaluate the possibility of using three modern non-standard
methods (PT, DPT and TPT) to estimate the compressive strength of the weak mortar in
the bed joints of a brick wall. Additionally, an attempt was made to determine the possible
limitations of each method by comparing the compressive strength established in all three
tests with the reference compressive strength established as described in EN 1015-11 [6].
Moreover, performing tests several times on specimens of different ages (especially impor-
tant are those results performed on specimens older than 4 weeks, which is the common
total length of the research period in the majority of the articles) allowed for noticing the
change in the relationship between the results.

The vast majority of non-destructive and minor-destructive tests are affected by an
error due to the fact that the mechanical parameters of the material are not determined
directly but by correlation. Extensive studies of this phenomenon were made in [9,10]. For
example, for the PT test, it is the correlation between the hardness of the mortar and its
compressive strength. The biggest advantage of minor-destructive methods is the ability to
perform a large number of in situ tests, which is crucial in statistical evaluation. Especially
with modern mortars based on recycled powder [11] or increased porosity [12]. In addition,
the equipment needed to perform these tests is significantly cheaper compared to the
machines used for destructive tests. Moreover, most of the MDT allows for immediate
interpretation of results.

2. Minor-Destructive Testing Methods

The joint that has the greatest influence on the wall’s compressive strength and de-
formability is the bed joint, so all diagnostic tests are conducted on it. The mortar contained
in the vertical joints is more porous and poorly reflects the load history of the structure, so
it is not suitable as a testing material. Due to the insignificant thickness of bed joints (on
average 10–20 mm), the number of diagnostic tests that may be applied is limited consid-
erably. The tests used commonly in the diagnostics of the existing structures, such as the
Schmidt hammer test or ultrasounds, cannot be applied here. Three methods were analyzed,
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which, in the opinion of this paper’s author, apart from the determined test methodology,
are characteristic of their high potential in the diagnostics of historical structures with
exceptional value.

2.1. Double Punch Test (DPT)

The DPT was developed to test mortar samples of irregular shape and a thickness
equal to that of the bed joint from which the specimens were taken [13]. The detailed
methodology of the performance of the test is contained in DIN 18555-9 [14] and the UIC
778-3 instruction [15]. The test specimens are usually obtained from fragments of masonry
characterized by a weak bond between brick and mortar or by drilling from the wall
cylindrical specimens (50 mm diameter) with a centrally placed bed joint. Next, the mortar
layer was separated from the bricks with a chisel. Specimens with a radius in the projection
of about 40–50 mm qualified for testing. The upper and lower surface of the specimen
is leveled with a material of similar strength to the tested mortar—most often, a layer of
plaster with a total thickness of 5 mm is used. The test involves applying a compressive
force through steel punches (Figure 1) until the destruction of the specimen.
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Figure 1. The idea of DPT—compression test through steel punches. Specimen suitable for test
should have about 50 mm in diameter and both surfaces leveled.

The main advantage of this test is the direct measurement of the mortar’s mechan-
ical properties. A negative feature of this test is the high susceptibility of its result to a
range of factors, such as specimen slenderness [16–19], a manner in which the surface
is leveled [20,21], the shape and diameter of steel punches [16] or the presence of large
aggregate grains [22]. In addition, in the case of walls with good adhesiveness between
brick and mortar, extracting specimens is really difficult or even impossible. The number of
correlation functions between mortar strength acc. to DPT test (fm.DPT) and mortar reference
strength (fm) is very limited, and some attempts were made in [16,22,23].

2.2. Standard Penetrometric Test (PT)

The general idea of penetrometric tests is to record the depth at which the needle
penetrates the bed joint as a result of successive impacts. The impact force is generated
by a mass connected to a releasing spring—a mechanism similar to one in a Schmidt
hammer. In practice, a few types of penetrometers were used [24–28], but most of them
were only in laboratory tests. This article uses the first serially manufactured modern
penetrometer, RSM-15, with a standard impact energy of 4.55 Nm and needle diameter of
4.5 mm (Figure 2).

Contrary to the still-only prototype version of the static penetrometer [27], the impact
version of the penetrometer [29] is simple and quick to use. Similarly to the Schmidt
Hammer, which is popularly used in concrete diagnostics, the most important is the proper
selection of the test place so that the recorded values reflect the real technical condition of
the tested wall fragment. Due to the lack of information about the influence of high moisture
content in a wall on results, all tested areas should be identified earlier using the available
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NDT methods such as thermography or gravimetric method [30]. The main advantages
of the PT test are as follows: low invasiveness, fastness, the possibility of measuring at
the specific depth of the joint and the availability of the result directly after finishing the
test. A basic disadvantage is a small database of the published results of experimental
tests, which would enable us to determine what factors and to what extent affect the result.
Furthermore, strength is defined indirectly with the use of a correlation curve.
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Figure 2. Impact penetrometer RSM-15: (a) the penetrometer full kit; (b) the device mechanism [29].

According to the manufacturer (Diagnostic Research Company—DRC) [29], the device
allows to make:

• A measurement of the PT homogeneity of the mortar between its successive layers in
terms of degradation, carbonation or material heterogeneity;

• An assessment of whether the entire structure has been erected using the same mortar;
• An assessment of the compressive strength of the mortar.

