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Abstract: The c-axis aligned crystalline indium-gallium-zinc-oxide field-effect transistor (CAAC-
IGZO FET), exhibiting an extremely low off-state leakage current (~10−22 A/µm), has promised to
be an ideal candidate for Dynamic Random Access Memory (DRAM) applications. However, the
instabilities leaded by the drift of the threshold voltage in various stress seriously affect the device
application. To better develop high performance CAAC-IGZO FET for DRAM applications, it’s
essential to uncover the deep physical process of charge transport mechanism in CAAC-IGZO FET.
In this work, by combining the first-principles calculations and nonradiative multiphonon theory, the
charge trapping and emission properties in CAAC-IGZO FET have been systematically investigated.
It is found that under positive bias stress, hydrogen interstitial in Al2O3 gate dielectric is probable
effective electron trap center, which has the transition level (ε (+1/−1) = 0.52 eV) above Fermi level.
But it has a high capture barrier about 1.4 eV and low capture rate. Under negative bias stress, oxygen
vacancy in Al2O3 gate dielectric and CAAC-IGZO active layer are probable effective electron emission
centers whose transition level ε (+2/0) distributed at −0.73~−0.98 eV and 0.69 eV below Fermi level.
They have a relatively low emission barrier of about 0.5 eV and 0.25 eV and high emission rate. To
overcome the instability in CAAC-IGZO FET, some approaches can be taken to control the hydrogen
concentration in Al2O3 dielectric layer and the concentration of the oxygen vacancy. This work can
help to understand the mechanisms of instability of CAAC-IGZO transistor caused by the charge
capture/emission process.

Keywords: carrier capture and emission; c-axis aligned crystalline indium-gallium-zinc-oxide
(CAAC-IGZO); first principles calculation; transistor instability effect

1. Introduction

Benefited from the high mobility and good large-area uniformity, indium-gallium-
zinc-oxide (IGZO) has received a lot of attention since it was discovered in 2004 [1]. After
years of development, this material is making its entry into the display industry, thanks
to its better performance than amorphous silicon [2–5]. Recently, a new crystalline oxide
semiconductor called c-axis aligned crystalline IGZO (CAAC-IGZO) has also caught the
attention of researchers. Field-effect transistors (FETs) with the CAAC-IGZO channel layer
exhibit an extremely low off-state leakage current (~10−22 A/µm) [6,7], which helps to
further reduce the leakage power in-memory application. More importantly, the mobility
of the CAAC-IGZO FET doesn’t degrade at high temperatures [8]. In terms of the potential
advantages of extremely low power, high mobility, capacitorless architecture and back-
end-of-line (BEOL) compatibility [9–11], the CAAC-IGZO FET has promised to be an ideal
candidate for DRAM applications [7,12,13].

Despite its benefits, the instability of CAAC-IGZO FETs greatly limits their applica-
tion. These instabilities are mainly reflected in the drift of the threshold voltage when

Materials 2023, 16, 2282. https://doi.org/10.3390/ma16062282 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16062282
https://doi.org/10.3390/ma16062282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-3579-8406
https://doi.org/10.3390/ma16062282
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16062282?type=check_update&version=2


Materials 2023, 16, 2282 2 of 17

the device works continuously in various stress, which are usually distinguished: neg-
ative bias stress (NBS) and positive-bias stress (PBS). That is, NBS instabilities shift the
transfer curve of the FET negatively, while PBS shifts it positively. To clearly explain the
fundamental performance of IGZO transistors, a great deal of possible mechanisms have
been proposed [14–19], for instance, charge trapping processes at the interfaces and/or
in the dielectric, the creation and impact of deep traps in active layer, the absorption of
oxygen or water molecules at the channel interface, the removal of oxygen interstitials, the
capture of electrons by oxygen vacancies, the reduction of peroxide concentration, and the
desorption and diffusion of hydrogen, and so on. However, due to the complexity of the
dielectric layer and semiconductor layer, the origin of the bias instabilities in CAAC-IGZO
FETs is still controversial. On the other hand, thanks to the sensitivity of the transistors to
various factors, such as the deposition conditions, annealing conditions and gate-dielectric
material, it is difficult to isolate the impact of different origins on reliability. Therefore, to
better develop high-performance CAAC-IGZO FETs for DRAM applications, it’s essential
to uncover the deep physical process of charge transport mechanisms in CAAC-IGZO FETs.

In this work, we systematically investigate the charge trapping and emission properties
in CAAC-IGZO FETs based on a first-principles calculations. Then, by combining the
nonradiative multiphonon theory, the trapping process properties of several intrinsic
defects in CAAC-IGZO stack with Al2O3 dielectric have been discussed in detail. Finally,
the influence of charge trapping process on the reliability of devices has also been discussed
under positive bias stress (PBS) and negative bias stress (NBS).

