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Abstract: A single crystalline layered semiconductor In1.2Ga0.8S3 phase was grown, and by inter-
calating p-aminopyridine (NH2-C5H4N or p-AP) molecules into this crystal, a new intercalation
compound, In1.2Ga0.8S3·0.5(NH2-C5H4N), was synthesized. Further, by substituting p-AP molecules
with p-ethylenediamine (NH2-CH2-CH2-NH2 or p-EDA) in this intercalation compound, another
new intercalated compound—In1.2Ga0.8S3·0.5(NH2-CH2-CH2-NH2) was synthesized. It was found
that the single crystallinity of the initial In1.2Ga0.8S3 samples was retained after their intercalation
despite a strong deterioration in quality. The thermal peculiarities of both the intercalation and
deintercalation of the title crystal were determined. Furthermore, the unit cell parameters of the
intercalation compounds were determined from X-ray diffraction data (XRD). It was found that
increasing the c parameter corresponded to the dimension of the intercalated molecule. In addition
to the intercalation phases’ experimental characterization, the lattice dynamical properties and the
electronic and bonding features of the stoichiometric GaInS3 were calculated using the Density
Functional Theory within the Generalized Gradient Approximations (DFT-GGA). Nine Raman-active
modes were observed and identified for this compound. The electronic gap was found to be an
indirect one and the topological analysis of the electron density revealed that the interlayer bonding
is rather weak, thus enabling the intercalation of organic molecules.

Keywords: gallium indium sulfide; single crystal; intercalation compounds; X-ray powder diffraction;
Rietveld refinement; Raman scattering; DFT; charge density topology; band structure

1. Introduction

In recent years, much more interest has been focused on layered van der Waals (vdW)
materials due to their unique structural and electronic features. Layered materials can be
either single-element crystals, such as graphite, black phosphorus, black arsenic, antimony,
or bismuth, or inorganic compounds, such as transition metal chalcogenides, some oxides,
silicates, hydroxides, etc. Layered vdW materials usually exhibit strong in-plane covalent
bonding while weak van der Waals interactions between the neighboring layers are in
play. Most of these materials exhibit a wide range of electronic properties, from dielectric,
semiconducting, metallic, and superconducting, to topologically insulating [1–10].

Intercalating transition metal dichalcogenides with various ions leads to the appear-
ance of curious physical phenomena such as charge density waves, two-dimensional
superconductivity, etc. [11,12]. Some organic molecules may also intercalate into the vdW
gap of the layered compounds. This kind of intercalation process has been of great interest
in recent years from the viewpoint of tuning the transport and optical properties [12,13].
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Intercalation phases with organic molecules are often called inorganic-organic hybrid com-
pounds when they are bonded covalently and become new semiconductors with tunable
electronic properties.

Intercalation in some transition metal dichalcogenides has been successfully achieved
by chemical transport reactions and electrochemical, ion exchange, and redox methods, in
which the embedded substances can be atoms, ions, or molecules [11–24]. In general, the
intercalation of various ions or organic molecules into the vdW gap of layered inorganic
materials is one of the effective design methods for creating hybrid materials with novel
physical properties [25,26].

Depending on the growing conditions, several layered hexagonal In1+xGa1-xS3 phases
crystallize in the In-Ga-S system. The crystal structure of all these phases has already
been reported in our previous works [27–30]. In addition to the hexagonal phases, the
orthorhombic phase also crystallizes in the In-Ga-S system [31]. This phase also has a
layered structure where indium atoms are in octahedra whereas the gallium atoms are
coordinated in tetrahedra.

Previously, we grew InGaS3 single crystals and then synthesized their intercalates with
p-AP (NH2-C5H4N). X-ray studies revealed that the high-quality matrix single crystals
became highly dispersed after the intercalation process, despite the geometric shapes of the
crystals remaining stable. Therefore, there were certain difficulties in determining the unit
cell parameters of the intercalate. An orthorhombic cell was chosen for the intercalate in
previously published works [32–34] but the structure has not yet been solved. In addition,
the crystal structure refinement of the matrix crystal by the Rietveld method was presented
in [34]. It was found that 20% of the tetrahedral positions were occupied by indium atoms
(20% In + 80% Ga) and the real composition of the crystals corresponded to the formula
In1.2Ga0.8S3. However, due to the partial substitution of the In atoms for Ga, this phase
may have had a solid solution region.