There are several methods [25,31–33] similar to PT that are currently being used for
mortar diagnostic, e.g., “Sphere impact”, “controlled penetration” or “DRMS” (based on
microdrilling resistance technique and is a modification of older PNT-G test [34]). Moreover,
new methods, such as the “gun penetrometer”, are still under development [28].

2.3. Torque Penetrometric Test (TPT)

The TPT method applied in the article was proposed by D. Marastoni [35,36] in 2016
as a modification of the X-Drill method [37], together with the solutions known from the
geotechnical Vane Shear Test [38]. The newly developed method is based on the correla-
tion between mortar compressive strength and the value of torque needed to cut off the
tested mortar by the toothed part of the penetrating nail (Figure 3b). The complete testing
equipment consists of a penetrating nail and a torque wrench (Figure 3a). In addition, it is
necessary to use a drilling machine and a hammer in order to insert the penetrating nail into
the examined mortar.
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penetrating nail.

Because the diameter of the penetrating nail equals 9 mm, one should use bed joints
more than 11 mm thick to avoid scratching the toothed part of the penetrating nail against
the bricks, which determines the masonry joist dimensions. The pros and cons of the TPT



Materials 2023, 16, 2402 5 of 22

test are similar to the PT test. A well-known method similar to TPT is the screw (helix)
pull-out method [39].

3. Research Methodology

In order to estimate the range of applicability for the DPT, PT and TPT methods, 3 brick-
masonry prisms were built, with dimensions of 51 × 12 × 62 cm3 each (Figure 4a). There
were 12 × 25 × 6.5 cm3 bricks used for the prisms. All the bed joints had a fixed constant
thickness because of the use of 12 mm spacer strips, which is of particular significance in
the case of TPT testing.
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Figure 4. Tested elements: (a) brick masonry prisms; (b) standard specimens 4 × 4 × 16 cm3; (c) DPT
specimens ≈ 5 × 5 cm2.

Each of the three MDT tests was carried out on three types of mortar (two of them
were cement–lime and one was lime) in order to achieve a greater comparative database of
all the results (Figure 4b).

In order to replicate the real conditions in which historical buildings were erected, it
was assumed that the components of the mortar would be dispensed by volume—so-called
“prescribed mortars”. The ratio values were assumed according to PN-B-10104 [40] code for
F, G and H mortar (Table 1). In every prism, one bed joint was specifically prepared to allow
for the extraction of specimens for the DPT test (Figure 4c). Applying a separating layer
in the form of thin filter paper helped weaken mortar adhesion to the brick. In addition,
brick surfaces in this joint were smoothed by grinding. For each of the three types of
mortar, three samples 4 × 4 × 16 cm3 were prepared to determine mechanical parameters
according to EN 1015-11 standard [6]. After 7 days of maturing in high air humidity, the
prepared specimens were placed in the same room as the masonry prisms in order to ensure
comparable climatic conditions.

Table 1. Mortar volumetric composition 1. Binders: CEM I 32,5 R + hydrated lime.

Type Name Cement Lime Sand

F cement–lime 1 1 6
G lime–cement 1 2 9
H lime 0 1 1.5

1 Mean weight of 1000 mL of: cement ≥ 1.10 kg; lime ≥ 0.52 kg; sand ≥ 1.56 kg.

The MDT tests were thoroughly comparable due to the fact that each of the masonry
prisms was layered with bricks with the use of all three mortars, F, G and H. Additionally,
this allowed for increasing the size of the results database. The detailed structure of masonry
prisms and the location of the respective MDT tests is presented in Figure 5. During PT and
TPT tests, each of the examined prisms was subject to compression of 0.15 MPa in order to
immobilize it.
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Figure 5. Construction of brick masonry prisms prepared for testing. All bed joists were tested. Three
joists were dedicated to the DPT tests. The PT tests were conducted on the remaining bed joints on
one side (A) of the masonry prism. The same bed joints, but on the opposite side (B) of the prism,
were intended for the TPT tests.

The PT test was carried out on the outer mortar surface (Figure 6b) and as the mortar
downhole measurements (Figure 6f). Since the prisms for testing were prepared in the
laboratory and not sampled from the existing structure, it was not necessary to remove
the outer mortar surface, which may be corroded. At the first PT test stage, there were
20 strokes performed, and the needle probe immersion was recorded after the 5th, 10th,
15th and 20th strokes. As part of the second stage, there was a drill hole made at the same
point, with a diameter of 12 mm and a depth of 4 cm in order to conduct the PT test on the
mortar located inside the joint (Figure 6d). The drilling dust was removed from the drill
hole by means of compressed air (Figure 6e). The reading of the needle probe immersion
was re-performed after 20 strokes. By using the immersion depth of the needle probe after
the 10th stroke, the mortar compressive strength was determined based on the correlation
curve, DRC [29], which was referred to in the author’s previous paper ([22], Figure 6).
On the basis of increments between 5, 10, 15 and 20 strokes the mortar homogeneity was
assessed. The methodology was repeated in at least three points, located at a minimum of
10 cm from each other, for each of the tested joints.

