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Abstract: One-part geopolymer concrete/mortar is a pre-mixed material made from industrial by-
products and solid alkaline activators that only requires the addition of water for activation. Apart
from being environmentally friendly, it also reduces complexity and improves consistency in the
mixing process, leading to more efficient production and consistent material properties. However,
developing one-part geopolymer concrete with desirable compressive strength is challenging because
of the complexity of the chemical reaction involved, the variability of the raw materials used, and the
need for precise control of curing conditions. Therefore, 80 different one-part geopolymer mixtures
were compiled from the open literature in this study, and the effects of the constituent materials, the
dosage of alkaline activators, curing condition, and water/binder ratio on the 28-day compressive
strength of one-part geopolymer paste were examined in detail. An ANN model with the Levenberg–
Marquardt algorithm was developed to estimate one-part geopolymer’s compressive strength and its
sensitivity to binder constituents and alkaline dosage. The ANN model’s weights and biases were
also used to develop a CPLEX-based optimization method for achieving maximum compressive
strength. The results confirm that the compressive strength of one-part geopolymer pastes increased
by increasing the Na2O content of the alkaline source and the slag dosage; however, increasing the
Na2O content in alkaline sources beyond 6% by fly ash weight led to decreasing the compressive
strength; therefore, the optimum alkaline activator dosage by weight of fly ash was to be 12% (i.e., 6%
Na2O). The proposed ANN model developed in this study can aid in the production and performance
tuning of sustainable one-part geopolymer concrete and mortar for broader full-scale applications.

Keywords: one-part geopolymer concrete; compressive strength; artificial neural network; alkali-
activated material; industrial by-product

1. Introduction

Concrete is the world’s second most consumed commodity after water and the most
used construction material globally. This results in a colossal environmental footprint
with considerable carbon emissions and depletion of natural resources. Around 8% of all
CO2 emissions worldwide are related to concrete, and most of those emissions come from
the manufacture of cement [1]. According to some estimates, 4.2 billion tons of cement
are produced annually worldwide, causing about 4 billion tons of CO2 emission into the
atmosphere [2]. The manufacture of one ton of ordinary Portland cement (OPC) emits
about 0.8 to 1 ton of CO2. Thus, there is growing pressure on the concrete industry to
develop different binders to reduce the need for OPC. To produce environmentally friendly
concrete, it is necessary to develop viable alternatives to OPC that emit little or no CO2 [3,4].

One of the potential options to lessen the environmental impact of OPC binders is
the development of low-carbon binders [5,6]. Aluminosilicate materials react with water
slowly, but when exposed to hydrolysis and condensation reactions in an alkaline solution,
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they react more quickly to produce inorganic polymers that can withstand mechanical
loads. The structure of aluminosilicates significantly impacts the binding behavior that
results from the amorphous aluminosilicate gels and the reactivity of the source materials,
and numerous studies have been devoted to this issue [7].

The synthesis of aluminosilicates using alkalis can be categorized into low-calcium
aluminosilicates and high-calcium aluminosilicates, depending on the calcium content of
the source materials. Low calcium content aluminosilicate materials produce a sodium
aluminosilicate hydrate (N-A-S-H), whereas high calcium content aluminosilicate materials
produce calcium aluminosilicate hydrate (C-A-S-H), which resembles Portland cement
C-S-H. Geopolymer binders are environmentally friendly materials used as a substitute
for OPC binders. The polymerization mechanism of geopolymers is an intensely rapid
chemical reaction of silica-alumina minerals in an alkaline environment that yields a
three-dimensional polymeric sequence and ring structure consisting of Si–O–Al–O bonds.
Geopolymer concrete production does not require the use of OPC, but the reaction of an
aluminosilicate ingredient with strong alkaline liquids can produce a binder.

A novel method called one-part alkali-activation has been created to simplify the
handling of traditional geopolymers, which involves mixing aluminosilicate precursors
with powdered activators instead of an alkaline solution [8,9]. In contrast to traditional
geopolymer binders, where solutions are used as the activation phase, the activators in the
one-part binders are in dry powder form, and the reaction begins as soon as water is added
to the binder. This method avoids producing geopolymer concrete in large quantities using
corrosive and caustic solutions. One-part geopolymers emit less carbon dioxide into the
atmosphere than conventional geopolymers because only a small portion of the framework
is formed during the polymerization process [10]. Similar to OPC concrete preparation,
one-part alkali-activated binders are made by adding water to a dry mixture comprising a
solid aluminosilicate precursor and a solid alkali activator. Compared to OPC mixtures,
manufacturing one-part geopolymers increases the geopolymer’s economic viability and
the potential to curb CO2 emissions significantly.

A computational model based on an artificial neural network (ANN) mimics the
biological neural networks in the brain to process information. Neural networks can
“learn” and correlate massive datasets gleaned from simulations or experiments. The
trained neural network can be used as an analytical tool to make accurate predictions
about problem outcomes. They can produce excellent prediction accuracy with practical
approaches for training and validation. Hence, this paper uses ANNs to estimate the
compressive strength of one-part geopolymer pastes. An experimental database was
compiled from information available in the open literature and used to train the ANN
models. Five input parameters were used to train the ANN model: constituent materials,
alkaline source content, curing temperature, and water/binder ratio. A “trial-and-error”
approach was used to determine the input parameter weights that would produce the
most accurate prediction of compressive strength. The best effective pattern for predicting
compressive strength during the training approach was found by the Levenberg–Marquardt
training (LM).

While several studies have reported on the effectiveness of one-part alkali-activated
materials [11–13], the effects of the binder constituent, alkaline source content, curing
condition, and water/binder ratio on the 28-day compressive strength have not yet been
thoroughly investigated. This study examined the effects of the input parameters by
compiling 80 distinct fly ash/GGBS-based geopolymer pastes from the open literature. An
informative model employing the Levenberg–Marquardt algorithm was developed with
the help of the prepared database to estimate the compressive strength and its sensitivity to
the input parameters. Utilizing the weights and biases of the ANN model, a CPLEX-based
optimization method was developed to determine the ideal combination of parameters for
attaining the highest compressive strength. The “ideal” mixture of one-part geopolymer
paste might replace OPC binders and be used to create geopolymer concrete and mortar.
Additionally, the proposed binder can be ideal for underwater construction, repair, and
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maintenance applications. Using the proposed informational model, users would have an
insight into the influential parameters on 28-day compressive strength, and also, with the
aid of the CPLEX-based optimization method, they can optimize the input parameters to
achieve the maximum compressive strength. The objective is to enhance the prediction
accuracy of the user-friendly one-part geopolymer, which would make it more convenient
for application in diverse building projects, particularly in harsher settings like coastal areas.