2. Computation Methodology

To uncover the charge trapping and emission properties, a general FET is selected
as a prototype device. Figure 1 shows the illustration of the carrier trapping process in
CAAC-IGZO FET with active layer of CAAC-IGZO and gate dielectric of Al2O3. The
first-principles calculations were utilized based on the density functional theory (DFT) of
the first-principle plane-wave pseudopotential method. All calculations were performed by
the Vienna Ab Initio Simulation Package (VASP) software [20]. The projector augmented
wave (PAW) [21] pseudopotential was used to describe the interactions between the nucleus
and valence electrons. The generalized gradient approximation (GGA) with the Perdew-
Burke-Ernzerhof (PBE) functional was selected to model the exchange and correlation
interactions [22]. The cut-off energy for the wave function was set to 500 eV. All structural
models were fully relaxed using the conjugate gradient algorithm until the atomic force
was less than 0.01 eV/Å.
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Figure 1. Illustration of carrier trapping process in CAAC-IGZO FET.

The hybrid functional of Heyd-Scuseria-Ernzerhof (HSE06) was used to ensure the ac-
curacy of bandgap calculation and avoid the small bandgap under GGA-PBE function [23].
30% and 15% of PBE were replaced with Hartree-Fock function in the calculation of Al2O3
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and IGZO, respectively. To avoid overestimation of metal d bands, the GGA+U method
was used to include an on-site Coulomb correlation interaction between the localized metal
d electrons [24]. The parameters of U = 8.0 eV, 8.0 eV, 8.0 eV and under PBE function and
U = 3.5 eV, 4.0 eV, 4.0 eV under HSE06 function were selected for In 3d, Ga 3d and Zn 3d
orbitals, respectively.

Figure 2 shows the crystal model of α-Al2O3 and CAAC-IGZO. Al2O3 as a gate dielec-
tric is often grown by ALD to form an amorphous structure. However, Choi et al. [25] con-
firmed that the features of native defect in Al2O3 are not strongly dependent on the phase,
and the results in the α-Al2O3 are representative and applicable to an amorphous structure.
The optimized lattice parameters for the perfect α-Al2O3 crystal are a = b = 4.767 Å and
c = 13.028 Å, which are good agreement with the experimental values with a = b = 4.656 Å
and c = 13.140 Å [26]. To simulate the defects, a supercell of 2 × 2 × 1 with 120 atoms
was used. The optimized lattice parameters for the perfect CAAC-IGZO crystal are
a = b = 3.345 Å and c = 26.083 Å, which are good agreement with the experimental values
with a = b = 3.2948 Å [27] and c = 26.071 Å [28]. To reduce the interaction of defects in the a-b
plane, a supercell with 112 atoms was used. The supercell was obtained by setting lattice
vectors to (420), (040), and (221) for the IGZO crystal and reducing the lattice constant c to
one-third [29]. To have an insight into the capture process of the CAAC-IGZO FETs with
Al2O3 dielectric, a variety of different intrinsic defects are considered, which may widely
exist and have been suggested as the cause of reliability issues [30–35] in oxide semicon-
ductor materials, for instance, oxygen vacancy (VO), oxygen interstitial (Oi), hydrogen
interstitial (Hi), hydrogen substituted oxygen (HO) and hydroxyl interstitial ((OH)i), and
so on. Here, the defect of Ho can be regarded as a coexistence of Hi and VO. And the defect
of (OH)i can be regarded as a coexistence of Hi and Oi. In IGZO crystalline, because of the
different chemical environment from nearby metal atoms, four kinds of oxygen vacancy
will be created by removing the selected oxygen atoms, as well as two kinds of oxygen
interstitial, as shown in Figure 2b.
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3. Result and Discussion
3.1. Formation Energy and Transition Level

As mentioned above, the CAAC-IGZO FETs may be affected by a variety of defects.
To identify which defects have an impact on the FET, the formation energy of all kinds of
defects will be discussed firstly. The formation energy of defect can be obtained as [37],

Eq
f or = Eq

de f ect − Eper f ect −∑i niµi + q
(

E f + Ev + ∆V
)

, (1)

where Eq
de f ect represents the total energy of a supercell with the defect in the cell, Eper f ect is

the total energy for a perfect supercell, ni is the number of atoms removed from or added to
the supercell to form a defect, µi is the chemical potentials of oxygen and hydrogen atom/ion,
q represents the number of electrons transferred from or to electron reservoirs [38,39], E f
refers to the Fermi level relative to the valence band maximum energy (VBM, Ev) position



Materials 2023, 16, 2282 4 of 17

in a perfect supercell. The correction term, ∆V, is referred to as the electrostatic potential
that is far from the defect in the supercell with respect to the perfect supercell of the same
size. Otherwise, in order to determine the position of the defect level in the band gap,
one can calculate the transition level. Based on Equation (1), the position of the Fermi level
at which the formation energy of charge states q equals to the formation energy of charge
states q’ was defined as transition level ε(q/q’) [37].