The TPT test was performed with the tension wrench, BAHCO (Figure 3a), with a
measurement range up to 35 Nm and a reading accuracy of max. 0.5 Nm. In the first
stage of the test, a pilot hole was made with a diameter of 7 mm and a depth of 5 cm. The
drill cuttings obtained were checked in terms of the brick particle content, which would
disqualify the drill hole from further tests due to the contact of the penetrating nail with
the bricks, which are stronger than the mortar. The drill hole diameter was checked, and it
was ensured whether, within the entire depth, there were any hollows or large aggregate
grains that would distort the results obtained. The drilling dust was removed from the drill
hole by means of compressed air.

The DPT test was performed after the completed PT and TPT tests. In order to extract
the mortar specimens from three joints for the DPT tests, the subsequent layers of bricks
were loosened. The joint-forming mortar was cut into specimens already at the stage of
its joining with a brick in order to obtain the specimens with the intact structure as far as
possible. Mortar specimen extraction was carried out with the use of a broad chisel. In
order to ensure the flat surface of the specimen, it was leveled on both sides with a layer
of fast-binding plaster. The leveling layer was obtained by means of steel punches with
a diameter of 30 mm, at the same time ensuring the possible correction of the specimen
position during the DPT test. For the regular DPT test, steel punches with a diameter of
20 mm were used (Figure 6q). The tests were performed on the testing machine, ZwickRoell
AG (0.5 accuracy class of testing machine with an uncertainty of measurement 0.12%). The
load increment in time was selected individually for each of the three mortar types for the
specimen destruction between the 2nd and 3rd minute of the test.
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Figure 6. The sequence of the tests: (a) the immobilisation of the prism with the force generating the
pressure of 0.15 MPa; (b) the performance of the PT test at the outer surface; (c) the verification of the
correctness of the needle settlement in the middle of the joint thickness and its horizontal position;
(d) the immersion drill hole with the diameter of 12 mm at the depth of 4 cm; (e) the removal of dust
with compressed air; (f) the performance of the downhole measurements during PT test; (g,h) the
verification of the correctness of the needle settlement as in “c”; (i) drilling at the depth of 5 cm of
the pilot hole with the diameter of 7 mm; (j) the verification of the drill cuttings for the purpose of
determining whether the brick layer remained intact or not; (k) the measurement of the diameter
to ensure whether the probe teeth are anchored correctly or not; (l) sticking the probe in; (m) the
performance of the TPT test; (n) the verification of the drill cuttings as in “j”; (o) when the PT and
the DPT tests are completed, dismantling the brick prism and extracting the specimens for the DPT
tests; (p) levelling the specimen surface for the DPT tests; (q) the DPT test; (r) the destruction form
of the DPT specimen; (s) the crack pattern during destruction as the assessment of the lack of the
eccentricity of the compressing force; (t) the performance of flexural tests on the referential specimens;
(u) the performance of compression tests on the referential specimens; (v) the destruction form of the
referential specimen during compression.
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The tests of the standard specimens, 4 × 4 × 16 cm3, were conducted in accordance
with the methodology described in EN 1015-11 [6]. In the first stage, flexural strength was
tested (Figure 6t). The obtained specimen halves, with the dimensions of 4 × 4 × 8 cm3,
were subject to compressive strength tests (Figure 6u). The tests were carried out with the
use of the same testing machine as in the DPT tests.

Repeating the minimally invasive test a few times on the same material is to minimize
the possible unfavorable impact of local effects, which may be revealed during the test.
Additionally, it increases the number of test results, which enables statistical analysis.

4. Results
4.1. The Mortar Reference Strength Acc. to EN 1015-11 [6]

As a result of the flexural tests and then the compressive tests performed on the mortars in
accordance with the procedure provided in EN 1015-11 [6], the mortar mechanical parameters
were determined after 4, 12 and 90 weeks. The figures are presented in Tables 2 and 3.

Table 2. Mortar flexural strength fm.flex in MPa.

Type Total Number
of Specimens After 4 Weeks 1 After 12 Weeks 1 After 90 Weeks 1

F 9 [3/3/3] 0.98 (0.01/1) 1.88 (0.09/5) 1.64 (0.06/4)
G 9 [3/3/3] 0.62 (0.05/9) 1.25 (0.04/3) 1.30 (0.07/5)
H 9 [3/3/3] 0.28 (0.03/11) 0.63 (0.07/11) 0.79 (0.12/15)

1 In brackets, there are provided, respectively, standard deviation (MPa)/variation coefficient (%).

Table 3. Mortar compressive strength fm in MPa.

Type Total Number
of Specimens After 4 Weeks 1 After 12 Weeks 1 After 90 Weeks 1

F 18 [6/6/6] 4.71 (0.13/3) 5.56 (0.15/3) 5.28 (0.21/4)
G 18 [6/6/6] 1.80 (0.13/7) 2.04 (0.18/9) 2.19 (0.26/12)
H 18 [6/6/6] 0.79 (0.09/11) 0.94 (0.12/12) 1.22 (0.17/14)

1 In brackets, there are provided, respectively, standard deviation (MPa)/variation coefficient (%).

As expected, after 4 weeks, the highest mechanical parameters were demonstrated by
mortar F, which obtained fm = 4.71 MPa, whereas mortar H obtained merely fm = 0.79 MPa,
which is only 17% in relation to mortar F. After 90 weeks, both tested parameters were
higher; nevertheless, the compressive strength in the lime mortar (H) increased more
intensely than in the remaining mortars, reaching the value of fm = 1.22 MPa. Furthermore,
the results of the tests performed on mortar H specimens were characterized by higher
values of variation coefficients, reaching 15%. In order to compare the strength development
rate of the analyzed mortars in time, the recorded results are presented in Figures 7 and 8.
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When comparing the ratio of fm.flex/fm for respective mortars, after 90 weeks, its highest
value was demonstrated by mortar H, reaching the value of 0.64, whereas mortar F had the
lowest value—merely 0.31.