2. Literature Review

The conventional method of using an alkaline activator solution in geopolymer pro-
duction involves the use of highly caustic sodium- or potassium-based hydroxide, silicates,
carbonates, or their combinations. This makes it dangerous to handle, store, and trans-
port, requiring additional safety precautions that can slow down production and increase
costs. To overcome these challenges, researchers have explored the use of solid activators
to produce a user-friendly one-part geopolymer that only requires the addition of water.
Some of the notable materials used as alkali sources include sodium hydroxide combined
with various silica sources such as fly ash, rice husk ash, micro silica, calcium hydroxide,
different grades of sodium metasilicate, and red mud. In recent years, many studies have
focused on investigating the mechanical properties and durability of one-part geopolymer
mortars and concrete.

In their study, Askarian and colleagues [8] created one-part hybrid concrete mixes
using a combination of ordinary Portland cement (OPC) and geopolymers. They added
solid potassium carbonate, which made up 7.5% of the total geopolymeric raw materials,
as the primary activator. The researchers blended fly ash and ground granulated blast-
furnace slag with the geopolymeric raw materials in various proportions and found that
the addition of OPC decreased workability and setting time. However, it notably enhanced
early age and ultimate compressive strength due to the rapid reaction of OPC with alkali
activators.

Muthukrishnan et al. [14] conducted a study on the rheochemical approach to analyze
the early strength development resulting from alkali reactions and formulate a suitable 3D
printable one-part geopolymer concrete. The researchers evaluated the impact of different
design parameters, such as activator content, thixotropic additive (Magnesium Alumino
Silicate—MAS), and retarder (sucrose) dosage, on the rheological properties of the concrete.
The findings indicated that the one-part geopolymer formulation exhibited improved
printing characteristics when the binder contained 0.75 wt% MAS, 10 wt% activator, and
1.5 wt% sucrose.

Muhammad Riaz Ahmad et al. developed a new type of energy-efficient and sustain-
able concrete based on industrial waste materials and vegetal aggregate for hygrothermal
and low load-bearing applications. They conclude that the vegetal concrete mixtures con-
taining red mud exhibited higher capillary and water absorption as compared to other
mixtures. Moreover, all concrete mixtures were classified as good to excellent moisture
buffer materials.

Dongthe et al. [15] studied the solid activator, the synthetic sodium metasilicate
pentahydrate against water, and a hybrid sodium silicate and sodium hydroxide activator
solution to develop a high-strength one-part geopolymer mortar. They conclude that the
solid activator using sodium silicate pentahydrate outperformed the often-used liquid
activator in terms of the compressive strength of the mortar. Nevertheless, the compressive
strength decreased, and efflorescence increased significantly once the metasilicate content
exceeded Na2O% = 6%.

Wangthe et al. [16] investigated the early-age properties of one-part fly ash/ground
granulated blast-furnace slag (FA/GGBS) geopolymer through the utilization of hybrid
activators, such as anhydrous sodium metasilicate (Na2SiO3), sodium carbonate (Na2CO3),
and sodium aluminate (NaAlO2). They indicated that Na2SiO3-activated one-part geopoly-
mer released high reaction heat and achieved a faster setting. Such shortcomings could be
improved by partially replacing Na2SiO3 with Na2CO3 in a solid form. Besides, incorporat-
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ing slight NaAlO2 decreased the self-flow of geopolymer paste, whereas the slump-flow
properties remained unchanged.

The previous research mainly acknowledged that to meet the dual requirements of
convenience and eco-friendliness in practical engineering, the synthesis of one-part fly
FA/GGBS geopolymer binders’ selection and content of different hybrid combinations
of solid activators, including anhydrous Na2SiO3, Na2CO3, and NaAlO2, etc. is essential.
Flowability, setting time, strength, and effect of one-part geopolymer paste molar ratios
at different activator dosages were examined to determine the fundamental properties of
one-part geopolymer paste cured in the ambient.

3. Materials and Methods
3.1. Database Description

The most comprehensive 28-day compressive strength data for various one-part
geopolymer pastes was collected from accessible, pertinent data in the open literature [17–28].
The database comprises 80 FA/GGBS binder-based one-part geopolymers made with an
anhydrous sodium silicate alkaline source, see Table 1.

Table 1. Studied mixture design and their 28-day compressive strength.

Mix No Reference Fly Ash (%) GGBS (%) Activator
Na2O (%)

Water/Binder
Ratio

Curing
Temperature (◦C)

28-d
Compressive

Strength (MPa)

1

[17]

100 0 4.25 0.3 23 2.63

2 90 10 4.22 0.3 23 5.4

3 85 15 4.21 0.3 23 30.2

4 80 20 4.21 0.3 23 39.6

5 85 15 3.78 0.3 23 3.8

6 85 15 3.48 0.3 23 2

7

[18]

85 15 4 0.28 20 44

8 85 15 4 0.3 20 30

9 85 15 4 0.32 20 6

10 85 15 4 0.3 20 32.02

11 85 15 4 0.3 20 35.54

12 85 15 4 0.3 20 28.52

13

[19]

85 15 4 0.3 20 15.48

14 85 15 4 0.3 20 5.791

15 85 15 4 0.3 20 4.11

16 85 15 4 0.3 20 34.77

17

[20]

85 15 4 0.3 20 38.6

18 85 15 4 0.3 20 36.22

19 85 15 4 0.3 20 31.66

20 80 20 4 0.3 20 38

21 80 20 4 0.25 20 24.4

22 80 20 4 0.25 20 32.7

23

[21]

80 20 4 0.23 20 28.8

24 70 30 4 0.25 20 34.4

25 70 30 4 0.3 20 51.9

26 75 25 5.1 0.394 60 18.4
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Table 1. Cont.

Mix No Reference Fly Ash (%) GGBS (%) Activator
Na2O (%)

Water/Binder
Ratio

Curing
Temperature (◦C)

28-d
Compressive

Strength (MPa)

27
[22]

75 25 6 0.4 60 30.5

28 75 25 6 0.3 60 36.9

29

[23]

50 50 4 0.35 60 35.2

30 0 100 5 0.35 20 76.4

31 50 50 5 0.35 20 58.4

32

[24]

0 90 5 0.35 20 76.4

33 45 45 5 0.35 20 58.2

34 100 0 4 0.25 25 17.4

35 100 0 5 0.25 25 38.7

36 100 0 6 0.25 25 49.5

37 100 0 7 0.25 25 44.3

38

[25]

100 0 8 0.25 25 43.2

39 50 50 6 0.4 25 74.4

40 50 50 6 0.4 25 65.5

41 50 50 6 0.4 25 71

42 50 50 6 0.4 25 69.2

43 50 50 6 0.38 25 72.2

44 50 50 6 0.38 25 68.1

45 50 50 6 0.38 25 72.1

46 50 50 6 0.36 25 75.7

47 50 50 6 0.36 25 65.3

48 50 50 6 0.36 25 71.8

49 50 50 6 0.34 25 76.5

50 50 50 6 0.34 25 75.5

51 50 50 6 0.34 25 71

52

[26]

50 50 6 0.4 25 74.4

53 100 0 4 0.282 23 9

54 90 10 4 0.282 23 18

55 70 30 4 0.313 23 38

56 60 40 4 0.319 23 44

57 50 50 4 0.324 23 44

58 40 60 4 0.325 23 45

59 0 100 4 0.412 23 43

60 0 95 1.5 0.45 20 32.96

61 0 90 1.5 0.45 20 34.44

62 0 85 1.5 0.45 20 31.95
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Table 1. Cont.