Generally, by using the charged formation energy and transition level, one can clearly
understand the stability of defect and the relative position of defect level in the bandgap
from an energy perspective. Figure 3 shows the formation energy of each defect under
O-rich conditions In this work, the Fermi level of IGZO channel is set at 0.2 eV below EC in
the absence of an electric field, which is a reasonable assumption [2,40]. From in Figure 3a,
as compared with the other oxygen vacancies in IGZO, Vo1, being nearby an In atom and
Zn atom, exhibits the lowest formation energy. This result indicates that Vo1 may exist
more stably in IGZO than other oxygen vacancies, which is attributed to the weak bonding
between In atom and O atom. It is noting that unlike the role of oxygen vacancies in a-IGZO
and some transition metal oxides [31,41], oxygen holes do not act as n-type electron donors
in CAAC-IGZO. In contrast, the formation energy of interstitial oxygen does not depend
significantly on the metal ions in its vicinity. More importantly, our calculations also show
the most stable charge states for each intrinsic defect in IGZO and Al2O3 without an electric
field. In the absence of electric field, the Fermi level is 0.2 eV below EC and the most stable
charge states for intrinsic defects (VO, Oi, Hi, HO and (OH)i) in IGZO, are 0, −2, +1, +1 and
−1, respectively. And the most stable charge states for intrinsic defects (VO, Oi, Hi, HO, and
(OH)i) in Al2O3, are also 0, −2, +1, +1 and −1, respectively. These charged defects will form
a charged center in oxide and lead to the fixed oxide charge, and then significantly influence
the electrical characteristics of transistor. As a result, Hi and HO defects will lead to positive
fixed oxide charge, while Oi and (OH)i will result in a negative fixed oxide charge.

Materials 2023, 16, 2282 4 of 17 
 

 

hydrogen atom/ion, 𝑞 represents the number of electrons transferred from or to electron 
reservoirs [38,39], 𝐸  refers to the Fermi level relative to the valence band maximum en-
ergy (VBM, 𝐸 ) position in a perfect supercell. The correction term, ∆𝑉, is referred to as 
the electrostatic potential that is far from the defect in the supercell with respect to the 
perfect supercell of the same size. Otherwise, in order to determine the position of the 
defect level in the band gap, one can calculate the transition level. Based on Equation (1), 
the position of the Fermi level at which the formation energy of charge states q equals to 
the formation energy of charge states q’ was defined as transition level ε(q/q’) [37]. 

Generally, by using the charged formation energy and transition level, one can 
clearly understand the stability of defect and the relative position of defect level in the 
bandgap from an energy perspective. Figure 3 shows the formation energy of each defect 
under O-rich conditions In this work, the Fermi level of IGZO channel is set at 0.2 eV 
below 𝐸  in the absence of an electric field, which is a reasonable assumption [2,40]. From 
in Figure 3a, as compared with the other oxygen vacancies in IGZO, Vo1, being nearby an 
In atom and Zn atom, exhibits the lowest formation energy. This result indicates that Vo1 
may exist more stably in IGZO than other oxygen vacancies, which is attributed to the 
weak bonding between In atom and O atom. It is noting that unlike the role of oxygen 
vacancies in a-IGZO and some transition metal oxides [31,41], oxygen holes do not act as 
n-type electron donors in CAAC-IGZO. In contrast, the formation energy of interstitial 
oxygen does not depend significantly on the metal ions in its vicinity. More importantly, 
our calculations also show the most stable charge states for each intrinsic defect in IGZO 
and Al2O3 without an electric field. In the absence of electric field, the Fermi level is 0.2 eV 
below 𝐸  and the most stable charge states for intrinsic defects (VO, Oi, Hi, HO and (OH)i) 
in IGZO, are 0, −2, +1, +1 and −1, respectively. And the most stable charge states for intrin-
sic defects (VO, Oi, Hi, HO, and (OH)i) in Al2O3, are also 0, −2, +1, +1 and −1, respectively. 
These charged defects will form a charged center in oxide and lead to the fixed oxide 
charge, and then significantly influence the electrical characteristics of transistor. As a re-
sult, Hi and HO defects will lead to positive fixed oxide charge, while Oi and (OH)i will 
result in a negative fixed oxide charge. 

 
Figure 3. The formation energy of defects under O-rich condition for CAAC-IGZO (a) and Al2O3 (b). 
The red dotted line represents the Fermi level in the absence of an electric field and the grey area in 
(b) represents the area of band gap in CAAC-IGZO. 

