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Abstract: How to prescribe traction on boundary surface is still an open question in peridynamics. 
This problem is investigated in this paper. Through introducing the induced body force defined by 
boundary traction, the Silling’s peridynamic motion equation is extended to a new formulation 
called the traction-associated peridynamic motion equation, which is verified to be compatible with 
the conservation laws of linear momentum and angular momentum. The energy conservation equa-
tion derived from the traction-associated peridynamic motion equation has the same form as that 
in the original peridynamics advanced by Silling. Therefore, the constitutive models of the original 
peridynamics can be directly applied to the traction-associated peridynamic motion equation. Some 
benchmark examples in the plane stress problems are calculated. The numerical solutions agree well 
with the classical elasticity solutions, and the volume correction and the surface correction are no 
longer needed in the numerical algorithm. These results show that the traction-associated peri-
dynamic motion equation not only retains all advantages of the original peridynamics, but also can 
conveniently deal with the complex traction boundary conditions. 

Keywords: peridynamics; traction-associated peridynamic motion equation; traction boundary  
condition; bond-based constitutive model 
 

1. Introduction 
Peridynamics (PD) is a nonlocal continuum theory of mechanics developed in the 

recent two decades [1–5]. Its core consists in that a weighted integral of relative displace-
ment over spatial domain is used instead of the gradient of displacement (strain) in the 
governing equations of deformation. Therefore, peridynamics can be used to conven-
iently and effectively analyze deformation companied with evolution of discontinuities. 
Peridynamics was firstly proposed by Silling [1] and then further improved by Silling and 
his collaborators [2]. Since then, it has been applied to investigate various problems asso-
ciated with wave, damage, fracture, and impact breakage [3–9]. However, the traction 
boundary condition is incompatible with peridynamics because the governing equation 
of original peridynamics appears in the form of an integro-differential equation and does 
not involve the gradient with respect to spatial position. Therefore, boundary conditions 
cannot be imposed as naturally in the original peridynamics as in Classical Continuum 
Mechanics (CCM). A question therefore arises: how to incorporate suitable traction 
boundary condition? 

Recalling the ways of the traction boundary condition is imposed in peridynamics, 
we can roughly divide them into three types. The first method [10] is to convert the trac-
tion on the boundary surface into the body force in an inner boundary layer according to 
the static force equivalence. The body force is usually supposed to uniformly distribute in 
the boundary layer, and the thickness of the inner boundary layer is taken as the spacing 
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between material points. The second type of method is still based on the original peri-
dynamics motion equation, but some modifications or operations will be performed to 
achieve the purpose of directly imposing traction boundary conditions. For example, a 
method only applicable to the non-ordinary correspondence models in peridynamics is 
proposed in [11], a weak form of peridynamic governing equations is proposed in [12,13], 
and a way based on Taylor expansion strategy to impose traction boundary conditions in 
ordinary state-based peridynamics is proposed in [14,15]. As the third method, Huang 
[16] suggested modifying the peridynamic motion equation to introduce the surface trac-
tion. 

The traction boundary condition based on the first method is very popular in theo-
retical analysis and numerical calculation. Using this traction boundary condition, the 
well-posedness of the linear peridynamics with a given nonlocal kernel has been proved 
in mathematics [17,18]. Many numerical computation and analysis for practical problems 
can be found in [4,5,8]. However, it is unnatural and unhandy to convert the traction on 
the boundary surface to body forces in the inner boundary layer. Specially, when the ma-
terial particles are close to the boundary surface or interface, the constitutive parameters 
need to be corrected [4,10,19,20]. Consequently, the traction boundary condition based on 
the first method is impractical for the sophisticated loading cases and geometrical surface. 