Mix No Reference Fly Ash (%) GGBS (%) Activator
Na2O (%)

Water/Binder
Ratio

Curing
Temperature (◦C)

28-d
Compressive

Strength (MPa)

63

[27]

0 80 1.5 0.45 20 29.56

64 100 0 5 0.25 30 10.9

65 100 0 7.5 0.25 30 37.57

66 100 0 10 0.25 30 83.03

67 100 0 12.5 0.25 30 31.74556

68 100 0 10 0.2 30 61.35

69 100 0 10 0.25 30 83.45

70

[28]

100 0 10 0.3 30 27.55

71 50 50 6 0.4 23 69.1

72 50 50 6 0.4 23 96.83

73 50 50 4.5 0.4 23 65.96

74 50 50 6 0.3 23 82.44

75 50 50 6 0.3 23 82.98

76 50 50 4.5 0.3 23 102.1

77 0 90 5 0.35 20 76.21

78 45 45 5 0.35 20 57.99

79 50 50 6 0.36 25 83.19

80 60 40 7.5 0.5 23 29.09

The source publications investigated the effects of different parameters on the com-
pressive strength of one-part geopolymers, including the percentage of fly ash and GGBS
and the Na2O dosage of the alkaline source. Although the variation of water/binder ratio
and curing temperature was not considerable, their effects on compressive strength were
examined. The range of input/output parameters of the studied dataset is shown in Table 2.

Table 2. Input/output parameters range.

Parameter Unit Lower Limit Upper Limit Average

Fly ash content % 0 100 65.3

GGBS % 0 100 33.56

Na2O dosage % 1.5 12.5 5.13

w/b ratio - 0.2 0.5 0.33

Curing temperature ◦C 20 60 25

28-day compressive strength MPa 2 102.1 46

To activate the binder components in fly ash/GGBS-based geopolymers, granular
sodium metasilicate (Na2SiO3) anhydrous (50% Na2O, 46% SiO2, and 4% H2O) is often
employed as a solid activator. Since, unlike two-part geopolymers, there is no need to create
a NaOH solution before mixing, using granular alkaline activators in one-part geopolymer
systems is more straightforward and faster than using the commonly used and caustic
alkaline solutions. The granular sodium metasilicate anhydrous was used at 3 to 25% by
weight of the binding materials in the studied database.
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In the prepared database, pure GGBS was used without further treatment as the main
resource of calcium materials in geopolymer production. Low calcium fly ash was also used
as another source of precursor materials. Fly ash and GGBS are used in geopolymer concrete
because they can react with an alkaline activator to form a binder that can replace Portland
cement. Geopolymer concrete made with these materials has several advantages over
traditional concrete, including higher strength, lower permeability, and better resistance
to chemical attack [29]. GGBS also contains silicates and alumina, which are necessary for
the formation of geopolymer binders, and its high specific gravity can increase the density
of the concrete and make it more resistant to erosion. Additionally, the use of fly ash and
GGBS in geopolymer concrete is a sustainable and environmentally friendly approach
to construction that reduces waste and produces a high-quality, durable material. The
chemical components of the fly ash and GGBS (generally available in the market) were
analyzed by studied references using X-Ray fluorescence (XRF), see Table 3.

Table 3. Physical and chemical features of binder materials reported by [20].

Physical and Chemical Features GGBS Fly Ash

Specific gravity 2.9 2.2

Aver. particle size (µm) 12.8 10

SiO2 30.8 57.20

Al2O3 10.9 28.81

Fe2O3 0.64 3.67

CaO 51.8 5.16

MgO 4.57 1.48

K2O 0.36 0.94

Na2O 0.45 0.08

SO3 0.06 0.10

LOI 0.22 0.12

3.2. Mixing Procedure and Test Methods

Preparing one-part geopolymer paste followed the ASTM C305-14 [30] recommended
procedures. Table 1 lists the 80 various geopolymer pastes prepared with fly ash and
GGBS precursor materials and various Na2O content of alkaline sources. Based on these
experimental tests, the granular sodium metasilicate anhydrous and binding materials
were mixed for about two minutes using a mechanical mixer. After adding potable tap
water to the dry mixture, mixing resumed for an additional three minutes to achieve
homogeneity and consistency. Figure 1 shows the block diagram for one-part geopolymer
paste production. The studied literature also acknowledged that the compressive strength
tests were performed following the guidelines of the ASTM C109-109M [31] standards.
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Figure 1. Block diagram for one-part geopolymer paste production.

4. Compressive Strength Results and Discussion

The 28-day compressive strength results of all studied mixture designs are presented in
Table 1. The effects of the Na2O, fly ash, and GGBS contents on the compressive strength of
one-part geopolymer paste are depicted in Figure 2. The results indicate that increasing the
GGBS and Ca2O contents increased the compressive strength of the one-part geopolymer
paste. Lower Ca2O content led to insufficient alkali and negatively impacted the system’s
geopolymerization process. The result indicates that raising the granular alkaline activator
content by weight of the fly ash beyond 12% slightly decreased the compressive strength
and workability of the one-part geopolymer cement pastes [9]. The optimum alkaline
activator dosage by weight of fly ash was found to be 12% (i.e., 6% Na2O) to attain the
highest compressive strength at 28 days of curing.

However, the compressive strength of one-part geopolymer paste was negatively
affected by the fly ash content. Prior studies have established that geopolymer concrete
produced with class C fly ash, which has a high calcium concentration, exhibits higher
compressive strength at ambient temperatures than geopolymer concrete made with class
F fly ash [32]. Because geopolymer concrete produced with class F fly ash cannot achieve
structural integrity at room temperature, it is normally heat cured to 60 ◦C. At high
temperatures, geopolymer concrete produced with class F fly ash outperforms geopolymer
concrete manufactured with class C fly ash in terms of mechanical strength. In addition
to the calcium content, the particle size distribution, specific surface area, and chemical
composition of fly ash can also affect the performance of geopolymer concrete. For instance,
fly ash with a higher specific surface area can result in higher compressive strength due to
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the increased reactivity and better distribution of the geopolymer precursors. Moreover,
the chemical composition of fly ash can vary depending on the source and type of coal
used, which can influence the geopolymerization reaction and the resulting properties of
the geopolymer concrete. Therefore, careful selection and characterization of fly ash is
critical to ensure the desired performance and consistency of geopolymer concrete.

