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Abstract: To control the semisolid processing of aluminum alloys produced by the additive manufac-
turing technique, an exhaustive knowledge of their rheological behavior is required. In the semisolid
state, metallic materials can show rheological characteristics similar to those of polymers, so semisolid
state shaping is one of the currently considered routes for additive manufacturing with metallic
materials. In this work, an approximation of the rheological control of the A356 aluminum alloy for
its subsequent 3D manufacturing was carried out at a very low shear rate. A continuous cooling
rheometer was designed and used, evaluating the influence of different process parameters on the
viscosity variation of the aluminum alloy in the semisolid state. The results show an anomalous flow
variation, indicating dilatant, and not thixotropic behavior, for very low shear rates.

Keywords: aluminum alloys; semisolid manufacturing; rheology

1. Introduction

The ASTM 52900:2015 standard is an attempt to regularize a new field of manufac-
turing processes, Additive Manufacturing (AM), which has generated a lot of interest in
diverse engineering sectors and has great potential for expansion. This standard classifies
the AM processes in the following categories: (1) Binder Jetting, (2) Directed Energy De-
position (DED), (3) Extrusion, (4) Material Jetting (5) Powder Bed Fusion (PBF), (6) Sheet
Lamination and (7) VAT Photopolymerisation [1]. These technologies open new manu-
facturing possibilities regarding the production of complex geometries, impossible to be
produced by any other means, and the multi-functionality of the components. Despite the
short time which has passed since the development of these technologies, their viability has
been proven for different materials. Nowadays, the efforts are focused on the proper control
of the processing parameters to assure the quality and properties of the printed components.
Exploiting the whole potential of these technologies will require the development of new
materials, and/or modifications of the existing ones, to optimize their rheological behavior
during printing. In general, the above-described technologies are the most extended tech-
niques for the manufacturing of metallic parts by additive manufacturing, but all of them
have high costs associated to the heating systems, i.e., electron beam or laser.

This work has the objective of being able to develop processes to print thixotropic
aluminum alloys based on the Fused Deposition Melting (FDM) techniques, extensively
used for the printing of thermoplastic components, which could significantly reduce the
costs associated with metal printing. These techniques involve additive manufacturing of
extruded material: the material is forced to pass through a nozzle by applying pressure, it
is deposited at a constant speed and it solidifies on top of the material previously deposited.
This idea is difficult to implement in metal printing because the melting point of most
commercial alloys is much higher that the melting point of polymers. For this reason,
it is necessary the production of metallic parts through the adaptation of the material
extrusion technologies, is based on the control of the rheological properties of the materials
in a semisolid state (SSM). The semisolid state can be obtained for certain alloys in the
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temperature range where solid and liquid phases coexist, in which the material shows a
specific rheological behavior that determines its formability and exhibits special improved
rheological properties which help control viscosity and benefit laminar flow [2]. However,
a very strict control of flow of the material through the nozzle is necessary to avoid
obstruction of the nozzle [3]. Nozzle clogging is one of the most significant process errors
in current fused filament fabrication 3D printers, and it affects the quality of the prototyped
parts in terms of geometry tolerance, surface roughness, and mechanical properties [4].

The authors base this study on their extensive knowledge about the thixotropic form-
ing of aluminum alloys [5–8] whose rheological behavior in the semisolid state will be key
for its printing by FDM type technologies.

To achieve the objectives of this work, it is essential to know the rheological behavior
of the materials formed by SSM and determine the most appropriate rheology. Viscosity is
the most important parameter of rheology as it provides information about its fluidity and,
consequently, its capacity to flow through the nozzle [9]. In some materials, the viscosity
decreases when fluid is agitated. This property is known as thixotropy and semisolid
manufacturing takes advantage of it because the lower the viscosity, the lower the effort
required to deform the fluid and fill the mold [8] or flow through a nozzle in an additive
manufacturing process.

The viscosity η of a fluid can be defined as the resistance of a material to deformation
as the strain rate increases [10], and quantitatively, the ratio between the shear stress applied
to deform the fluid τ expressed in Pa and the strain rate

.
fl expressed in s−1 [11]. The term

viscosity is often used synonymously with apparent viscosity [10].
Viscosity can be predicted with Equation (1) [12]:

η = A exp(B· fs) (1)

where A is related to the pre-exponential viscosity, B to the activation energy, and fs is the
solid fraction. Accordingly, Equation (1) can be considered as a form of the expression of
the Arrhenius equation [13]:

ηT = ηo exp (E/R·T) (2)

where E is the activation energy for viscous flow, ηo is the pre-exponential viscosity, T is
the temperature in K and R is the gas constant (8.3144 J·mol−1·K−1).