Here, we present the results of the X-ray and thermal analysis of In1.2Ga0.8S3 with
p-AP and p-EDA (NH2-CH2-CH2-NH2) molecules as intercalates. Moreover, this paper
reports ab initio calculations of the lattice dynamical properties, and the investigation of
the electronic structure and charge density topology of the stoichiometric GaInS3, revealing
the feasibility of intercalating the molecules within the interlayer space.

2. Materials and Methods
2.1. Synthesis and Single Crystal Growth of Orthorhombic In1.2Ga0.8S3 Phase

Gallium (99.999 mass%), indium (99.99 mass%), and sulfur (99.999 mass%) purchased
from Alfa Aesar were used for the synthesis of the In1.2Ga0.8S3 phase. The synthesis was
carried out in an evacuated (under 10−3 Pa) quartz ampoule by melting a stoichiometric
mixture of the initial elements. An ampoule was heated up to 1050 ◦C and then slowly
cooled down to room temperature for 24 h. The chemical vapor transport (CVT) method
was used to grow single crystals of the In1.2Ga0.8S3 phase. In this method, an approximately
1.2 g polycrystalline sample was placed in a quartz ampoule together with elemental iodine
whose mass was calculated as 4 mg/cm3 regarding the ampoule volume. A loaded ampoule
was sealed under 10−3 Pa and then placed in the middle of a horizontal two-zone furnace.
The temperature conditions for growing a single crystal were T1 = 700 ◦C and T2 = 600 ◦C.
As a result, high-quality single crystals of this phase were achieved.

2.2. Synthesis of Intercalation Compounds

The synthesis of the intercalation compound was performed in an evacuated quartz
ampoule by direct interaction of orthorhombic In1.2Ga0.8S3 single crystals and p-AP. The
mixture was kept above the melting point of p-AP (Tm = 158 ◦C) at a temperature of
180–200 ◦C for three days. The excess of p-AP was washed from the obtained interca-
lated crystals with ethyl alcohol. The intercalate compound In1.2Ga0.8S3 with p-EDA
molecules was obtained by replacing the p-AP molecules with p-EDA molecules in the
In1.2Ga0.8S3·0.5(p-AP) intercalate. For this purpose, the intercalate crystals and p-EDA
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molecules were placed in a glass ampoule. Then, the ampoule was evacuated, heated to
200 ◦C, and kept at this temperature for three days.

2.3. DTA and TG Analysis

DTA and TG analyses of the samples were performed on a Netzsch STA 449 F3
system with platinum–rhodium thermocouples under an argon gas atmosphere from room
temperature up to ~450 K with a heating rate of 15 K/min.

2.4. X-ray Diffraction Characterization

XRD analyses of the polycrystalline samples were carried out on BRUKER D2-PHASER
and D8-ADVANCE diffractometers (CuKα; 5◦ ≤ 2θ ≤ 100◦), from room temperature up
to 420 ◦C, using the EVA and Topas 4.2 software packages supplied together with the
diffractometer.

2.5. Raman Characterization

Raman scattering studies were performed with the aid of a confocal micro-spectrometer
Nanofinder 30 (Tokyo Instruments, Tokyo, Japan). A second harmonic (532 nm) of an
Nd:YAG laser with a maximum output power of 10 mW was used as an excitation source,
and the cross-sectional beam diameter was 4 µm. A CCD camera cooled down to –70 ◦C
was used for Raman signal detection. The spectra were taken in back-scattering geometry
at room temperature.

3. Computational Details
3.1. Dynamical Properties

The calculations of dynamical properties for the stoichiometric GaInS3 phase were
performed using the Density Functional Perturbation Theory (DFPT) [35–38] based on the
pseudopotential method as implemented in the ABINIT code [39]. Hartwigsen–Goedecker–
Hutter norm-conserving pseudopotentials [40] and the generalized gradient approximation
(GGA) exchange-correlation functional of Perdew, Burke, and Ernzerhof (PBE) [41] were
used in phonon spectra calculations. A plane wave basis set with a cutoff of 80 Ry was
used for the expansion of the electronic wavefunctions, which provided good conver-
gence of the total energy. The integration over the Brillouin zone was solved using the
special approximation of k-points on a 4 × 4 × 4 grid provided by the Monkhorst–Pack
method [42].