4.2. Mortar Strength Based on the DPT Test

The DPT test conducted simultaneously provided considerably higher values of the
maximum compressive stress during the destruction of the specimen. This trend was
noticeable for each of the tested mortars. The detailed results are presented in Table 4.

Table 4. Mortar DPT strength fm.DPT in MPa.

Type Total Number
of Tests After 4 Weeks 1 After 12 Weeks 1 After 90 Weeks 1

F 24 [8/8/8] 8.48 (0.93/11) 13.90 (1.09/8) 17.42 (2.41/14)
G 24 [8/8/8] 4.68 (0.42/9) 6.12 (0.34/5) 7.66 (0.71/9)
H 20 [6/7/7] 2.84 (0.48/17) 3.76 (0.53/14) 4.75 (0.65/14)

1 In brackets, there are provided, respectively, standard deviation (MPa)/variation coefficient (%).

The observed nature of the DPT specimen’s destruction was typical for this test [4].
As a result of the load increase, numerous cracks were formed, spreading radially from the
edge of the compressive force application (Figure 6s). Their number and even distribution
along the entire circumference excludes the existence of unintentional load eccentricity,
at the same time proving the testing method to be valid. The mortar that remained
between the steel punches had the form of a sandglass, which is typical for confined
specimens (Figure 6r). Mortar F and G demonstrated more brittle destruction as compared
to mortar H, for which the force close to the maximum was transferred in the wide range
of steel punches displacements. Figure 9 presents the three diagrams of randomly selected
specimens, representing the behavior of the tested mortars.

When considering a strong dependence between fm.DPT and the specimen thickness, at
the stage of prism masoning, brick spacers were used, thus obtaining similar specimens
thickness. According to the layout presented in Figure 10, demonstrated on the tests
performed after 90 weeks, as many as 80% of specimens fell within the range of 10 mm
to 14 mm, which is typical for bed joints. As a result of leveling the top and bottom load
surface with a plaster layer, the specimen’s average thickness was increased by 4.4 mm.



Materials 2023, 16, 2402 10 of 22

Materials 2023, 16, x FOR PEER REVIEW 10 of 23 
 

 

the edge of the compressive force application (Figure 6t). Their number and even distri-

bution along the entire circumference excludes the existence of unintentional load eccen-

tricity, at the same time proving the testing method to be valid. The mortar that remained 

between the steel punches had the form of a sandglass, which is typical for confined spec-

imens (Figure 6s). Mortar F and G demonstrated more brittle destruction as compared to 

mortar H, for which the force close to the maximum was transferred in the wide range of 

steel punches displacements. Figure 9 presents the three diagrams of randomly selected 

specimens, representing the behavior of the tested mortars.  

 

Figure 9. The comparison of the typical behavior of the three analyzed mortars, F, G and H, on the 

example of random specimens—the test performed after 12 weeks. (The displacement was recorded 

only by the machine grips; therefore, it involves a small distortion resulting from the elastic strain 

of the steel punches and the possible presence of backlashes in the machine). 

When considering a strong dependence between fm.DPT and the specimen thickness, at 

the stage of prism masoning, brick spacers were used, thus obtaining similar specimens 

thickness. According to the layout presented in Figure 10, demonstrated on the tests per-

formed after 90 weeks, as many as 80% of specimens fell within the range of 10 mm to 14 

mm, which is typical for bed joints. As a result of leveling the top and bottom load surface 

with a plaster layer, the specimen’s average thickness was increased by 4.4 mm. 

 

Figure 10. The percentage share of the respective DPT thickness values in the tested population after 

90 weeks—no capping included. 

The highest values of various coefficients of 17% on average were recorded for lime 

mortar H, and twice lower, i.e., 8%, for lime–cement mortar G. What is typical here is the 

increase in the results dispersion of the tests conducted on mortar specimens with low 

Figure 9. The comparison of the typical behavior of the three analyzed mortars, F, G and H, on the
example of random specimens—the test performed after 12 weeks. (The displacement was recorded
only by the machine grips; therefore, it involves a small distortion resulting from the elastic strain of
the steel punches and the possible presence of backlashes in the machine).
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Figure 10. The percentage share of the respective DPT thickness values in the tested population after
90 weeks—no capping included.

The highest values of various coefficients of 17% on average were recorded for lime
mortar H, and twice lower, i.e., 8%, for lime–cement mortar G. What is typical here is the
increase in the results dispersion of the tests conducted on mortar specimens with low
strength, which were extracted from the structure. It appears that the type of binder used
(lime; lime–cement; cement) is more significant here than the mortar strength resulting
from such a binder.