This power law behavior can also be analyzed using the Ostwald-de-Waele model [14],
given by Equation (3):

η = m· .
γ

n−1 (3)

where m is the flow consistency index (Pa·sn), and n is the flow behavior index (dimension-
less). Power-law fluids can be subdivided into three different types of fluids based on the
value of their flow behavior index. For n < 1 pseudoplastic fluid, n = 1 Newtonian fluid,
n > 1 dilatant fluid (or shear-thickening fluid).

There is a very important dispersion (around 400%) in the viscosity values in the
literature for aluminum alloys, depending on the process used to evaluate them [13]. It
has also been noted that, depending on the publication, the viscosity has a difference
of 103 factor. Ilda and Guthrie discuss this property in order of mPa·s after being cross-
referenced for seven investigations [13], on the other hand, Barman and Dutta discuss it in
order of Pa·s [15] evaluating the rheological performance of the A356 aluminum alloy in
the semisolid state as a function of shear rate and cooling rate

Parameters as solid fraction or previous deformation processes, can lead to very
different values [12,14]. Viscosity values around zero were found for low values of solid
fraction, which was justified because liquid metals can exhibit Newtonian behavior [14].

In accordance with previous results, the objective of this study is to carry out a
rheological control of the A356 aluminum alloy, for its subsequent 3D manufacturing, at a
very low shear rate.
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2. Materials and Methods

In this work a continuous cooling rheometer was designed and used, evaluating the
influence of different process parameters on the variation of the dynamic viscosity of the
aluminum alloy in the semisolid state. Viscosity will be calculated using a rotational vis-
cometer, consisting of a coaxial cylinder sensor system that compares assigned torque/shear
stress with the measured strain/strain rate (Figure 1). For this, specific software has been
designed that relates these magnitudes with the final viscosity.
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According to Schram, the formulas for shear stress, τ (Equation (4)), and shear rate,
.
γ

(Equation (5)), are [11]:

τ =
T

2·π·L·R2
i ·Cl

(4)

where T is the torque [N·m], L is the rotor length in contact with the melted alloy [m], Ri
is the radius of the rotor [m] and Cl is the torque correction factor that considers internal
friction forces of the machine and has been taken by running a previous test without a
melted alloy.

.
γ =

2·ω·R2
a

R2
a − R2

i
(5)

where ω is the angular velocity [s−1], Ra the radius of the cup [m] and Ri the radius of the
rotor [m].

Viscosity can be obtained by dividing the shear stress and the shear rate, and combin-
ing Equations (4) and (5), the viscosity will be obtained from Equation (6):

η =
τ
.
γ

=
T·
(
R2

a − R2
i
)

4·π·ω·L·R2
a·R2

i ·Cl
(6)

In accordance with the exposed principles, a rheometer has been designed and built
for this experiment (Figure 2). The rotor is a 50 mm diameter Cu-Cr-Zr CW106C bar (Ri),
with internal air-cooling control, and the cup is a silicon carbide 110 mm inner diameter
crucible (Ra).

The dimensions of the rotor and cup were designed to maintain a small temperature
gradient, throughout the alloy volume, during the experiments. Simulations with PRro-
CAST 10.0 software (ESI Group, Rungis, France) were taken proving that this condition
was assured (Figure 3).
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Figure 3. Cooling simulation with ProCAST software.

A K-type thermocouple was used to measure the temperature of the aluminum al-
loy throughout the process. Corresponding solid fraction, fs, present in the slurry was
calculated based on the Scheil equation (Equation (7)) [16]:

fs = 1 −
(

TM − T
TM − TL

)1/(1 − kp)

(7)

where TM is the melting temperature of pure aluminum, TL is the liquidus temperature at
initial composition of the studied alloy and kp the partition coefficient of the alloy.

The experiment was undertaken with the hypoeutectic A356 aluminum alloy, with 7%
of silicon and 0.3% of magnesium (Table 1).
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Table 1. Chemical composition of the used A356 aluminum alloy, wt %.

Si Fe Cu Mn Mg Zn Ti Al

7.12 0.0218 0.0025 0.0049 0.335 0.1 0.104 Balance

The A356 aluminum alloy is commonly used in thixocasting and rheocasting pro-
cesses due to its wide gap between solidus and liquidus temperatures, good pourabil-
ity and weldability, high specific strength and good corrosion resistance. Consequently,
this alloy is commonly used in the fabrication of components for the aeronautical and
automotive sectors.