The lattice parameters and the equilibrium atomic positions in the unit cell were
determined by the minimization of Hellmann–Feynman forces using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method and the experimental structure as a starting point. The
process of minimization continued until the force moduli became less than 10−4 eVÅ−1.
Initially, the dependence of the convergence of the total energy and the Hellmann–Feynman
forces on both the Monkhorst–Pack mesh and the energy cutoff of the plane waves was
tested considering the optimal computational cost-to-accuracy ratio.

3.2. Electronic Properties and Charge Density Analysis

The PBE exchange-correlation function combined with the DFT-D3(BJ) approach
of Grimme et al. [43,44] was used. The projector augmented wave pseudopotentials
as implemented in the VASP code [45–47] were used. A cutoff energy of 30 eV and a
Monkhorst–Pack grid of 13 × 7 × 3 k-points were employed. The structure was optimized
with the precision thresholds of 10−5 eV and 10−3 eVÅ−1 for the energy and atomic
forces, respectively. For the topological analysis of the charge density, a very fine grid of
over 72 × 106 points was used. The topological analysis was performed with the Critic2
program [48,49] that implements the Bader quantum theory of atoms in molecules [50].
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4. Results and Discussion
4.1. Crystal Structure of the Orthorhombic Phase In1.2Ga0.8S3

The crystal structure of the layered orthorhombic In1.2Ga0.8S3 is described in [34]
(Person’s card number 1961818 and JCPDS card number 04-026-4498 [51]). As we know,
the structure of most layered chalcogenides is built up by a close-packing principle in a
hexagonal system. The building blocks of such structures are two-dimensionally infinite
packages consisting of several alternating A-K-...-A-type anion-cation layers. A three-
dimensional structure is formed by the repetition of such blocks along the “c” axis. In
this type of structure, the bonds between adjacent packets are the van der Waals type
formed by the termination anions of each block. In the case of orthorhombic In1.2Ga0.8S3
crystals, each building package consists of five such alternating layers: S-(Ga, In)-S-(Ga,
In)-S. An interesting fact here is that, unlike most layered crystals, the inter-package gaps
are characterized by a complex zigzag architecture (Figure 1). In the structure of the
orthorhombic phase, the ratio of tetrahedrons and octahedrons is equal.
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Figure 1. Crystal structure of the orthorhombic In1.2Ga0.8S3 phase.

4.2. Intercalation of the p-Aminopyridine into the In1.2Ga0.8S3

The synthesis procedure for the p-AP intercalated orthorhombic In1.2Ga0.8S3 is de-
scribed in detail in Section 2.2. To determine the temperature of the onset of intercalation, a
DTA thermogram of a mixture consisting of crystalline powders of In1.2Ga0.8S3 and p-AP
was taken while heated up to 250 ◦C (Figure 2a). The thermogram of the intercalation
process shows only one endothermic effect at 158 ◦C corresponding to the melting point of
crystalline p-AP. The absence of additional thermal effects means that melting and interca-
lation occur simultaneously. Identification of the chemical composition and deintercalation
process was examined further using thermogravimetric (TG) analysis. The DTA spectrum
shows clearly exo- and endothermic effects at 140 ◦C and 344.2 ◦C, respectively (Figure 2b).
The weight loss was ~3.13% and ~15.63% for the first and second effects, respectively.
Based on the relatively low temperature and small weight change, it can be assumed that
the first effect corresponds to the removal of weakly bounded p-AP molecules whereas
the second peak refers to the removal of the main intercalated portion of p-AP. Using the
weight loss associated with the second peak and considering the formula unit of the matrix
crystals (In1.2Ga0.8S3), the chemical formula of the intercalation compound was found to be
In1.2Ga0.8S3·0.5(p-AP).
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Figure 2. (a) Thermogram of a mixture consisting of the crystalline powders of In1.2Ga0.8S3 and p-AP.
(b) DTA and TG spectrum of the In1.2Ga0.8S3·0.5(p-AP).

Figure 3a shows one of the intercalated crystals with well-defined geometric shapes
whereas Figure 3b shows its diffraction image. One can see that although single crystals re-
tain their geometric shapes during the intercalation process, the crystallinity is significantly
impaired. Despite the strongly diffuse shape of diffraction spots, they still retain their
individuality. A significant difference in the distribution of these spots in the horizontal
and vertical directions also indicates that the intercalated crystals retain single crystallinity,
despite their poor quality. Such a deterioration process makes the determination of the unit
cell parameters quite difficult.
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Figure 3. Crystal image (a) and XRD pattern (b) of the intercalated In1.2Ga0.8S3·0.5(p-AP) crystals.