4.3. Mortar Strength Based on the PT Test

The penetrometric tests (PT) performed on three bed joints (of each of the prisms
tested) demonstrated the mortar strength fm.PT closer to mortar reference strength fm (of the
standard beam specimens) than strength fm.DPT determined directly from the test on the
steel punches. This relation is also observed in other tests, not only the laboratory ones but
those conducted on real structures [36,41]. The results from the downhole tests also refer to
the mortar inside the joint, which is the material tested in the two remaining tests: DPT
and TPT. The influence of the depth from which specimens are sampled from the joint may
be significant [30,42,43]. The total number of readings of the needle probe immersion was
1240 (62 measurement series with 20 strokes each). Figure 11 presents the example of the
penetration depth development curves recorded on the mortar surface layer after 4 weeks
of the prisms masoning.
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Figure 11. The results of the penetrometric tests conducted on the surface layer of mortar F, G and H
after 4 weeks of the prisms masoning.

In order to compare the results, it is possible to introduce the notion of the needle
probe “drive”, defined as the average value of the needle immersion per 1 stroke and
calculated from the entire series of 20 strokes. The drive values calculated during the
tests performed on the surface layer of mortar F, G and H after 4 weeks are as follows,
appropriately: 0.63 mm, 0.89 mm and 1.60 mm. The same values, determined on the basis
of the downhole tests (after performing the drill hole of 4 cm), amounted to, respectively,
0.50 mm (decrease of 21%), 0.81 mm (decrease of 8%) and 1.76 mm (increase of 10%). These
results suggest that mortar mechanical parameters may differ depending on the depth at
which the test is performed.

By averaging the results to keep only the division due to the mortar type and its age
as of testing, Figure 12 was obtained. As anticipated, the most advantageous results were
obtained for mortar F, then for G and H. Regardless of the mortar type, as time passed, the
parameters generally improved. The decrease in the total penetration depth between the
4th and 90th week was 4.7 mm (44%) for mortar F, 6.9 mm (41%) for mortar G and 21.8 mm
(68%) for mortar H.
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Figure 12. The averaged results of all the penetrometric tests (surface and downhole) for mortar F, G
and H performed in 3 time intervals, after 4, 12 and 90 weeks.

By converting the obtained penetration depths into the mortar compressive strength,
with consideration of the division into mortar types and age, Table 5 was obtained.

In most cases, the mortar strength estimated in the PT test increases as its age grows.
Regarding mortar F with the prevailing cement share, 67% of the final strength was achieved
after merely 4 weeks of maturing. In contrast, the lime mortar, at the same time, developed
only 22% of its final strength.
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Table 5. Mortar PT strength fm.PT in MPa—an average value from the surface and downhole mea-
surements (after deepening the hole with a drill).

Type Total Number
of Tests 1 After 4 Weeks 2 After 12 Weeks 2 After 90 Weeks 2

F 20 [8/6/6] 2.15 (0.51/24) 2.89 (0.10/4) 3.19 (0.23/7)
G 20 [8/6/6] 1.29 (0.18/14) 1.75 (0.34/20) 2.15 (0.38/18)
H 22 [10/6/6] 0.55 (0.20/36) 1.41 (0.51/36) 2.41(0.15/6)

1 In each test point, 2 tests were performed: surface and downhole. 2 In brackets, there are provided, respectively,
standard deviation (MPa)/variation coefficient (%).

A penetration distribution diagram was used to assess whether there was a stabiliza-
tion of the boundary conditions of the needle probe immersion during the test, which is
presented in Figure 13 for outer surface readings.
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measurements.

From among 62 functions of penetration distribution, 71% achieved the stabilization
of the needle immersion depth already in the second group of five strokes, which indicates
the insignificant extent of boundary distortions. Only 12% of curves did not achieve a
decrease exceeding 50% of the final needle immersion after 10 strokes.

4.4. Mortar Strength Based on the TPT Test

For mortars F and G, as the time passed by (4, 12 and 90 weeks), the value of the
torque needed for shearing the mortar through the toothed part of the penetrating nail
increased as well. The average torque values for mortar F amounted to 13.2 Nm, 16.8 Nm
and 17.9 Nm. For mortar F, they amounted to 7.8 Nm, 8.5 Nm and 9.9 Nm. Regarding
mortar H, the increase in the torque value in time was around the reading error, and it
amounted to 0.6 Nm, 0.8 Nm and 1.1 Nm. Results were compared in Figure 14.

The mortar compressive strength was converted based on equation number 15 pro-
vided in [36]. The strength fm.TPT determined in the TPT test for mortar F and G obtained
the values slightly exceeding reference strength fm (Table 6). Unfortunately, the insuffi-
cient anchoring of the penetrating nail in weak mortar H obtained values different than
expected. As a control, in the 12th and 90th week, the tests were performed with the
pilot hole diameter reduced from 7 mm to 4 mm. This improved the penetrating nail
anchoring (increasing fm.TPT value six times); nevertheless, the results obtained had highly
random nature, sometimes higher and sometimes lower than reference strength fm. The
impact of the pilot hole diameter on the penetrating nail anchoring in the joint was also
observed [44,45]. This phenomenon requires further tests. Due to those problems, TPT tests
for H mortar were mostly omitted during the below analysis.
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Figure 14. The torque values recorded for mortar F, G and H with the use of 7 mm pilot hole. The H
mortar did not allow for the proper anchorage of the penetrating nail.