The SSM process of the A356 aluminum alloy must be carried out in a temperature
range in which the alloy is in a two-phase region (liquid + solid phase of α-aluminum) with
a desirable morphology and solid fraction. In this sense, it is considered basic to achieve a
globular solid phase morphology. In addition, for semisolid 3D manufacturing, the liquid
fraction percentage must guarantee a continuous extrusion flow to avoid clogging in the
extrusion nozzle, which could imply the discontinuity of the printing process. However,
the use of excessively high percentages of liquid fractions can decrease the viscosity and
may favor the formation of liquid drops at the exit of the extrusion nozzle, which will alter
the fluidity of the semisolid slurry and consequently a correct printing process. On the
contrary, the use of low percentages of liquid fraction (high solid fraction) will involve
high extrusion forces, which makes the process tangled or eventually unfeasible. The
solidification of the A356 aluminum alloy starts at 613 ◦C [17]. The temperature range
between liquidus (613 ◦C) and solidus (557 ◦C) allows the possibility of carrying out a
controlled semisolid process.

For each experiment, a quantity of 1.3 kg of A356 aluminum alloy was melted up to
620 ◦C by means of an induction furnace. Once the set temperature was reached, the bar
agitated the melted alloy in a pre-set velocity while cooling to 592 ◦C, in order to assess the
early stages of solidification (Figure 4).
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Figure 4. Steps of agitation process: (a) melting, (b) stirring, (c) post-processing (pouring).

To avoid thermal shock between the copper bar and the fluid, it was necessary to heat
the bar to a temperature of 350 ◦C when starting the rotation. The agitation time was no
longer than 20 s. The semisolid slurry was obtained when the alloy contained a certain
percentage of solid and liquid fraction. The management of the cooling rate and the viscosity
during the solidification is necessary for a correct formation of the semisolid slurry.

In additive manufacturing processes, shear rates are technically low, while most
studies of viscosities for this material have been carried out for relatively high shear rates.
Therefore, in this work it is proposed to carry out experiments for very low strain rates,
from 10.5 s−1 (100 rpm) to 15.7 s−1 (150 rpm) and 18.3 s−1 (175 rpm).
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The designed and built rheometer was validated using the rheology charts provided
by the Anton Paar Company (Ashland, VA, USA) for the same aluminum alloy.

3. Results and Discussion

During the material preparation step, the dendritic microstructure of the A356 alu-
minum alloy was broken-up by the mechanical stirring and solidification control of the SSM
slurry that allowed us to obtain samples with a globular microstructure. Figure 5 shows
the as-cast microstructure of the A356 aluminum alloy after conventional solidification and
the alpha globulized microstructure of the solidified SSM slurry.
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Figure 5. (a) α-aluminum dendritic microstructure of as-cast A356 aluminum alloy; (b) α-aluminum
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of 175 rpm).

The evolution of viscosity with the temperature of the experiments carried out with
continuous cooling, and at a constant lower strain rate, from 10.5 s−1 to 18.3 s−1, is shown
in Figure 6. Considering the direct relationship between the solid fraction of the A356
aluminum alloy and temperature, the evolution of viscosity with the solid fraction has also
been plotted on this graph.

The evolution of the viscosity with the shear rate showed an anomalous behavior,
contrary to most of the studies carried out [15,16,18,19]. For the low shear rates used in this
study, the viscosity level increased with increasing shear rates.

From Figure 6 it can be seen that for the lower value of shear rate (10.5 s−1), and for
values under 19% of solid fraction, no appreciable difference in apparent viscosity was
observed. When solid fraction was between 19% and 30%, under low stirring velocity,
it was observed that viscosity raised, and when the solid fraction exceeded 29%, it was
observed that viscosity increased rapidly. This rapid increase would be due to increasing
structural bonds between particles with the increase in the solid fraction [15]. The viscosity
showed from the beginning an evident exponential dependence on temperature.

The regression analysis of the values shown in Figure 6, allows us to determine the
values of A and B of Equation (1). The calculated values are shown in Table 2 and Figure 7
shows the evolution of viscosity as a function of solid fraction. Tables 2 and 3 also show
the standard error of estimated parameters “A” and “B”, “ηo” and “E” and the square of
the correlation (R2), which is a useful value in linear regression. This value represents the
fraction of the variation in one variable that may be explained by the other variable (a value
of one indicates a perfect correlation).
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Figure 6. Evolution of viscosity vs. temperature and solid fraction: data obtained with the new
rotation rheometer. Experiments carried out on the A356 aluminum alloy at a constant strain rate of
10.5 s−1 (100 rpm), 15.7 s−1 (150 rpm) and 18.3 s−1 (175 rpm).

Table 2. Values of the coefficients A and B for the exponential law of relationship between η and fs.

Strain Rate
/s−1

A
/Pa·s

Standard
Error of A B Standard

Error of B R2

10.5 0.0014 0.0031 0.2494 0.0678 0.9068
15.7 0.467 0.2278 0.0865 0.0131 0.9671
18.3 0.0257 0.0293 0.2025 0.0459 0.9005
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Table 3. Values of the coefficients ηo and E for the Arrhenius law (Equation (2)).