Figure 4 shows the band alignment and transition level of defects in Al2O3/IGZO sys-
tem. In general, the transition levels reveal which defects undergo electron capture or 
emission. With the position of the Fermi level changes in the presence of electric field, the 
defects will capture electrons when the Fermi level is higher than the transition level as 
well as emission electrons when the Fermi level is lower than the transition level. There-
fore, if the transition level is closer to the Fermi level, the defect is a more efficient center 

0 1 2 3

-2

-1

0

1

2

3

4

5

6

7

+2

Fermi level (eV)

Fo
rm

at
io

n 
En

er
gy

 (e
V

)

−2

−1
+1

0+1

Oi

(OH)i

Hi

VO1

VO2

VO3

VO4

HO

0 1 2 3 4 5 6 7 8

-4

-2

0

2

4

6

8

10

−2

−1

−1

−1

Fermi level (eV)

Fo
rm

at
io

n 
En

er
gy

 (e
V

)

+1

0
+1

0

+1

+2

+1
+2

Hi

(OH)i

Oi

VO

HO

(a) (b)

Figure 3. The formation energy of defects under O-rich condition for CAAC-IGZO (a) and Al2O3 (b).
The red dotted line represents the Fermi level in the absence of an electric field and the grey area in
(b) represents the area of band gap in CAAC-IGZO.

Figure 4 shows the band alignment and transition level of defects in Al2O3/IGZO
system. In general, the transition levels reveal which defects undergo electron capture or
emission. With the position of the Fermi level changes in the presence of electric field, the
defects will capture electrons when the Fermi level is higher than the transition level as
well as emission electrons when the Fermi level is lower than the transition level. Therefore,
if the transition level is closer to the Fermi level, the defect is a more efficient center for
electron capture or emission under the electric field. In Figure 4, one can see that the
transition level ε (+1/−1) of Hi in Al2O3 is 0.52 eV above the Fermi level of CAAC-IGZO
which is closer to the Fermi level, as compared with the transition level ε (+1/−1) of HO in



Materials 2023, 16, 2282 5 of 17

Al2O3 which is 2.14 eV above Fermi level. This result suggests that the defect Hi in Al2O3
gate dielectric is probable effective electron trap center for CAAC-IGZO channel under
PBS. The reason is that when a positive bias voltage is applied, the bandgap of the gate
dielectric is shifted downwards, thus allowing the process of electron capture more likely
to occur in Hi defects in Al2O3 gate dielectric. The detailed schematics for electron trapping
process under PBS can be seen in Figure 5a. In contrary, the transition levels ε (+2/0) of Vo
in CAAC-IGZO and ε (+2/0) of Vo in Al2O3 are distributed at −0.73~−0.98 eV and 0.69 eV
below the Fermi level of CAAC-IGZO, respectively. The transition level ε (+2/0) for Vo
in CAAC-IGZO and Al2O3 is closer to the Fermi level, as compared with other defects.
The results indicate that the oxygen vacancies in CAAC-IGZO active layer and Al2O3 gate
dielectric are likely to be the electron emission center under NBS, due to the bandgap of
gate dielectric shifting upwards thus allowing the process of electron emission. Figure 5b
shows the schematics of electron emission process under NBS in detailed. The properties of
electron capture or release in these defects will be discussed in more detail in the following.
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Figure 5. The schematics diagram of electron trapping process under PBS (a), and the electron
emission process under NBS (b). Electrons are exchanged between the intrinsic defects and the
conduction band of the CAAC-IGZO. Under PBS, electrons will be trapped in Hi defects in Al2O3.
Under NBS, electrons will be emitted from Vo defect in CAAC-IGZO and Al2O3.
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3.2. Electronic Properties of Charge Capture/Emission Process

According to the analysis of the transition levels above, one can determine that Hi in
Al2O3 is the possible electron capture center and VO in both Al2O3 and CAAC-IGZO is the
possible electron emission center. To clearly understand the electronic properties of Al2O3
and CAAC-IGZO with different defects and charge states during the charge transition
process, we calculated the density of states (DOS) of Al2O3 and CAAC-IGZO with different
defects and charge states, respectively.

Figure 6 shows the DOS and the local charge density of hydrogen interstitial in Al2O3
dielectric layer. It is found in Figure 6a that, when the charge state in Al2O3 with the
defects is +1, the protonated hydrogen forms a hydroxide ion with the oxygen ion, at which
there is no sub-state in the bandgap. When H+

i captures an electron and forms H0
i , the

hydrogen-oxygen bond will be broken and the hydrogen atom moves to the middle of
the aluminum ion, as shown in Figure 6b. In this case, a new sub-state DOS arises and is
distributed at 3.2 eV above VBM, which is composed of H orbitals and O orbitals. When
H0

i captures an electron and forms H−i , the aluminum ion moves closer to the H atom. The
sub-state DOS distributed at 2.6 eV above VBM, composed of H orbitals and O orbitals,
which is 0.6 eV lower than H0

i .
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Figure 7 shows the DOS and the local charge density of oxygen vacancies in Al2O3
dielectric layer. One can see that, when the defects are in the charge state of 0, the electrons
are mainly present in the oxygen vacancies. The sub-state DOS distributes at 2.7 eV above
VBM, which is composed of Al orbitals and O orbitals. When V0