Table 6. Mortar TPT strength fm.TPT in MPa.

Type 1 Total Number
of Tests After 4 Weeks 2 After 12 Weeks 2 After 90 Weeks 2

F (7) 18 [6/6/6] 4.99 (1.95/39) 6.75 (1.57/23) 7.31 (1.57/22)
G (7) 18 [6/6/6] 2.56 (0.77/30) 2.83 (0.62/22) 3.44 (0.73/21)
H (7) 18 [6/6/6] 0.11 (0.11/101) 0.15 (0.05/34) 0.21(0.08/39)
H (4) 8 [0/4/4] - 0.64 (0.30/46) 1.40(0.46/33)

1 In brackets, there is the pilot hole diameter provided in mm. 2 In brackets, there are provided, respectively,
standard deviation (MPa)/variation coefficient (%).

5. Discussion

The ratio of mortar reference strengths fm.flex/fm depends both on the binder amount
and type and the age of the specimens tested. In the tests carried out on 4 weeks old
specimens, the lowest ratio, equalling 0.21, was obtained for the strongest mortar, i.e., F,
and the highest ratio, equalling 0.36, was observed for the weakest mortar, i.e., H. Similar
values are acknowledged in the literature [40,42].

The specimens’ age also had a consistent impact in the case of all the mortar types.
The strength ratio achieved the highest value for the tests performed in the 12th week
(0.34 for F, 0.61 for G, 0.67 for H), and in the tests in the 90th week, there was a slight
decrease (maximum 8% for mortar F containing the most cement). A few factors may have
an impact here. The most important one is the difference in the strength increase dynamics
fm.flex in relation to fm, and the second one is the development of micro cracks as a result of
shrinkage. The shrinkage impact on the reduction in flexural strength grows along with the
increase in the binder/aggregate ratio [42]. The slight decreases in the mortar strength over
time were also recorded in publications [41,44], where this decrease was ∆fm.flex = −18%
and ∆fm = −21%, respectively.

The comparison of the author’s test results with the results of other researchers
(Figure 15) demonstrates that the relationships of mechanical parameters depend greatly
on the mortar composition and curing regime [42]; numerous correlations were published
in [46]. The mortars tested in this paper are similar to mortars used typically in the existing
brick structures—the obtained red curve (in Figure 15) falls within the dependence devised
by Marastoni in [36], and the black curve describes all the included results. In almost all
cases, flexural strength increased more rapidly than compressive strength; the same results
were noticed in [46].
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Figure 15. Correlation between mortar compressive strength and mortar flexural strength. Specimens
prepared and tested according to EN 1015-11 [6]. Comparison between author’s test results and
results from the literature [3,35,41,44–48].

The obtained curves of the mortar compressive strength increase in time, depending
significantly on the testing method (see Figure 16). The highest values were always obtained
from the DPT (dotted line) tests, and the significantly lower ones were from the TPT (dash–
dot line) tests (except for mortar H, for which no result was obtained). Moreover, the results
of the PT tests (dashed line) and the tests performed on reference beam samples (solid line)
provided the lowest strengths (fm for mortars H and F, and fm.PT for mortar G). Significantly
higher values of fm.DPT result from a few factors, among which the most important are the
following:

(a) Specimen confinement (the effect of friction at the specimen—punch contact zone; a
specimen area larger than the load area; the presence of a capping) [16,20,47,49,50].

(b) Specimen small dimensions and slenderness (the ratio of specimen thickness to punch
diameter) [8,16,17,22,26,51].

(c) The beneficial mortar curing regime inside the wall [20,52].
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Figure 16. Mortar strength development in time according to different testing methods. The respective
test types are marked with a given line style, and the respective mortar types are marked with a
given color.

The impossibility of the penetrating nail anchoring in mortar H in the TPT test suggests
excluding this method from use in the case of very weak mortars. This thesis is confirmed
partially by the results obtained by this method’s author [36], where only one mortar type
was tested with a strength of <1 MPa. The differences recorded between the readings were
30%. At the same time, the difference between the mortar strength, determined based on
the correlation with the non-destructive test result, ranged from 31% to 80%.
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In order to determine the impact of the mortar curing regime, it is necessary to analyze
its strength increase dynamics for each of the tests carried out. Figure 17 presents the above
as the comparison of the values between the 4th and the 12th week and the 4th and the
90th week. The highest relative increases (the increase from 0.55 MPa to 2.41 MPa, the
ratio of 438%) are characteristic of the PT tests performed on mortar H. This effect probably
arises from the highly advantageous coincidence of three factors. The first one, triggered
by the presence of bricks, is the reduction in excessive water in the mortar mixture during
hardening in the joint. This phenomenon, described in the literature as the “absorption
effect”, has a significant impact on the increase in the mortar strength in the actual joints
of the structure [28,53,54]. Furthermore, it contributes to the considerable reduction in the
total open porosity and the reduction in the average pore radius [20,52]. The other factor
is fast carbonation which starts in the mortar’s outer surface of the joint, which is where
the PT tests [42] are performed. The third factor is the natural tendency of lime mortars
for slow hardening [46,48]. To compare, the ratio of reference strength fm in this period for
mortar H was merely 155% (the increase from 0.79 MPa to 1.22 MPa). Regarding mortar
F with the prevailing cement share, the highest strength increase was observed for the
DPT tests.
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Figure 17. Mortar strength increase in time period between 4th and 12th week (e.g., fm(12)/fm(4))
and between 4th and 90th week (e.g., fm.DPT(90)/fm.DPT(4)). The red line represents the compressive
strength established after 4 weeks of curing. The respective test types are marked with a given filling
style, and the respective mortar types are marked with a given color.