In our previous works [32,33], the monoclinic unit cell with the following parameters
c = 31.12(4), a = 3.764(5), b = 6.135(7) Å, γ = 90◦, and sp. gr. B112 was determined for the
InGaS3+p-AP intercalate. However, these parameters were found to be unsatisfactory for
indexing the diffraction pattern of the In1.2Ga0.8S3·0.5(p-AP) compound (Figure 4, blue
line) since some diffraction lines remained unindexed. Moreover, attempts to choose an
orthorhombic or monoclinic space group corresponding to the model structure have not
yielded results due to strong deterioration in the single crystallinity of intercalated crystals.
Therefore, in this work, we tried to determine the correct characteristics of the unit cell using
the powder diffraction data of the intercalation compound. The best solution, which agreed
well with the diffraction image, was a triclinic unit cell with the following characteristics,
refined by the LeBail method (Figure 4, red line): Sp. gr. P1, a = 15.8933(7), b = 3.7934(2),
c = 6.1544(5) (Å), α = 92.076(5), β = 100.750(6), and γ = 81.170(6).
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Figure 4. LeBail fitted (red line) and experimental (blue line) diffraction patterns of the
In1.2Ga0.8S3·0.5(p-AP) intercalation compound.

The lattice parameters b and c characterize the sizes of blocks of the In1.2Ga0.8S3 crystal
structure (Figure 1). As can be seen, their values are very close to the corresponding lattice
parameters of the intercalated crystals, meaning that after the intercalation process, no strong
changes occur in the geometric dimensions of the blocks. In this case, the a parameter
determines the rule for the mutual arrangement of neighboring blocks. The intercalation
of p-AP molecules between blocks should significantly increase this parameter, which we
observed. On the other hand, we know that the deintercalation temperature of the p-AP
molecule is 345 ◦C (Figure 2b), which is quite high for a molecule sharing weak vdW bonds
with the host structure. In addition, it is well known that the thermal decomposition of a
complex compound usually breaks covalent bonds between an organic molecule and metal
atoms at about ≥300 ◦C [52,53]. Therefore, it can be assumed that the bond of the p-AP
molecule with the inorganic matrix is a covalent one. A detailed examination of the structural
blocks of In1.2Ga0.8S3 allows us to conclude that such a bond can be formed if the Ga atoms
move to a new position, as shown in Figure 5a (red arrows). In this case, the nitrogen atoms
of p-AP molecules can form covalent bonds with gallium atoms and connect the blocks into
a single framework structure. However, all our attempts to determine the structure of the
intercalation compound were unsuccessful due to the low quality of the crystals.
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Thus, considering (i) the value of the unit cell parameters, (ii) the displacement of
Ga atoms to new positions, (iii) the alternation of blocks in the c direction, and (iv) the
formation of covalent bonds between the nitrogen atoms of p-AP with the gallium atoms
of the blocks, it is possible to suggest a model structure shown in Figure 5b for intercalated
crystals. The small value of parameter b (3.793 Å) indicates that the hexagonal ring of
p-aminopyridine should be located almost parallel to the ac plane.

4.3. Deintercalation of In1.2Ga0.8S3·0.5(p-AP) Compound

The intercalation↔deintercalation reversibility is a typical property for most interca-
lation compounds. Therefore, studying the thermal decomposition process to determine
the nature of the deintercalation and restoration of the matrix crystals is essential. Ther-
mogravimetric analysis results (Figure 2b) confirm that the intercalated p-AP molecules
are completely removed from the intercalation compound upon heating up to 350 ◦C.
Further, the In1.2Ga0.8S3·0.5(p-AP) crystals were studied by high-temperature XRD from
room temperature up to 420 ◦C to follow structural changes. One can see from Figure 6 that
the intercalation compound is stable up to 250 ◦C. However, the weak diffraction peaks that
appear at 2θ = ~9.2◦ and ~18.6◦ after 250 ◦C can be referred to In1.2Ga0.8S3 matrix crystals.
Upon heating up to 420 ◦C, the intensities of these lines gradually increase (Figure 6), while
the intensities of other peaks, which belong to the intercalation compound, significantly
decrease but do not disappear completely.
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the temperature range of 30–420 ◦C.