The low correlation coefficients in Figure 2 acknowledge that the investigated vari-
ables interact with each other in a complex way and therefore is difficult to capture this
relationship with a simple regression equation. In such cases, alternative statistical methods
may be more appropriate for modeling the relationship between the investigated variables
and 28-day compressive strength. For example, non-linear regression models or machine
learning algorithms, such as decision trees or neural networks, could potentially capture
the non-linear relationship and underlining mechanism between these variables.
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5. Artificial Intelligence Estimation of Compressive Strength
5.1. Artificial Neural Networks

Researchers are increasingly using artificial intelligence approaches such as genetic
algorithms, adaptive regressions, fuzzy logic, and artificial neural networks (ANNs) instead
of traditional or classical methods such as linear regression, time-series analysis, etc. [33–35].
While these classical methods have been widely used and are still valuable in certain
contexts, artificial neural networks (ANNs) have shown to be more powerful in modeling
complex non-linear relationships and are, therefore, increasingly being used in many fields,
including image recognition, natural language processing, and financial modeling. ANNs
are a type of machine learning method that draws inspiration from the structure and
operation of the human brain. ANNs are composed of interconnected nodes or neurons
that carry out information processing in parallel. ANNs are typically used when the
relationship between the input and output is complex or when using another available
approach requires considerable investment in time and money. In feed-forward networks,
one of the most often used types of ANNs, neurons are arranged in layers containing an
input layer, one or more hidden layers, and an output layer. Using network weights and
biases, neurons in the hidden layer are linked to those in the preceding and following layers.
Moreover, to reduce prediction errors, ANNs should be trained using an optimization
approach in which the training function would modify the network weights matrix for
each epoch.

The backpropagation (BP) learning algorithm has been successfully utilized with
various numerical optimization approaches to accelerate network convergence. Combining
the Levenberg–Marquardt, a common non-linear least squares optimization algorithm, into
the BP algorithm was proven to be highly effective. The Levenberg–Marquardt has higher
convergence, generalization, and precision than other algorithms, and fewer iterations
(epochs) are needed to attain lower error rates [34]. Despite being a quick and effective
optimization technique, the Levenberg–Marquardt approach has the limitation that it could
be trapped in a local minimum [36].
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5.2. Generation of Training Model and Statistical Metrics

Correlation or dependency denotes any mathematical relationship, regardless of
causation, between two random variables. Correlation measures the strength of the linear
association between two variables. A correlation matrix is a tabular representation of the
correlation coefficients between the input variables, displaying the relationship between
each pair of variables in a table cell. A correlation matrix is useful for summarizing input
data for further analysis. Figure 3 illustrates the correlation matrix of the input/output
parameters utilized in the present study. Equation (1) was used to normalize each parameter
in the range of 1 to −1 while considering each input parameter’s domain and preventing
any divergence in the results. Xn is the normalized value of the parameter, where Xmax
is its maximum value, and Xmin is its minimum value. X is the variable’s original (non-
transformed) value. Table 2 provides the maximum and minimum values for each input
parameter. The results of the correlation matrix acknowledge that GGBS and the Na2O
contents had significant effects on the 28-d compressive strength.

Xn =
2(X− Xmin)

Xmax − Xmin
− 1 (1)
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In all the networks created in this study, the hyperbolic tangent function and the
Levenberg–Marquardt training algorithm were employed. Following the Kolmogorov
technique [37], if the system has a wide enough range of neurons, an ANN using the BP
algorithm with one or two hidden layers can easily calculate any continuous function to
any level of accuracy [38]. In this regard, the ith neuron in the network offers a total that
collects the bias (bi) as well as its weighted input (wij) to develop (ni) as network input
which is provided in Equation (2). In this equation, bi is the ith neuron bias; pj is the input
vector; wij denotes the strength of the connection from the jth input to the ith neuron.

ni = ∑jwijpj + bi (2)
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In order to predict the 28-day compressive strength of one-part geopolymer pastes,
an artificial neural network (ANN) was developed using the MATLAB ANN toolbox.
The network consisted of five neurons in the input layer, one neuron in the output layer
representing compressive strength, and two hidden layers containing various numbers of
neurons. The feed-forward neural network was trained using the trainlm function to create
an effective network. The transfer functions used were “tansig” or “hyperbolic tangent
sigmoid” for the hidden layers and “purelin” or “Linear” for the output layer.

The optimal number of neurons for the hidden layers was determined through a trial-
and-error process by running the MATLAB code iteratively to obtain the best-performing
network. The MATLAB code included a nested loop in determining the best number of
neurons for both hidden layers. Initially, a range of 4 to 15 neurons for each loop was
selected based on the preliminary code running. The input layer of the network consisted
of five parameters, and each neuron in the hidden layers received a distribution of these
input parameters multiplied by different weights. The initial magnitude of the bias and
weights was presumed for the first iteration. The bias magnitude was related to the hidden
layer neurons used as inputs to the specific neurons, and the outputs from each neuron
were transferred through an activation function. The output layer neuron then received the
magnitude multiplied by specific weights, and errors were determined by comparing the
actual values with the model outputs. The bias and weights were updated based on the
given learning algorithm for the next iteration, and the process continued until the model
converged to the desired degree [39].

In this research, the data were divided randomly into three sets: training (70%), testing
(15%), and validation (15%). This specific partition was chosen after testing several other
options to ensure the network could be trained effectively without overfitting. During the
training process, the aim is to minimize the error function by finding an optimal set of
weights and biases that produces outputs similar to the desired values. To evaluate the
performance of the developed neural network topologies, statistical indices such as Root
Mean Squared Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and

correlation coefficient R (expressed in Equations (3)–(6)) were utilized, where (
−
Oi) signifies

the magnitude of the real values, (y̆i) is the predicted value of the model, (Oi) signifies the
real data, and (n) denotes the quantity of observed data.