O emits an electron and
forms V+

O , the aluminium ion moves slightly outward from the oxygen vacancy. The
sub-state DOS distributes at 4.1 eV above VBM, which is 0.9 eV higher than V0

O, as shown
in Figure 7b. On the other hand, the electron emission process for the oxygen vacancy from
V+

O to V2+
O is very similar to that from V0

O to V+
O process, again with the aluminum ion
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moves slightly outward from the oxygen vacancy. The sub-state DOS distributes at 5.4 eV
above VBM, which is 1.1 eV higher than V+

O .
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Figure 8 shows the DOS and the local charge density of oxygen vacancies in the CAAC-
IGZO active layer. As can be seen in Figure 8 that the electronic properties of four kinds of
oxygen vacancies are similar. When the defects are in the charge state of 0, the electrons
are mainly present in the oxygen vacancies. The sub-state DOS distributes at 1.6 eV above
VBM. For the oxygen vacancies from VO1 and VO2, the sub-state DOS is mainly composed
of In orbitals and O orbitals, while for VO3 and VO4, the sub-state DOS is composed of both
Ga orbitals, Zn orbitals and O orbitals. When V0

O emits an electron and forms V+
O , the metal

ions move outward from the oxygen vacancy. The sub-state DOS distributes at about 2 eV
above VBM, which is 0.4 eV higher than V0

O. Similarly, the electron emission process for the
oxygen vacancies from V+

O to V2+
O also arises with the outward movement of metal ions.

The sub-state DOS is distributed near the Conduction Band Minimum (CBM).

3.3. Kinetics of Charge Capture/Emission Process

To uncover the kinetics of the charge capture/emission process in CAAC-IGZO FETs,
it is crucial to know the activation barrier of the transition process. However, the transition
level mentioned above only considers the equilibrium energy relationship between the
two-defect charge states and ignores the deformation of the defect site when the charge
state is changing. Physically, changes in defect configuration and electron-phonon coupling
alter the activation barrier of the charge capture/emission process and will significantly
influence the kinetics of the charge capture/emission process. In order to better understand
the kinetics of the charge capture/emission process, it is essential to further consider the
relationship between the defect formation energy and configuration. The theoretical model
used in this work is called as nonradiative multiphonon theory (NMP) [42,43], which has
been proven to correctly describe the charge trapping of oxide defects in transistors [44].
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3.3.1. Nonradiative Multiphonon Transition Process

Generally, if a defect is neutral in state V1 and negatively charged in state V2, the
atomic equilibrium configuration is different in each state. Here, the different states are
denoted by e1 and e2. Since the real motion of atoms is highly complex, one usually uses a
single reaction coordinate e to hold all 3N coordinates of the N atoms under consideration.
The total energy consists of contributions from the ionic system, the electronic system, and
a coupling term in each state. The coupling term describes the shift in the equilibrium
positions and the change of the vibrational frequencies. In most case, the energy-coordinate
relationship can be approximated as a quadratic function for small displacement. This
simplification can reasonably reflect the essence of the capture process [45]. Another
simplification is first-order approximation [45,46], which assumes that only one vibrational
mode contributes to the electronic transition process. Based on these approximations, the
relationship of total energy to reaction coordinates is usually written as [44],

EVi =
1
2

Mω2
i (e− ei)

2 + Ei, (2)

where e is the reaction coordinate with the local equilibrium position ei, M is the effective
mass of the ‘defect molecule’ [47], ωi is the vibrational frequency of mode i and Ei represent
the potential energy of states.
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In terms of the relationship of energy to reaction coordinates in Equation (2), one
can obtain the relationship of a nonradiative multiphonon transition process, as shown in
Figure 9a. In the regular operation of the transistor, photons are not available, which means
the increase of energy should only rely on many phonons during the transition process. In
Figure 9a, E12 and E21 are the electron capture and emission energy barriers, respectively.
λ12 and λ21 are the reorganization energies that reflects the strength of electron-phonon
coupling, respectively. When an electric field is present at the location of the defect, the total
energy difference between two states changes from E2–E1 to E′2–E′1 by qVox. For defects in
the gate dielectric Al2O3, Vox is the potential difference at the defect from the interface. For
defects in IGZO channel, Vox is the surface potential at the location of defects. Besides, the
capture energy barrier and emission energy barrier also change to E′12 and E′21, as shown in
Figure 9b. Then, the rates of transition between two states can be given [44],{

k12 = Ncvthσe−E12/kT

k21 = nvthσe−E21/kT , (3)

here, Nc is the effective DOS in CBM, n is the electron density of active channel, vth is
the thermal velocity of the electron, σ is the capture cross-section, k is the Boltzmann
constant, and T is the absolute temperature. According to Equation (3), the effective
capture/emission times and the probability of two states occupying at the moment with
the infinity of t are given, 