Figures 16 and 17 and the decreases in the total penetration depth (provided in
Section 4.3) in the PT test confirm a strong relationship between mortar strength and its
resistance during needle probe penetration. The identical dependence was also confirmed
in [25], where after 6 weeks of curing, the penetration depth was reduced by 15% (cement–
lime mortar similar to G) to 21% (lime mortar similar to H). In a similar period (between the
4th and the 12th week), in the tests presented in this paper, the reduction was, respectively,
16% for mortar G and 32% for mortar H. A considerably weaker relationship was obtained
in [28] between mortar compressive strength and the number of strokes.

The minor-destructive test on the mortar in the existing structure is frequently per-
formed in order to use the results obtained for determining the masonry compressive
strength [55–57]. In such a case, it is often necessary to convert the estimated mortar
strength obtained in the MDT test to the mortar compressive strength determined on half-
beam specimens 4 × 4 × 8 cm3 [58]. The values of the conversion coefficients obtained in
the tests for the respective MDTs in the time function are presented in Figure 18. Neverthe-
less, their application scope must be limited only to mortars with a similar composition and
a testing methodology imitating the one adapted herein. Regarding the TPT and PT tests
(with the exception of mortar H), the conversion coefficient value is nearly constant over
time. As far as all the DPT tests are concerned (and PT for mortar H), the coefficient values
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demonstrate a significant increase over time. This is a consequence of the afore-described
phenomena.
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Figure 18. Time changing strengths relation, allowing to convert mortar strength obtained by all
MDTs to reference strength fm. The red line separates MDTs that return mortar strength higher than
fm (are above) from those which return values lower than fm (are below).

However, in most cases, the composition of the tested mortar is not known, which
necessitates using a function with considerably lower accuracy yet a wider application
scope. The dependences obtained in the tests fm.DPT(fm), fm.PT(fm) and fm.TPT(fm) are pre-
sented in Figure 19. Defining a single correlation curve for all three MDT tests (a black
line in Figure 19) is irrational in practice due to the excessively large dispersion of results
(R2 = 0.38).
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Figure 19. Comparison of mortar strengths obtained by MDTs (e.g., DPT, PT, TPT) and DT (test on
4 × 4 × 8 cm3 mortar half-beams). The red line separates MDTs that return mortar strength higher
than fm (are above) from those which return values lower than fm (are below).

Regarding the multiplicity of factors affecting the DPT test results (described in detail
in the introduction to this section) and, in consequence, considerable variability of ratio
fm.DPT/fm, it would be most advantageous to devise a few curves representing the types
of mortars that are used most often. Since papers [16,18–20] provide the detailed results
of strength fm.DPT and fm, as well as geometrical data for each tested specimen, the depen-
dences between the DPT specimen slenderness and the correlation coefficient, could be
elaborated by the author. Said dependences are presented in Figure 20, with consideration
of a function, also elaborated by the author in [22], dedicated to the historical buildings of
the City of Cracow (a black curve).
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Figure 20. Relationship between specimen slenderness (specimen thickness, h/punch diameter, a) and
value fm.DPT/fm. Comparison between author’s test results (marked by dots) and functions prepared
based on other authors’ research (grouped by color of function) [16,18–20,22]. The interpretation of
the symbols assigned to the binders used: L—lime; C—cement; LMC—lime–metakaolin–cement.
The curves presented are not entirely comparable due to slight deviations in the testing procedure
applied by the respective authors: [16] tests performed after 100 days of curing with the use of
square punches with the side of 20 mm; [18,19] compressive strength was determined based on the
ASTM C109 standard [59], i.e., on the cube with the side of 5 cm, understating it slightly. Slight
difference in vertical location between author’s results and other functions seem to be due to lack
of capping for DPT specimen in the case of majority of tests in the literature. Additionally, lower
mortar DPT strength in the literature is caused by out-of-joint hardening of mortar (lacking favorable
absorption effect).

A continuous line marks the weakest mortar in a given series, a dotted line marks
the strongest mortars, and a dashed line marks the intermediate-strength mortars. The
strong curvilinear nature of the functions obtained confirms that the correlation coefficient
value (fm.DPT/fm) increases as the specimen slenderness decreases (due to the increase in the
specimen of the transverse compressive stresses in the radial direction). Another significant
factor, which has not been emphasized sufficiently in the literature so far, is mortar strength.
The weaker mortars were tested, and the higher correlation coefficient values were obtained.
This is also confirmed by the results presented in the diagram in the form of dots recorded
for the mortars analyzed herein. The following values of correlation coefficients were
obtained for them: 2.53 for F, 3.03 for G and 3.84 for H, despite the comparable slenderness
of the DPT specimens.

The correlations between the respective MDTs and DPT tests may be presented suc-
cessfully with linear functions (Figure 21). This feature was not dependent on the mortar
type.
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Figure 21. The correlations between the results of the MDTs and DPT. For comparison purposes, the
correlation obtained from the author’s tests conducted on historical buildings [18] was marked with
blue line.