R2 = 1− ∑i(y̆i −Oi)
2

∑i

(
Oi −

−
Oi

) (3)

RMSE =

√
∑n

i=1
(y̆i −Oi)

2

n
(4)

MSE =
1
n ∑n

i=1(y̆i −Oi)
2 (5)

MAE =
∑n

i=1|y̆i −Oi|
n

(6)

After numerous iterations, the best-performing ANN model was identified as the one
using the trainlm function in MATLAB with 5 and 7 neurons in the hidden layers. The
performance of the developed models was evaluated using statistical indices, including
RMSE, MSE, MAE, and correlation coefficient R, with the results shown in Figure 4. From
the figure, it is evident that the network with 5 and 7 neurons in the hidden layers yielded
the best RMSE values, which were 0.049.
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After developing the ANN model, each input variable was assigned a specific coeffi-
cient, which was obtained using separate codes from the MATLAB script. Table 4 displays
the bias and weights of the optimal model, which was trained using the trainlm algorithm.
In an ANN trained with this algorithm, the bias and weights of the optimal model are
essential parameters that influence the network’s performance. The trainlm algorithm is a
type of backpropagation algorithm that is commonly used for supervised learning tasks
such as classification and regression. During training, the algorithm adjusts the weights
and biases of the network to minimize the difference between the predicted outputs and
the actual outputs for a given set of input data. The optimal values of the weights and
biases are those that result in the lowest error or loss on the training data. Once the network
is trained, the bias and weights of the optimal model are used to make predictions on new,
unseen data. The bias represents the threshold for activation of the neurons in the network,
and the weights determine the strength of the connections between the neurons.

Table 4. Weights and biases for the selected ANN model.

Output
Weights

Biases
Fly Ash GGBS Na2O Content w/b Ratio Curing

Temperature

Compressive
strength 1.16 1.98 0.81 −0.25 −0.08 −1.13
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The proposed topology of the feed-forward network with two hidden layers, five input
variables (neurons), and one output parameter is depicted in Figure 5. The (I) represents
the input vector (from I1 until In), and (O) represents the output vector. The lines represent
the connections.
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Overall, using multiple key phases, as shown in Figure 6, the ANN was used to
forecast the 28-day compressive strength of developed geopolymer mixes. In the beginning,
the data were split into two groups with a 7:3 ratio, with 70% of the data used to create
the training dataset and the remaining 30% used to create the testing & validation dataset.
Second, the ANN model was constructed using a training dataset (two hidden layers).
Third, in order to validate and assess the effectiveness of the suggested ANN model, the
projected outcomes were contrasted with the experimental data using several metrics,
including mean absolute error (MAE), root mean square error (RMSE), and coefficient of
determination (R2).
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5.3. Multiple Linear Regression Model (MLR)

Determining the connection between two or more variables is a common task in
engineering. Regression analysis is one of the effective statistical techniques that has consis-
tently piqued scientists’ interest in this field. Regression modeling is generally thought of
as the process of fitting models to data. Linear predictor functions are generated in a linear
regression model to determine the relationship between the input/output parameters.
It is important to note that several input variables are often used in regression analysis
applications, creating “multiple linear regression” or MLR functions. In this instance, MLR
analyzes the observed data and fits it into a linear equation to determine the correlation
between two or more input variables. Multiple linear regression involves summarizing
data and investigating the relationship between variables [40,41]. The general formula for
multiple regression models is given in Equation (7) below, where Y is a dependent variable,
β0 is a constant, and βj is a regression coefficient (i = 1, 2, . . . , n).

Y = β0 + ∑n
i=1βiXi (7)

Simple regression analyses use only one independent variable (Xj), while multiple
regression analyses use two or more variables [42]. It is worth noting that if a data point lies
on the fitted line entirely, the vertical deviation would be equal to zero. This study’s multiple
linear regression model demonstrates the correlation between the one-part geopolymer
paste characteristics and the experimentally measured 28-day compressive strength.
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5.4. Informational Models Predictive
5.4.1. Multiple Linear Regression Model (MLR)

The following Equation (8) expresses the most appropriate coefficients for the MLR
model for estimating the compressive strength of the studied geopolymer pastes.

28-day Compressive Strength = 1.12 * (fly ash) + 1.93 * (GGBS) + 8.02 * (Na2O content) − 76.03 *
(water/binder ratio) − 0.38 * (curing temperature) − 99.23

(8)

Concerning the above equation, the value of R2 was calculated as 0.61. This value
demonstrates that MLR could not provide a sufficiently accurate approximation of the
compressive strength of the studied geopolymer paste.

Stepwise regression is a statistical technique that is commonly used to identify the
most important variables in a regression model. In stepwise regression, variables are
added or removed from the model one at a time, based on their statistical significance,
as measured by the p-value, until a final model that includes only the most important
variables is reached. In stepwise regression analysis, variables are added or removed based
on their p-values, with the threshold typically set at a significance level of 0.05. Variables
with p-values less than 0.05 are considered significant and are added to the model, while
variables with p-values greater than 0.05 are considered not significant and are removed
from the model. This process is repeated until no more variables can be added or removed,
resulting in a final model with a set of significant predictor variables.

In order to validate or reject the MLR analysis, a stepwise regression was performed
in the study. After conducting the stepwise analysis and removing the variables fly ash,
water/binder ratio, and curing temperature step-by-step, as they had high p-values, the
following equation was obtained:

28-day Compressive Strength = (GGBS × 20.62) + (Na2O content × 37.99) − 15.96 (9)

In this equation, the p-value is less than 0.05, indicating that the coefficients are satis-
factory. However, the value of R-square and the RMSE was calculated at 0.563 and 16.8,
respectively, indicating that the MLR analysis method unable to capture the underlying
mechanism of the data. Figure 7 also shows the histogram of residuals of the stepwise
regression performed in this study, demonstrating the frequency distribution of the dif-
ferences between the predicted values and the actual values of the dependent variable.
Residuals are the differences between the observed values of the dependent variable and
the predicted values based on the regression equation. The histogram of residuals is used to
evaluate the assumption of the normality of residuals. The horizontal axis of the histogram
of residuals represents the values of the residuals, which are the differences between the
predicted values and the actual values of the dependent variable. These residuals are
typically standardized, with a mean of 0 and a standard deviation of 1, making it easier to
compare residuals across different models or datasets. The vertical axis of the histogram
represents the frequency of the residuals at each value. This frequency represents the
number of data points that have a residual in the corresponding range. The height of each
bar in the histogram indicates the number of data points with a residual value in that
particular range.

Figure 7 is unsymmetric and not bell-shaped, indicating that the residuals are not
normally distributed. The pattern of residuals is also irregular that confirm the model may
not be appropriate for the data or that there may be some violation of assumptions.
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5.4.2. Artificial Neural Network

Figure 8 compares the actual experimental data, predictions of the ANN computational
intelligence model developed in this study, and the MLR model. Upon examination of
Figure 6, it became evident that the ANN model provided more reliable estimates of
compressive strength when compared to the MLR model. Specifically, the ANN model
appeared to provide more accurate and precise predictions of compressive strength, as
evidenced by the closer alignment of the predicted values with the actual experimental
data.
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Figure 8. Comparison between experimental and theoretical models for compressive strength:
(a) ANN model and (b) MLR model.