τc =
1

k12
= τ0eE12/kT

τe =
1

k21
= Nc

n τ0eE21/kT

P2 = k12
k12+k21

= 1

1+ n
Nc e

E2−E1
kT

P1 = k21
k12+k21

= 1

1+ Nc
n e

E1−E2
kT

, (4)

here, effective time constant τ0 incorporates the Nc, vth and σ, and is weakly dependent on
bias and temperature [48].
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Then, the relationship of total energy to coordinates is estimated by using a DFT method.
The energy expression of charged state V1 and charged state V2 can be expressed as,

EV1(e) =
1
2 Mω2

1(e− e1)
2

EV2(e) =
1
2 Mω2

2(e− e2)
2 + Es

EV′2
(e) = EV2(e)− qVox

Es = EV2(e2)− EV1(e1)

, (5)

here, EV2(e1) and EV1(e2) can be also calculated to define the quadratic function. The
coefficient 1

2 Mω2
i can be extracted from the parabolic potential energies.

3.3.2. Charge Transition Process in Al2O3

By analyzing the nonradiative multiphonon process, one can discuss the kinetics of the
charge transition process. Next, the interstitial hydrogen defect in Al2O3 gate dielectric will be
discussed, which is a possible electron capture center under PBS in terms of the calculation of
the transition levels. Since the capture of electrons by defects has a certain time constant, the
probability of a defect capturing two electrons at the same time is very low. Firstly, the charge
capture processes from H+

i to H0
i and H0

i to H−i will be analyzed, respectively.
Figure 10 shows the total energy as a function of the reaction coordinates for the

hydrogen interstitial in the Al2O3 dielectric layer and the energy barrier of the transition
process. As can be seen in Figure 10a,b that for the transition process from H+

i to H0
i ,

the reorganization energy λ21 required is very high based on the method in Figure 9,
reaching to 3.42 eV. The high reorganization energy indicates that the system has a strong
electron-phonon coupling in this capture process. Otherwise, combined with the DOS’s
results in Figure 6, it is found that the vibrational mode of the hydrogen-oxygen bond
contributes to this electron capture process. Since the H0

i state has a higher equilibrium
energy, the capture barrier will become relatively high, reaching to ~1.8 eV. According to
Equation (5), this barrier will result in a low capture rate k12. As Vox increases from 0V to
2V, the capture barrier decreases linearly from 1.8 eV to 0.3 eV. Then the capture rate will
increase exponentially. For the transition process from H0

i to H−i in Figure 10c,d that, the
reorganization energy λ21 is obviously different from that from H+

i to H0
i . The different

reorganization energy indicates that the vibrational modes contribute differently to the
electronic transition process in the two processes. According to the DOS’s results, one
can find that the vibrational mode of the adjacent aluminum ion around the hydrogen
interstitial contributes to the H0

i to H−i process, which is different for the process from H+
i to

H0
i . At the same time, although the equilibrium energy EH−i

− EH0
i

decreases continuously,

while the probability of defects in H−i state increases significantly, according to Equation (5).
The capture barrier is basically equal to 0 eV, which means that the electron capture time τc
from H0

i to H−i is basically equal to τ0.
Overall, for the H+

i defect in the Al2O3 gate dielectric, when Vox is greater than 0.52 V,
the Fermi level is higher than the transition level ε (+1/−1), and the equilibrium energy
of H−i is lower than H+

i , which means that the probability of defects in the state of −1 is
higher than that in the state of +1. The electron capture of defects is a favorable energy
process. However, the capture barrier is very high (about 1.4 eV), which makes the capture
rate of H+

i to be very slow. After the electron capture is happened and H0
i is formed, the

defect will generate electron capture again quickly by a capture time τ0 and forms H−i . As
Vox is continuously increased, the capture time τc from H+

i to H0
i will decline exponentially.

These kinetic properties suggest that the electron capture process of hydrogen interstitial in
Al2O3 is relatively slow at low voltage, but rapidly increases at high voltage, and eventually
form the negative charge center in the gate dielectric oxide.
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Figure 10. The total energy as a function of the reaction coordinate for the hydrogen interstitial in
Al2O3 dielectric layer, (a) from H+

i to H0
i and (c) from H0

i to H−i . The energy barrier as a function of
Vox, (b) from H+

i to H0
i and (d) from H0

i to H−i process. The red dashed line is the total energy curve
for the charge state at different Vox. The blue dash line represent the transition level ε (+1/−1).