The XRD pattern at 420 ◦C clearly shows diffraction peaks related to the interca-
lated compound, despite the DTA thermogram confirming that the p-AP molecules were
completely removed. In other words, the In1.2Ga0.8S3 matrix crystals are found to be not
completely restored after the deintercalation process. On the other hand, the appearance at
~250 ◦C of peaks corresponding to the matrix crystal confirms that the initial state of the
crystals is mostly restored.

The deintercalation of the main part of p-AP from the intercalated compound occurs
at around 345 ◦C according to the thermogram (Figure 2b). However, it is a rather high
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temperature because the decomposition of many complex compounds containing covalent
or ionic bonds occurs around this temperature. This confirms that in the In1.2Ga0.8S3·0.5(p-
AP) crystals, the p-AP molecules form stronger bonds with matrix crystal atoms than van
der Waals or hydrogen bonds.

4.4. Raman Spectra of Orthorhombic In1.2Ga0.8S3 and In1.2Ga0.8S3·0.5(p-AP) Compound

Figure 7a–c shows the Raman spectra of the pristine and partially intercalated In1.2Ga0.8S3
crystals, as well as the completely intercalated In1.2Ga0.8S3·0.5(p-AP) compound, respec-
tively. As expected, all Raman peaks of the matrix crystal are fixed in the range of
50–400 cm−1 where ten peaks are clearly distinguished, which is typical for ordinary
inorganic compounds. The spectrum of the intercalation compound (Figure 7c) can be
divided into two parts.
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The low-frequency region below 400 cm−1 characterizes the matrix crystal, whereas
the high-frequency region represents the p-AP molecule.

The simplified low-frequency region of the spectrum displays only three peaks at 57,
69, and 86 cm−1. This fact confirms that the structure of the matrix crystal is significantly
transformed due to the intercalation process. Figure 7b displays the Raman spectra for
the partially intercalated matrix crystals. The partial intercalation of the p-AP molecules is
confirmed by the weakening of the p-AP molecules’ peak intensities. In this case, one can
see that the low-frequency region of the spectrum is quite different from the same regions
in the other two spectra.

4.5. Intercalation of the p-Ethylenediamine into the In1.2Ga0.8S3

The intercalation of p-AP molecules into In1.2Ga0.8S3 single crystals under given con-
ditions occurs naturally. However, our attempts to synthesize analogous intercalation
compounds with some related organic molecules, such as 2-AP, 3-AP, p-phenylenediamine,
pyrazine, piperazine, and p-ethylenediamine, were unsuccessful, which means that the in-
tercalation process in orthorhombic crystal In1.2Ga0.8S3 is highly selective. We studied the in-
teraction of the same molecules with the intercalated compound In1.2Ga0.8S3·0.5(p-AP). The
purpose of these experiments was to replace the p-AP molecule with p-phenylenediamine,
pyrazine, and p-ethylenediamine molecules. Experiments with p-phenylenediamine



Materials 2023, 16, 2368 9 of 16

and pyrazine molecules were unsuccessful, while substitutions with p-ethylenediamine
(NH2-CH2-CH2-NH2, hereafter coined p-EDA) molecules were accompanied by signif-
icant changes. Figure 8 represents the five XRD patterns for the pristine orthorhombic
In1.2Ga0.8S3 crystal (a), In1.2Ga0.8S3·0.5(p-AP) intercalation compound (b), and various sam-
ples, respectively obtained by the interaction of p-EDA molecules with In1.2Ga0.8S3·0.5(p-
AP) crystals (c,d,e). By comparing these diffraction patterns, one can say that the interaction
of p-EDA with In1.2Ga0.8S3·0.5(p-AP) crystals is accompanied by significant structural
changes in the latter one.
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Figure 8. (a) XRD patterns for the pristine orthorhombic In1.2Ga0.8S3 crystal, (b) In1.2Ga0.8S3·0.5(p-
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As can be seen, there is no diffraction line in the In1.2Ga0.8S3·0.5(p-AP) diffractogram
(Figure 8b) that matches with patterns Figure 8c–e. This confirms the complete extraction
of p-AP molecules from the In1.2Ga0.8S3·0.5(p-AP) crystals. Moreover, the appearance of
typical diffraction lines of the orthorhombic In1.2Ga0.8S3 in the XRD patterns (Figure 8c,d)
means that the In1.2Ga0.8S3 matrix crystals were partially recovered. The detection of
new diffraction peaks in Figure 8c,d confirms that the p-EDA molecules replaced the p-AP
molecules, and a new intercalation compound with p-EDA, namely In1.2Ga0.8S3·0.5(p-EDA)
was formed. A weak absolute value and relatively large width of the new peaks in the
patterns given in Figure 8c–e indicate the possible exfoliation of the matrix crystal during
the intercalation of p-EDA molecules into the layers. The unit cell parameter c of the crystals
intercalated with p-EDA, calculated from the diffraction patterns (Figure 8c–e) using the
newly appeared peaks (2θ = 6.4◦ and 19.1◦), is ~13.975 Å. Compared with In1.2Ga0.8S3·0.5(p-
AP), c was reduced by ~1.9 Å. This change is quite expected since the size of the p-EDA
molecule was relatively smaller than that of p-AP.