To further assess the performance of the two models, the authors also conducted a
statistical analysis and presented the results in Table 5. The statistical analysis included
various performance measures, such as mean absolute error, root mean square error, and
coefficient of determination. These measures determined that the ANN model exhibited
excellent agreement with the actual experimental data, while the MLR model showed
comparatively lower performance.

Table 5. Evaluation of statistical matrices of ANN and MLR models.

Model
Statistical Matrices

R2 MSE RMSE MAE

MLR 0.61 236.21 15.37 11.63

ANN 0.92 0.0049 0.07 0.041

The experimental data (represented by the discontinuous blue line) and the predicted
values (represented by the continuous red line) from the training and testing data of the
ANN algorithms are shown in Figure 9. The predicted compressive strength of the ANN
model matched well with the target values, which is supported by both the training part
(70% of data) and the validation/testing part (30% of data) for the ANN algorithms.

The following equation developed by the ANN model (extracted from MATLAB) can
be employed to estimate the compressive strength of one-part geopolymer pastes.

Compressive strength = 1.16 * (fly ash) + 1.98 * (GGBS) + 0.81 * (Na2O content)
− 0.25 * (w/b ratio) − 0.08 * (curing temperature) − 1.13

(10)



Materials 2023, 16, 2348 19 of 25

Materials 2023, 16, x FOR PEER REVIEW 17 of 24 
 

 

 
(b) 

Figure 8. Comparison between experimental and theoretical models for compressive strength: (a) 
ANN model and (b) MLR model. 

To further assess the performance of the two models, the authors also conducted a 
statistical analysis and presented the results in Table 5. The statistical analysis included 
various performance measures, such as mean absolute error, root mean square error, and 
coefficient of determination. These measures determined that the ANN model exhibited 
excellent agreement with the actual experimental data, while the MLR model showed 
comparatively lower performance. 

Table 5. Evaluation of statistical matrices of ANN and MLR models. 

The experimental data (represented by the discontinuous blue line) and the predicted 
values (represented by the continuous red line) from the training and testing data of the 
ANN algorithms are shown in Figure 9. The predicted compressive strength of the ANN 
model matched well with the target values, which is supported by both the training part 
(70% of data) and the validation/testing part (30% of data) for the ANN algorithms. 

 
 (a) 

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53

Co
m

pr
es

siv
e 

St
re

ng
th

(M
Pa

)

No. of samples

Predicted
Target

Model 
Statistical Matrices 

R2 MSE RMSE MAE 
MLR 0.61 236.21 15.37 11.63 
ANN 0.92 0.0049 0.07 0.041 

Materials 2023, 16, x FOR PEER REVIEW 18 of 24 
 

 

 
 (b) 

Figure 9. Target and predicted values of 28-day compressive strength, (a) training, (b) testing & 
validation. 

The following equation developed by the ANN model (extracted from MATLAB) can 
be employed to estimate the compressive strength of one-part geopolymer pastes. 

Compressive strength = 1.16 * (fly ash) + 1.98 * (GGBS) + 0.81 * (Na2O con-
tent) − 0.25 * (w/b ratio) − 0.08 * (curing temperature) − 1.13 

(10)

6. Multi-Objective Optimization Using CPLEX Tool 
The development of an optimal predictive model is accomplished by: (i) establishing 

a model for predictions of the compressive strength of one-part geopolymer pastes using 
multiple linear regression (MLR) and artificial neural network (ANN), (ii) formulating the 
compressive strength using the best MLR’s and ANN’s models, and (iii) optimization of 
the formulated model to identify an optimal (maximum) value for the compressive 
strength. 

Due to advancements in computer technology, the development of efficient algo-
rithms and their application, as well as mathematical progress, many effective solutions 
have been found for Mixed Integer Programming (MIP) problems. IBM ILOG CPLEX can 
be used to address mathematical programming problems that require some or all varia-
bles to have integer values. These problems are known as MIPs, as the objective function 
and constraints may involve continuous and discrete variables, such as integers. The 
CPLEX Optimizer tool can generally solve linear optimization problems (LP), problems 
with a quadratic objective (QP), and problems with quadratic constraints (QCP). Mixed 
Integer Linear Programs (MILPs) refer to MIPs with linear objectives, while Mixed Integer 
Quadratic Programs (MIQPs) refer to MIPs with quadratic objective terms. 

CPLEX provides a range of optimizers for solving linear programming problems, 
which can be accessed through its Con-cert Technology, Callable Library, or Interactive 
Optimizer. The LP problems are expressed in a certain format [43]: 

Maximize (or Minimize)                     ∑ 𝐶 𝑋  

Subject to            a11 X1 + a12 X2 +...+ a1n Xn ~ b1 

a21 X1 + a22 X2 +...+ a2n Xn ~ b2 

… 

am1 X1 + am2 X2 +...+ amn Xn ~ bm 
 

With these bounds          l1 ≤ X1 ≤ u1 … ln ≤ Xn ≤ un 

(11)

0
10
20
30
40
50
60
70
80
90

1 3 5 7 9 11 13 15 17 19 21 23

Co
m

pr
es

siv
e 

St
re

ng
th

(M
Pa

)

No. of samples

Predicted
Target

Figure 9. Target and predicted values of 28-day compressive strength, (a) training, (b) testing &
validation.

6. Multi-Objective Optimization Using CPLEX Tool

The development of an optimal predictive model is accomplished by: (i) establishing
a model for predictions of the compressive strength of one-part geopolymer pastes using
multiple linear regression (MLR) and artificial neural network (ANN), (ii) formulating the
compressive strength using the best MLR’s and ANN’s models, and (iii) optimization of the
formulated model to identify an optimal (maximum) value for the compressive strength.

Due to advancements in computer technology, the development of efficient algorithms
and their application, as well as mathematical progress, many effective solutions have been
found for Mixed Integer Programming (MIP) problems. IBM ILOG CPLEX can be used to
address mathematical programming problems that require some or all variables to have
integer values. These problems are known as MIPs, as the objective function and constraints
may involve continuous and discrete variables, such as integers. The CPLEX Optimizer tool
can generally solve linear optimization problems (LP), problems with a quadratic objective
(QP), and problems with quadratic constraints (QCP). Mixed Integer Linear Programs
(MILPs) refer to MIPs with linear objectives, while Mixed Integer Quadratic Programs
(MIQPs) refer to MIPs with quadratic objective terms.