Next, we will discuss the transition process of oxygen vacancjes in the Al2O3 gate
dielectric, which is a possible electron emission center under NBS based on the transition
levels mentioned above. Similarly, we analyzed the emission process from V0

O to V+
O

and from V+
O to V2+

O , respectively. Figure 11 shows the total energy as a function of the
reaction coordinate for the oxygen vacancies in the Al2O3 dielectric layer and the energy
barrier of the transition process. As can be seen in Figure 11a,c that, for the two transition
processes, the reorganization energies are relatively close, suggesting that the vibrational
modes contribute to the electronic transition process, which may be the same in both
processes. Combining with the DOS’s results, one can obtain that the vibrational modes of
the adjacent aluminum ion around oxygen vacancies contribute to the electron emission
process. According to Figure 11b, for the transition process from V0

O to V+
O , the emission

barrier decreases from 1.0 eV to 0 eV as Vox increases from 0 V to 2 V. In Figure 11d, for the
transition process from V+

O to V2+
O , the emission barrier decreases from 0.5 eV to 0 eV as

Vox increases. And as Vox is greater than 1.4 V, the emission barrier increases slightly.
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O to V+

O and (c) from V+
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curve for the charge state at different Vox. The energy barrier as a function of Vox, (b) from V0
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O to V2+

O . The blue dash line represent the transition level ε (+2/0).

Overall, for V0
O defect in the Al2O3 gate dielectric, when |Vox| is greater than 0.69 V,

the Fermi level is below the transition level ε (+2/−0). Thus, the defects undergo electron
emission as an energy favorable process. At this point the emission barrier for the V0

O to V+
O

is about 0.5 eV. Subsequently, V+
O then emits an electron again with a much lower emission

barrier of about 0.2 eV and forms V2+
O , which represents a significantly lower emission

time τe for the process from V+
O to V2+

O . As |Vox| increases further, the emission time τe

for the transition process from V0
O to V+

O decreases rapidly due to a further decrease in
the emission barrier, while the emission time τe for the transition process from V+

O to V2+
O

gradually converges to τ0 and begins to increase as Vox is greater than 1.4 V. As a result,
these kinetic properties suggest that the rate of electron emission process from the oxygen
vacancies in Al2O3 increases as the voltage increases, and finally forms the positive charge
center in the gate dielectric oxide.

3.3.3. Charge Transition Process in CAAC-IGZO

Finally, we will discuss the electron emission process of the oxygen vacancies in the
CAAC-IGZO active layer. Figure 12 shows the total energy as a function of the reaction
coordinate for the oxygen vacancies in the CAAC-IGZO active layer and the energy barrier
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of the transition process, respectively. Based on the results mentioned above, four kinds of
oxygen vacancies in CAAC-IGZO are similar. Here, we only discuss the transition process
of VO2. As can be seen in Figure 12a,c that, for the electron emission processes from V0

O
to V+

O and from V+
O to V2+

O , the reorganization energies are very close. The results imply
that the vibrational modes contribute to the electronic emission process, which may be the
same in both processes. The DOS’s results also display that the vibrational modes of the
adjacent metal ion around oxygen vacancy contribute to the electron emission process. The
lower reorganization energy represents a weaker electron-phonon coupling of the oxygen
vacancies in the CAAC-IGZO active layer, as compared with the defect transition process in
Al2O3. In Figure 12b, one can see that for the transition process from V0

O to V+
O , the emission

barrier decreases rapidly from 1.0 eV to 0 eV as |Vox| increases slightly at |Vox| being greater
than 1.6 V. In Figure 12d, for the transition process from V+

O to V2+
O , the emission barrier

decreases from 0.6 eV to 0 eV as |Vox| increases and begins to increase when |Vox| is greater
than 1.2 V. The emission barrier is approximately 0.2 eV, as |Vox| is equal to 2 V.
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Overall, for the V0
O defect in the CAAC-IGZO active layer, when Vox is greater than

0.73 V. the Fermi level is below the transition energy level ε (+2/−0), the defects undergo
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the electron emission as a favorable energy process. At that point, the emission barrier
for the transition process from V0

O to V+
O is about 0.25 eV. Subsequently, the V+

O defect is
then emitted again with a much lower emission energy of about 0.1 eV. As |Vox| increases
further, the emission time τe for the transition process from V0

O to V+
O decreases rapidly

to τ0 and begins to increase at |Vox| greater than 1.6 V, while the emission time τe for the
transition process from V+

O to V2+
O converges to τ0 and begins to increase at |Vox| greater

than 1.2 V. These kinetics properties suggest that the rate of the electron emission process
increases with the increasing voltage, then begins to slow down when the voltage reaches
about 1.6 V, and finally forming a positive charge center in the active layer.