By analyzing statistical parameters of all results presented in this paper and ob-
tained by other authors [3,5,19,20,22,28,35,41,44–46,50,51,58,60,61], a significant difference
between minor destructive tests (DPT, PT, TPT) and the destructive test is noticeable. For
dispersion assessment, variation coefficients were compared in Figure 22. Only reference
compressive strength results fm were characterized by a mean value of CV lower than 10%
(precisely 6.2%). All the results of MDTs had this parameter 3–4 times higher. On the other
hand, mortar reference strength was tested only on laboratory-prepared specimens with
naturally high homogeneity. The value of CV seems to also be affected by mortar type.
For all tests performed in this paper, the CV for the strongest mortar (F) was lower than
for the weakest mortar (H). The mean value of CV changed from 3% to 12% for fm, from
11% to 15% for fm.DPT, from 12% to 26% for fm.PT, and from 28% to 58% for fm.TPT. This
agrees with the conclusion that more homogenous mortars tend to be stronger [58]. Those
two features suggest that in the case of low-strength mortar diagnostic with PT or TPT, a
larger number of tests is needed for the same accuracy of estimation. According to [62], for
practical applications, this dependency seems to become negligible for a number of NDTs
measurements equal to at least 20.
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Figure 22. Comparison of variation coefficients (CV) for all analyzed tests from the litera-
ture [3,19,20,22,28,35,41,44–46,49–52,58,60,61] and presented herein. Total number of 140 CVs was
included—64 for fm; 43 for fm.DPT; 19 for fm.PT; 14 for fm.TPT. The horizontal line represents median,
and x represents mean. All MDTs are characterized by much wider dispersion in comparison with DT.
The widest range of CV was noted for penetrometric test. The right skewed distribution characterized
all CV tests.



Materials 2023, 16, 2402 19 of 22

6. Conclusions

In summary of the above results of the tests and analyses, the following general
conclusions can be formulated:

- For the mortars tested, the weaker the mortar, the higher the strength ratio fm.flex/fm.
The increased dynamics of compressive strength fm depends greatly on the binder
amount and type; mortar F with a prevailing cement share, after 4 weeks, reached
89% of its final strength. For the mortars with a prevailing lime share, the higher the
lime content was, the longer their strength was developed; mortar H, after 4 weeks,
reached 64% of its final strength.

- Furthermore, the curing regime also strongly determined the increased dynamics
of mortar strength. In the PT tests conducted on the external surface of the joint
filled with mortar H, the values recorded were higher than in the mortar downhole
readings. Most likely, this results from the free carbonation in combination with the
absorption effect initiated by bricks. For this reason, regarding lime mortars, in order
to determine more effectively the average mortar compressive strength, the PT tests
must be supplemented with downhole readings. In the event of the DPT tests, higher
strength fm.DPT increases in time were registered for cement–lime mortar F, which
may be connected with the beneficial mortar curing regime inside a masonry, where
humidity conditions are stable.

- Mortars with extremely low strength (<1 MPa) may not guarantee the required an-
choring of the penetrating nail in the TPT tests while significantly understating the
results obtained. The diameter reduction in the pilot hole has a positive impact here;
however, further research in this regard is needed.

- The mortar penetrometric tests (PT) performed in joints, on account of the insignificant
impact energy of the device, are limited to weak mortars only. The minimum penetra-
tion depth after the 10th strike, which may be converted based on the correlation curve,
is 4 mm. This corresponds to the maximum mortar strength of 3.2 MPa. Moreover, the
maximum penetration depth is 20 mm, which provides the mortar strength of approx.
0.55 MPa. Due to these facts, the PT method application scope is relatively narrow,
and it is limited mostly to lime mortars.

- Ratio fm.DPT/fm increases as slenderness (h/a) decreases in the tested specimens due to
the mortar confinement increase when loaded. Another essential parameter, accompa-
nied by the increase in ratio fm.DPT/fm, is the mortar strength decrease. According to
the test results, the highest ratios of fm.DPT/fm are characteristic of weak lime mortars
tested on the DPT specimens with small thicknesses. The application of simplifica-
tion used commonly in engineering practice (fm = 0.5 ÷ 0.7 fm.DPT) may lead to the
considerable overestimation of mortar compressive strength fm.

- The ratio of fm.PT/fm and fm.TPT/fm increased in the tests as the specimens’ age in-
creased and as the mortar strength decreased.

- For the purpose of improving the estimating accuracy of the mortar compressive
strength in the existing structure, it is recommended to use at least two types of tests
simultaneously. While comparing the values of the variability coefficients for the
respective diagnostic methods, it is recommended to use the destructive and non-
destructive tests simultaneously, thus considerably limiting the number of specimens
required for destructive tests, as shown in [62]. Special attention is needed in case
of low-strength mortar diagnostic using minor destructive tests. For those cases, an
increased number of tests is recommended.

- If it is not possible to perform a few types of NDT tests, then the DPT test is the first
choice test for strong mortars, which may be extracted from the masonry. As far as
weak mortars or non-extractable mortars are concerned, the PT test is recommended,
and the TPT test is recommended for medium-strength mortars.
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