Materials 2023, 16, 2348 20 of 25

CPLEX provides a range of optimizers for solving linear programming problems,
which can be accessed through its Con-cert Technology, Callable Library, or Interactive
Optimizer. The LP problems are expressed in a certain format [43]:

Maximize (or Minimize) ∑n
i=1 CiXi

Subject to a11 X1 + a12 X2 + . . . + a1n Xn ∼ b1
a21 X1 + a22 X2 + . . . + a2n Xn ∼ b2

. . .
am1 X1 + am2 X2 + . . . + amn Xn ∼ bm

With these bounds l1 ≤ X1 ≤ u1 . . . ln ≤ Xn ≤ un

(11)

where the relation ~ may be greater than or equal to, less than or equal to, or simply equal
to, the upper bounds ui, and lower bounds li may be positive infinity, negative infinity, or
any real number.

When a linear optimization problem is stated in that conventional form, its coefficients
and values are customarily referred to by these terms: Objective function: c1, . . . , cn,
coefficients constraint coefficients: a11, . . . , amn, right-hand side: b1, . . . , bm, upper bounds:
u1, . . . , un, lower bounds: l1, . . . , ln, Variables or unknowns: x1, . . . , xn.

The variables of the objective function in the simplest linear optimization problem are
mathematically continuous, meaning that there are no gaps between actual values. CPLEX
implements optimizers based on simplex algorithms (both primal and dual simplex),
primal-dual logarithmic barrier algorithms, and a sifting technique to resolve such linear
programming issues. Computations for an experimental study of the mathematical model
proposed in this study were carried out on a personal computer with AMD Ryzen 7 2700X
Eight-Core Processor 3.70 GHz having a Windows 10 operating system with 16 GB RAM.
The Multi-Objective MIP was conducted on CPLEX 12.9, and the optimal (maximum) value
of compressive strength for the geopolymer mixture design was obtained. The decision
variables are considered integer values. The objective function and related constraints are
as follows:

Decision variables

Compressive strength : max ∑n
i=1 CiXi = (1.16 ∗ fly ash) + (1.98 ∗GGBS)+

(0.81 ∗Na2O) + (−0.25 ∗WB) + (−0.08 ∗ curing temperature)− 1.13
(12)

Constraints
15 ≤ fly ash ≤ 60, (13)

20 ≤ GGBS ≤ 70, (14)

Fly ash + GGBS = 100, (15)

0.30 ≤ w/b ratio ≤ 0.40, (16)

Fly ash ≤ GGBS, (17)

1.50 ≤ Na2O ≤ 12.50, (18)

20 ≤ curing temperature ≤ 60, (19)

The objective of Equation (12) is to maximize the compressive strength of the one-part
geopolymer paste mixture. The constraint set by Equation (13) assigns fly ash from 15 to
60%, and the constraint specified by Equation (14) sets GGBS between 20 and 70%. Mean-
while, the constraint set by Equation (15) is defined simply because the cumulative values of
fly ash and GGBS must be equivalent to 100%. For this optimization, the water/binder ratio
value was selected between 0.30 (minimum) and 0.40 (maximum), as shown by Equation
(16). The minimum values of Na2O and curing temperature were set as 1.5% and 20 ◦C,
while the maximum values were selected as 12.50% and 60 ◦C, respectively, as shown by
Equations (18) and (19).
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Solving the mathematical model using CPLEX concerning the set constraints provides
the optimal mixture having maximum compressive strength. Concerning all parameters,
objective functions, and constraints, the CPLEX calculates the maximum compressive
strength value as 72.35 MPa, where the optimal values of each input parameter are shown
in Table 6.

Table 6. Optimal input parameter values to achieve maximum compressive strength.

Max: CS Fly Ash
(%)

GGBS
(%)

Na2O
Content (%) w/b Ratio Curing

Temperature

74.80 12.30 21.65 12.50 0.30 20

7. Sensitivity Analysis

The previous section established the optimal values of FA, GGBS, Na2O content, w/b
ratio, and curing temperature for the ANN model to attain the highest compressive strength
of the one-part geopolymer paste. This section focuses on performing a sensitivity analysis
to assess the influence of the input parameters on the 28-day compressive strength. Through
this analysis, the extent to which the output of the model can be affected by changes in the
input parameters is determined [44]. In general, there are two main categories of sensitivity
analysis: local sensitivity analysis (LSA) and global sensitivity analysis (GSA).

Local sensitivity analysis (LSA) is a method used to evaluate the sensitivity of a
model’s output to small perturbations in the input parameters around a specific point. It
helps to identify which input parameters have the most significant impact on the model’s
output at a specific point in the input space. On the other hand, global sensitivity analysis
(GSA) examines the sensitivity of a model’s output to variations in input parameters across
the entire parameter space. It is used to identify which input parameters are the most
influential over a wide range of inputs and determine how these parameters affect the
model’s output. Both LSA and GSA are important tools for understanding the behavior of a
model and can be used to inform model calibration, parameter estimation, and uncertainty
quantification. Local sensitivity analysis (LSA) is based on the first-order derivative of
the model output with respect to the input parameters. Global sensitivity analysis (GSA)
is based on the variance decomposition of the model output with respect to the input
parameters.

In general, local sensitivity analysis (LSA) is concerned with analyzing the effects
of individual input variables on the overall system performance, while global sensitivity
analysis (GSA) examines the impact of input variables across their entire range of values
and assesses the uncertainty in system performance due to interactions between variables
or when variables are varied independently. Due to the nonlinear nature of the current
study, GSA was deemed more appropriate for evaluating the influence of input variables
on overall system performance [45].

The sensitivity analysis is shown in Figure 10. The results indicate that the Na2O
and GGBS contents significantly influenced the 28-day compressive strength. For instance,
decreasing the GGBS by 50% led to a sharp decrease in compressive strength, estimated
at around 31 MPa, while a significant increase in compressive strength of 59.5 MPa was
estimated for a 50% increase in GGBS. The Na2O content also played an important role in
compressive strength; the larger the Na2O content, the higher the compressive strength. On
the other hand, a lower water/binder ratio led to higher compressive strength, as expected.
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8. Concluding Remarks

In this research, by compiling 80 different mixtures of one-part geopolymer pastes,
the effects of constituent materials, Na2O content of the alkaline sources, curing condition,
and water/binder ratio on the 28-day compressive strength were examined in detail. ANN
model using the Levenberg–Marquardt algorithm was also developed to estimate the
compressive strength and its sensitivity to the input variables. Using the weights and biases
of the ANN model, a CPLEX-based optimization methodology was developed to optimize
the binder constituent and alkaline sources to achieve the highest compressive strength.
Based on this work, the following observations and conclusions can be drawn:

• The results confirm that there is a direct relationship between the GGBS and Ca2O
content and the 28-day compressive strength. The sensitivity analysis confirmed that
a 50% decrease in GGBS content leads to an estimated compressive strength of around
31 MPa, while a 50% increase leads to an estimated compressive strength of 59.5 MPa.
The Na2O content also strongly influences compressive strength, with higher Na2O
content resulting in higher strength. Lower water-to-binder ratios are also associated
with higher compressive strength, consistent with expectations.