3.4. Instability Effects in IGZO Device Induced by Charge Capture/emission Process

As mentioned above, the instability of the CAAC-IGZO FETs is mainly reflected in the
drift of the threshold voltage under NBS and PBS. To uncover the instability, we then discuss
the instability effects in IGZO devices induced by the charge capture/emission process.
General speaking, the change of defect charge state caused by the charge capture/emission
process will leave a new positive or negative charge center in oxide semiconductors and
gate dielectric, which can be observed macroscopically as a change of fixed oxide charge
per area (Qox) and affects the electrical performance of the device. The relationship of the
threshold voltage drifts with Qox is described as [44],

∆Vth(VG) = −
∆Qox(VG)

Cox
, (6)

here, Cox is the capacitance per area of gate dielectric. Universally, the capture/emission
process of the oxygen vacancies does not quickly follow the gate bias change, which will
be experimental recorded as a BTI effects. Under PBS, the electron capture process of
hydrogen interstitial in the Al2O3 dielectric layer will decrease the value of Qox, and then
induce a positive drift of the threshold voltage. In a 2T0C DRAM cell, this PBS-induced
positive drift occurs within the write transistor and read transistor of the write operation
and results in lower open-state current and slower write operations. In addition, the large
capture barrier and capture time of the process from H+

i to H0
i will cause a small drift

of the threshold voltage at lower temperatures and low positive gate bias voltage. The
experiment displays that the Al2O3 gate dielectric with 1.1% hydrogen concentration may
result in a positive but small ∆Vth at 25 ◦C under PBS [33]. While the trap level Et tested
by IPE measurements is 0.69 eV above the Fermi level, which is similar to our results.
However, the ∆Vth will become negative as the temperature raising. The reason is that
under higher stress, trapped hydrogen in the gate-dielectric is released, diffuses to IGZO
layer. To overcome the instability, some approaches can be taken to control the hydrogen
concentration in Al2O3 dielectric layer, such as replacing water with ozone as a precursor
for ALD of the gate dielectric.

Under NBS, the electron emission process of the oxygen vacancies in the Al2O3
dielectric layer and CAAC-IGZO active layer will lead to the increase of Qox, and then
induce a negative drift of the threshold voltage. In a 2T0C DRAM cell, the NBS-induced
negative drift occurs within the write transistor of the read operation and results in larger
off-state current and shorter retention time. Generally, the transistor is in off-state under a
negative gate bias. The phenomenon of the negative drift of the threshold voltage will be
observed when transistor is in on-state again and one can find a hysteresis of the current-
voltage curve. To better understand the phenomenon of the negative drift of the threshold
voltage induced, one firstly need to distinguish between the different contributions of
the oxygen vacancies in the Al2O3 dielectric layer and CAAC-IGZO active layer to the
threshold voltage drift, respectively. According to the calculations, the behavior of the
oxygen vacancies in the Al2O3 dielectric layer and CAAC-IGZO active layer is essentially
similar. However, it should be noted, that Vox is the surface potential at the defect for the
active layer and the potential difference at the defect for the dielectric layer. It is well known
that when the gate bias of transistor is below the threshold voltage, more voltage will fall on
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the active layer thus changing the surface potential and the carrier concentration. Therefore,
the oxygen vacancies in CAAC-IGZO active layer may contribute more to the negative drift
of the threshold. The effect of the oxygen vacancies under NBS is very similar to that in
amorphous IGZO [31], except that the oxygen vacancies in CAAC-IGZO do not lead to the
formation of shallow donors. To overcome the instability, some approaches can be taken to
control the concentration of the oxygen vacancy, such as annealing in an oxygen atmosphere.

4. Conclusions

In this work, the charge capture and emission properties of different defects in the
CAAC-IGZO FETs have been studied by using the first-principles calculations. The results
display that the hydrogen interstitials in the Al2O3 dielectric layer are probable electron
emission center, as well as the oxygen vacancies in Al2O3 dielectric layer and CAAC-
IGZO active layer as the electron emission center. More importantly, by combining the
nonradiative multiphonon theory, we discussed the configuration change and kinetics of
different transition processes in detail. It is found that a high capture barrier about 1.4 eV for
electron capture process of hydrogen interstitial in Al2O3 dielectric layer and an emission
barrier of about 0.5 eV and 0.25 eV for the electron emission process of the oxygen vacancies
in Al2O3 dielectric layer and CAAC-IGZO active layer, can be formed, respectively. The
formation of these charge centers will seriously affect the charge capture/emission process
and then induce the instability of the CAAC-IGZO FETs, where hydrogen interstitials cause
a positive drift of the threshold voltage and oxygen vacancies cause a negative drift of the
threshold voltage. This work helps understand the mechanisms of instability of CAAC-
IGZO transistor caused by carrier capture/emission process and provides a theoretical
reference for the improvement of the experiment.
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