4.6. DFT Investigations of the Vibrational Properties

There are ten atoms in the primitive cell of GaInS3 (Pearson’s card number 1,803,335
and JCPDS one 04-010-1075 [51]) and therefore, the phonon band structure has thirty
normal phonon modes. The group-theoretical analysis produced the following phonon
modes: Γ = 10A1 + 5A2 + 5B1 + 10B2, acoustic modes Γac. = A1 + B1 + B2, and optical
modes Γop. = 9A1 + 5A2 + 4B1 + 9B2. All the latest modes are Raman active. A1, B1, and B2
modes are also active in infrared reflection and therefore exhibit longitudinal-transverse
optical splitting (LO-TO). Analysis of the displacement vector of atoms shows that, in
A2 and B1 modes, the displacement of atoms occurs mainly along the crystallographic
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x-axes. Oscillations of the A1 and B2 symmetry modes occur mainly along the x and y
crystallographic axes. Figure 9 shows the Raman spectra of GaInS3. Nine of twenty-seven
Raman-active modes were detected from ab initio calculations of the phonon band structure
(Table 1).
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Table 1. Calculated ωtheo and experimentally measured ωexp eigenfrequencies of GaInS3. All
frequencies are given in (cm−1). LO-TO splitting is indicated by a slash.

Mode

A1(R, IR) A2(R) B1(R, IR) B2(R, IR)

ωtheo|ωexp

71.84 40.9 40.8 96.37 53.94 49.3

103.18 104.7 88.75 165.39 101.55

123.15 126.7 177.15 254.04 164.38

179.1 178.9 258.5 310.54 202.84

214.74 309.1 240.24/247.24 232.5

265.14 283.18/278.18 288.0

318.71 317.8 319.55

342.75 329.72

382.2 407.2/385.2 414.0

The phonon mode dispersions of the GaInS3 along the symmetric lines of the Brillouin
zone and atom-projected phonon density of states (PHDOS) are shown in Figure 10. As
can be seen, the GaInS3 is dynamically stable, and the phonon band structure shows no
imaginary modes. As can be seen from Figure 11, the first region from 0 to 164 cm−1 with a
peak located at 81 cm−1 is dominated by the shift of heavy indium and gallium atoms and
includes the acoustic and low-frequency optical modes. The second high-frequency region
from 164 to 415 cm−1 results mainly from the shift of sulfur atoms in the unit cell, but with
a small contribution of the gallium and indium atoms. The most intense peak of the Raman
spectrum at 104.68 cm−1 corresponds to the A1 mode, in the vibrations of which all three
Ga, In, and S atoms participate with almost the same contribution.
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4.7. DFT Investigation of the Electronic Properties and Charge Density Topology

The structure was optimized by retaining the symmetry of the space group Cmc21 (number
36, setting Bb21m). In addition, the calculated cell parameters 18.86× 6.168× 3.846 Å are in
excellent agreement with the experimental ones (19.06 × 6.194 × 3.811 Å) and recently
calculated ones [54]. As expected, the van der Waals interaction energy is weak as it
represents 6.6% of the total energy per unit cell.

The electronic band structure provides evidence of an indirect bandgap 1.57 eV wide.
The top of the valence band is located between the Y and the H2 k-points, and the bottom
of the conduction band is at Γ (Figure 12). As to the contributions of the atoms to the
band edges, Figure 12 shows that the top of the valence band is mostly contributed by the
sulfur atomic orbitals (Figure 12c), whereas the bottom of the conduction band is mostly
contributed by the indium atomic orbitals (Figure 12a). Gallium contributes to both band
edges to a lesser extent (Figure 12b).