Strain Rate
/ s−1

ηo
/Pa s

Standard
Error of ηo

E
/J·mol−1·K−1

Standard
Error of E R2

10.5 0.00005 0.00001 5.909 1.477 0.8931
15.7 0.0007 0.0001 1.938 0.158 0.9744
18.3 0.0011 0.0001 2.047 0.446 0.9101

The regression analysis of the above graph allows us to determine the values of ηo and
E of Equation (2), as shown in Table 3. Bringing together Equations (1) and (2), A can be
interpreted as the pre-exponential viscosity, ηo, and B is related to the energy of activation,
E, which is lower when the shear rate is increased.

The power law regression analysis of the results reveals a value of n greater than one.
So is, the fluid shows shear-thickening behavior [14]. The viscosity rises with the increase
of the shear rate giving a dilating behavior, or shear-thickening behavior, and not of a
thixotropic one [20], and it is consistent with the value of n previously exposed. The general
behavior is justified basically to the morphological changes in the solid particle agglom-
eration [21]. However, at low shear rates, post-isostructure processes may correspond to
rapid agglomeration followed by slow neck growth between spheroids and thickening [22].
There is conflicting evidence in the literature as to whether behavior during shear rate
transitions, for non-dendritic semisolid metals, are shear thinning or shear thickening [23].
Solid particles suspended in the liquid have a tendency to agglomerate, which increases the
viscosity of the semisolid slurry, increasing this tendency with the application of external
shear forces [3] especially at low shear rates [24].

On the other hand, at small deformation strain, the predominant mechanism is sliding
between solid particles, and the plastic deformation mechanisms of solid particles is less
than that produced at higher strain rates [25], and the incorporation of solid particles
into the liquid flow becomes more important (Figure 8). Simultaneously, at low shear
rates, solid particles can aggregate into groups capable of forming a rigid network, or
percolating network, which leads to an increase in the viscosity of the semisolid slurry [26],
the breakdown of these groups or clusters took more time and need more shear stress [27].
It would be necessary to reach a critical shear rate to reverse the process, a situation in
which the material would behave more normally.
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In all cases, viscosity will increase with decreasing temperature (increase in solid
fraction). This increase is quite fast from 0.25 fs as a consequence of structural bonds
increase between the solid particles with the increase of the solid fraction [15].

Given that liquid segregation can occur at high forming speeds in semisolid extru-
sion [28], in a subsequent additive manufacturing process, the deposition of the material
in the semisolid state would have to be carried out at relatively low shear rates, and this
dilatant phenomenon could affect its deposition, which could even lead to the clogging of
the nozzle [29].

4. Conclusions

The present work reports a study on the rheological behavior of the semisolid A356
aluminum alloy slurry. Based on the results, the following conclusions can be drawn:

(1) A mechanical stirring and solidification control system was manufactured, which
allowed the material to be worked in a semisolid state, resulting in a globulized alpha
microstructure of the solidified A356 aluminum alloy.

(2) The rheological behavior of the A356 aluminum alloy was performed a very low
shear rates: from 10.5 s−1 to 18.3 s−1. The experimental results showed that the alloy
behavior was shear-thickening, that is, viscosity increased with increasing shear rate.

(3) This anomalous behavior is interpreted by the tendency of the solid α-aluminum
particles, suspended in the liquid phase, to agglomerate and the subsequent formation
of groups or clusters for low shear rate values. These clusters increase the viscosity of
the aluminum alloy in semisolid state.

(4) In all cases, the viscosity increased with decreasing temperature. When the solid
fraction exceeded 29%, it was observed that viscosity increased rapidly.

(5) After applying mechanical stirring in semisolid state, aluminum ingots can be used in
a subsequent additive manufacturing process, based on the Fused Deposition Melting
(FDM) techniques of metallic materials (3D thixo-printing).

(6) The globulized alpha microstructure of aluminium ingots is considered beneficial, as
a suitable microstructure to not impair the continuity of the semisolid alloy through
the nozzle in the thixo-printing process. In this process, the material must be reheated
to the semisolid state, in which the coexistence of a globular solid phase surrounded
by a liquid phase, will allow the extrusion of the semisolid slurry with the appropriate
viscosity. However, for very low shear rates, problems of possible clogging of the
nozzles of additive manufacturing printers are foreseen, due to the dilating nature of
the alloy.

(7) The printing of metallic materials in semisolid state will introduce manufacturing
possibilities never before foreseen. The reduction in the cost of printing will expand
the use of metal 3D thixo-printing to diverse industrial sectors.
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