• The R2 value of the MLR model is 0.61, where the coefficients of the variables in the
equation show their relative contribution to the compressive strength, with Na2O
content having the highest coefficient. The negative coefficients for water/binder ratio
indicate that increasing this variable decreases the compressive strength. However,
the model is not accurate enough to provide a precise estimation of the compressive
strength of the paste.

• The proposed ANN model can adequately estimate the compressive strength of fly
ash slag-based one-part geopolymer paste (with R2 = 0.94 and RMSE = 0.07). Such an
assessment of the relative significance of various features and their impact on com-
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pressive strength can assist material scientists/designers in making reliable decisions
about the source materials to use for achieving the required strength performance.

• The mathematical model was solved using CPLEX with set constraints to determine
the optimal mixture for maximum compressive strength. The resulting optimal input
parameters to achieve the maximum compressive strength value of 72.35 MPa were
calculated fly ash at 12.30%, GGBS at 21.6%, Na2O content at 12.50%, water/binder
ratio at 0.3, and curing temperature at 20 ◦C.

• The developed CPLEX mathematical model can be employed as a reliable tool for
preparing geopolymer past with optimal mixture design and compressive strength.
This technique can lead to an efficient input variable selection and a reduction in
training time without compromising model accuracy.

• The shortcomings of this research include a limited sample size, a narrow range of
input parameters, and reliance on the specific type of binders (fly ash and GGBS). To
address these issues, future research could involve a larger and more diverse sample
size, a wider range of input parameters, and the use of various types of binders
and alkaline sources. Additionally, incorporating more advanced machine learning
techniques, such as deep learning, could enhance the accuracy of the predictive model
and its optimization.
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37. Kůrková, V. Kolmogorov’s theorem and multilayer neural networks. Neural Netw. 1992, 5, 501–506. [CrossRef]
38. Esfe, M.H.; Saedodin, S.; Naderi, A.; Alirezaie, A.; Karimipour, A.; Wongwises, S.; Goodarzi, M.; bin Dahari, M. Modeling of

thermal conductivity of ZnO-EG using experimental data and ANN methods. Int. Commun. Heat Mass Transf. 2015, 63, 35–40.
[CrossRef]

39. Ly, H.-B.; Nguyen, T.-A.; Tran, V.Q. Development of deep neural network model to predict the compressive strength of rubber
concrete. Constr. Build. Mater. 2021, 301, 124081. [CrossRef]

40. Khademi, F.; Akbari, M.; Jamal, S.M.; Nikoo, M. Multiple linear regression, artificial neural network, and fuzzy logic prediction of
28 days compressive strength of concrete. Front. Struct. Civ. Eng. 2017, 11, 90–99. [CrossRef]

http://doi.org/10.1007/s12649-020-00958-x
http://doi.org/10.1016/j.cemconcomp.2020.103899
http://doi.org/10.1016/j.conbuildmat.2019.117611
http://doi.org/10.1016/j.conbuildmat.2021.124880
http://doi.org/10.1016/j.conbuildmat.2019.116891
http://doi.org/10.1016/j.jclepro.2018.03.007
http://doi.org/10.1016/j.jclepro.2019.03.290
http://doi.org/10.1016/j.conbuildmat.2020.121715
http://doi.org/10.1016/j.cemconcomp.2020.103917
http://doi.org/10.1016/j.conbuildmat.2020.119552
http://doi.org/10.1016/j.ceramint.2014.12.154
http://doi.org/10.1016/j.jmrt.2021.10.018
http://doi.org/10.1016/j.cemconcomp.2020.103679
http://doi.org/10.1016/j.ceramint.2016.09.092
http://doi.org/10.1016/j.heliyon.2019.e02255
http://www.ncbi.nlm.nih.gov/pubmed/31687531
http://doi.org/10.1016/j.jclepro.2018.08.060
http://doi.org/10.3390/su13031469
http://doi.org/10.1016/j.cemconcomp.2009.11.003
http://doi.org/10.1016/j.engstruct.2018.05.084
http://doi.org/10.1016/j.asoc.2015.09.049
http://doi.org/10.1016/j.clet.2023.100604
http://doi.org/10.1016/j.cam.2004.03.015
http://doi.org/10.1016/0893-6080(92)90012-8
http://doi.org/10.1016/j.icheatmasstransfer.2015.01.001
http://doi.org/10.1016/j.conbuildmat.2021.124081
http://doi.org/10.1007/s11709-016-0363-9


Materials 2023, 16, 2348 25 of 25

41. Faridmehr, I.; Nikoo, M.; Baghban, M.H.; Pucinotti, R. Hybrid krill herd-ANN model for prediction strength and stiffness of
bolted connections. Buildings 2021, 11, 229. [CrossRef]

42. Chou, J.-S.; Tsai, C.-F. Concrete compressive strength analysis using a combined classification and regression technique. Autom.
Constr. 2012, 24, 52–60. [CrossRef]

43. IBM. IBM ILOG CPLEX Optimization Studio Getting Started with CPLEX. 2017. Available online: https://www.ibm.com/docs/
en/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/gscplex.pdf (accessed on 15 September 2017).

44. Shahin, M.A.; Maier, H.R.; Jaksa, M.B. Predicting settlement of shallow foundations using neural networks. J. Geotech. Geoenviron.
Eng. 2002, 128, 785–793. [CrossRef]

45. Faridmehr, I.; Nikoo, M.; Pucinotti, R.; Bedon, C. Application of Component-Based Mechanical Models and Artificial Intelligence
to Bolted Beam-to-Column Connections. Appl. Sci. 2021, 11, 2297. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/buildings11060229
http://doi.org/10.1016/j.autcon.2012.02.001
https://www.ibm.com/docs/en/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/gscplex.pdf
https://www.ibm.com/docs/en/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/gscplex.pdf
http://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(785)
http://doi.org/10.3390/app11052297

	Introduction 
	Literature Review 
	Materials and Methods 
	Database Description 
	Mixing Procedure and Test Methods 

	Compressive Strength Results and Discussion 
	Artificial Intelligence Estimation of Compressive Strength 
	Artificial Neural Networks 
	Generation of Training Model and Statistical Metrics 
	Multiple Linear Regression Model (MLR) 
	Informational Models Predictive 
	Multiple Linear Regression Model (MLR) 
	Artificial Neural Network 


	Multi-Objective Optimization Using CPLEX Tool 
	Sensitivity Analysis 
	Concluding Remarks 
	References