The Bader topological analysis of the electron density features nine bond critical
points (BCP) in the crystal structure. The bond critical points are gathered in Table S1
(see Supplemental Information) with some characteristic properties and are depicted in
Figure 13b.

The electron density at the bond critical points located in the interlayer region is about
one order of magnitude smaller than that between the other BCPs. These interlayer bond
paths connect two sulfur atoms. A focus on this region is presented in Figure 14. The
BCPs (small yellow spheres) are clearly located midway between the sulfur atoms, which
is further confirmed by the d1/d2 ratio close to 1 (Table S1). By contrast, the BCPs located
on the bond path connecting sulfur to gallium or sulfur to indium are more closely located
to the metal, evidencing a larger basin volume for sulfur.
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Both the electron density and the electron density Laplacian are small in the interlayer
region compared to those of the BCPs located at the other bond paths (In-S and Ga-S). The
positive value of the Laplacian shows that the electrons tend to escape from this region,
exerting pressure on the surrounding electrons. Furthermore, the total energy density
(H = G + V, see Table S1) and the bond degree H/ρ [55] are positive at these points in
contrast to those at the Ga-S and In-S BCPs, which highlights the weak bonding between
the layers. Starting from the relation H = G + V, the bond degree can be expressed with
respect to the ratio V/G, which exhibits the competition between the potential and kinetic
energy densities for bond formation, and to G/ρwhich has been identified as the resistance
of the bond electron cloud to deformation (reciprocal of the bond polarizability) [56]. The
corresponding relation reads:

H
ρ

=
G
ρ

(
1 +

V
G

)
(1)

Realizing that G/ρ is a constant for a given bond, Equation (1) corresponds to an affine
relation in which a line passes through the point (–1, 0). The bonding characteristics are
plotted in Figure 15. Three distinct types of bonding can be seen, grouped as the S-S, In-S,
and Ga-S bondings, corresponding to a closed-shell interaction for S-S and a shared-shell
one for both In-S and Ga-S. The S-S bondings share the smallest G/ρ, thus exhibiting the
largest polarizable bonding interaction, which can also be correlated to the largest bonding
ellipticity ε = λ1/λ2 − 1 (Table S1).
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Overall, the topological analysis shows that the bonding interaction between the layers
is weak and involves sulfur atoms through a closed-shell interaction. Hence, upon the
intercalation of organic molecules, the layers can be easily separated from each other to
accommodate the molecules.

5. Conclusions

An intercalated In1.2Ga0.8S3·0.5(p-AP) compound was synthesized at 200 ◦C by the di-
rect interaction of In1.2Ga0.8S3 matrix crystals with p-AP molecules. The lattice parameters
of the triclinic cell were determined by XRD and a model structure of the In1.2Ga0.8S3·0.5(p-
AP) intercalate was proposed. The temperature characteristics of deintercalation were
determined by high-temperature XRD. A comparison of the Raman spectra of the ma-
trix crystals and their intercalates revealed strong changes in the region of 0–400 cm−1,
which are responsible for In-S and Ga-S bonds. In addition, the p-AP molecules in the
In1.2Ga0.8S3·0.5(p-AP) intercalate were replaced by EDA molecules by direct interaction at
200 ◦C. When the latter crystals were kept at 200 ◦C for a few days, gradual amorphization
occurred and the crystals exfoliated into elementary layers.

The dynamical properties of the stoichiometric GaInS3 were calculated by the DFPT
method using GGA exchange-correlation potentials. Nine Raman active modes were
identified from point group symmetry analysis. The phonon frequencies obtained by the
ab initio lattice dynamics agreed well with the measured Raman modes. Additionally,
the topological analysis of the charge density confirmed the weak interactions between
the crystal layers involving sulfur atoms. The layers can thus be easily separated to
accommodate organic molecules upon intercalation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16062368/s1, Table S1: Bond critical points (BCP) with prop-
erties: atom ends connected by the BCP, interatomic distance d, the ratio of the distances between the
BCP and the atom ends d1/d2, angle θ between the BCP and the atom ends (BCP being the apex),
electron density Laplacian eigenvalues λi, (i = 1, 2, 3), ellipticity λ1/λ2-1, electron density Laplacian
∇2ρ, the electron density in ρ in Bohr−3, kinetic energy density G in Ha.Bohr–3, potential energy
density V in Ha.Bohr−3, bond degree H/ρ in Ha.e−1, potential to kinetic energy density ratio V/G,
and kinetic energy per electron G/ρ in Ha.e−1.
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