If the non-ordinary correspondence models are adopted, the traction boundary con-
dition can be specified directly. However, the non-ordinary correspondence models are 
limited due to the zero energy mode [21,22], and there are still some problems to be 
solved. The weak form of peridynamic governing equations has some changes comparing 
with the original peridynamic governing equation. Although the method of imposing 
traction boundary conditions based on Taylor expansion strategy can be successfully used 
in bond-based peridynamics, it still needs to set fictitious nodes. As for the model estab-
lished by the third method, it is new and promising. Zhou [23] simplified the boundary 
transfer functions and proposed a method of imposing traction boundary conditions suit-
able for two-dimensional problems for bond-based peridynamics. However, since the 
three scalar-typical boundary transfer functions involved in this idea are difficult to de-
termine, it has not been widely applied yet. Overall, how to characterize the traction 
boundary condition in peridynamics is still an open question and thus requires further 
investigation. 

Meshfree discretization has been widely used to solve PD problems [24–26]. How-
ever, the standard discretization scheme is still very expensive for calculating the large-
scale problems such as 3-dimensional problems. A new meshfree scheme [27] is expected 
to solve these difficulties. 

In PD theory, there is no complete non-local neighborhood of a material point near a 
material boundary, resulting in the so-called skin or surface effects. Generally, the surface 
effect needs to be corrected to obtain the correct physical results. Various surface effect 
correction methods were studied in [10]. In addition, there are also many attempts to elim-
inate the surface correction [28–33]. 

The outline of the paper is as follows. In Section 2, through introducing the induced 
body force defined by boundary traction, we propose the traction-associated peridynamic 
motion equation and show that it is compatible with the conservation laws of linear mo-
mentum and angular momentum. In Section 3, the energy conservation law is derived 
from the traction-associated peridynamic motion equation. Two kinds of the bond-based 
constitutive models are discussed. The concrete form of the induced body force is deter-
mined. The prototype microelastic (PMB) constitutive model with the local damage is 
briefly introduced. The numerical algorithm is discussed in Section 4. In Section 5, the 
traction-associated peridynamic motion equation is used to calculate three benchmark ex-
amples in the plane stress problems. A fracture problem is simulated to verify the effec-
tiveness of traction-associated peridynamic motion equation in the failure analysis. Fi-
nally, we close this paper with summary and comment. 
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2. The Induced Body Force and Extension of Peridynamic Motion Equation 
Let p(x′′′, t) is a traction exerted at the point x′′′ on the boundary surface ∂Ωp ⊂ ∂Ω of 

a peridynamic media Ω. Due to the nonlocality of peridynamic media, p(x′′′, t) will per-
meate the interior of Ω and induce a body force bi(x, t) acting at the material particles. We 
call bi(x, t) the induced body force, which is represented as 

( ) ( ) ( ), , , , .
p

t t t dA ′′′∂Ω
′′′ ′′′= ⋅  ∫i xb x G x x p x

 
(1) 

In Equation (1), G (x, x′′′, t) is a second-order tensor field called the transfer function 
of boundary traction and with the dimension of 1/m3, which reads 

( ) ( ) ( ), , , , , ,t t t′′′ ′′′ ′′′= ⋅G x x P x x S x  (2) 

where 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
1

,

.
, , ,

, ,

t

t t dV

α

−

Ω

′′′ ′′′− ⊗ −
′′′ ′′′=

′′′ ′′′


− ⋅ −

 ′′′ ′′′=  




 ∫ x

y y y y
P x x x x

y y y y

S x P x x
 

(3) 

In Equation (3), y′′′ = x′′′ + u′′′(x′′′, t) is the position vector of x′′′ in the deformed con-
figuration and u′′′ = u′′′(x′′′, t) is a displacement field on ∂Ωp. α(x′′′, x) is a weight function 
determining the characteristic of G(x, x′′′, t) and will be discussed in the following. By 
Equations (2) and (3), it is easy to verify 

( ), , ,t dV
Ω

′′′ =∫ xG x x I
 

(4) 

where I is the second order unit tensor. Equation (4) is a sufficient and necessary condition 
to ensure the compatibility of peridynamic motion equation with total equilibrium of lin-
ear momentum and angular momentum. Next, let us discuss this argument. 

By Equation (4), the integrals of Equation (1) and y(x, t) × Equation (1) over Ω lead to 

( ) ( ), ,
p

t dV t dA ′′′Ω ∂Ω
′′′=∫ ∫i x xb x p x

 
(5) 

( ) ( ) ( ) ( ), , .
p

t dV t dA ′′′Ω ∂Ω
′′′ ′′′ ′′′× = ×∫ ∫i x xy x b x y x p x

 
(6) 

After the induced body force bi(x, t) is introduced, the motion equation of peri-
dynamic media subjected simultaneously to boundary traction and external body force 
can be written as 

( ) ( ) ( ) [ ] [ ]{ } ( ), , , , , ,
H

t t t t dV tρ ′′= + − − +∫
x

i xx u x b x T x ξ T x ξ b x

 
(7) 

where ξ = x′ − x, Hx is a spherical neighborhood of x with radius δ, T the force vector state 
field [2], b(x, t) the external body force, and ρ(x) the mass density. We call Equation (7) the 
traction-associated peridynamic motion equation. Clearly, Equation (7) is an extension of 
the Silling’s peridynamic motion equation. Let x′′′∈∂Ωp and x∈Ω. If we take G(x, x′′′, t) = 
H(|x′′′−x|)I/Vb where H(|x′′′ − x|) is the dimensionless square wave function and Vb the 
volume of the boundary layer of ∂Ωp with the thickness of Δ, then Equation (1) will de-
generate into a common formula when ones deal with the boundary traction in peri-
dynamics. 

By Equations (5) and (6), the integrals of Equation (7) and y(x, t) × Equation (7) over 
Ω yield 

( ) ( ) ( ) ( ), , ,
p

t dV t dA t dVρ
Ω ∂Ω Ω

= +∫ ∫ ∫x x xx u x p x b x  (8) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,
p

t dV t dA t dVρ
Ω ∂Ω Ω

× = × + ×∫ ∫ ∫x x xx y x v x y x p x y x b x


 (9) 

which describe total equilibrium of linear momentum and angular momentum, respec-
tively. Therefore, Equation (7) is consistent with the conservation laws of linear momen-
tum and angular momentum. In addition, it is easy to see that Equation (7) is form-invar-
iant under the Galileo transformation. 

3. Peridynamic Constitutive Model 
3.1. Balance Equation of Energy 

Let v = v(x) is the velocity field within material, and ε is the internal energy density. 
Only elastic deformation is concerned, in peridynamics, total energy conservation can be 
represented as 

21 .
2

D dV dV dV
Dt

ρ ρε
Ω Ω Ω

 + = ⋅ + ⋅ 
 ∫ ∫ ∫i xv b v b v

 
(10) 

Equation (10) can be further written as 

,dV dV dV dVρ ρε
Ω Ω Ω Ω

⋅ + = ⋅ + ⋅∫ ∫ ∫ ∫i xa v b v b v

 
(11) 

where a is acceleration field. In terms of Equation (7), Equation (11) reduces to 

[ ] [ ]{ }{ }, , .
H

dV t t dV dVρε ′Ω Ω
′= − − ⋅∫ ∫ ∫

x
x xT x ξ T x ξ v

 
(12) 

Since Hx ⊂ Ω is a compact supported set of T[x′, t]<−ξ> and T[x, t]<ξ>, Equation (12) 
can be written as 

[ ] [ ]{ }{ }, , .dV t t dV dVρε ′Ω Ω Ω
′= − − ⋅∫ ∫ ∫ x xT x ξ T x ξ v

 
(13) 

Exchanging x′ and x, and then using definition of the compact supported set, we have 

[ ] ( ) ( ){ }, .
H

dV t dV dVρε ′Ω Ω
′= −  ∫ ∫ ∫

x
x xT x ξ v x v x

 
(14) 

By the localized hypothesis [34,35], the balance equation of energy is given as follows 

[ ] ( ) ( ), .
H

t dVρε ′′= −  ∫
x

xT x ξ v x v x

 
(15) 

Clearly, Equation (15) has the same form as that in the original peridynamics ad-
vanced by Silling and his collaborators [1,2]. Equation (15) is a basis to determine the peri-
dynamic constitutive models of hyperelastic material. Therefore, the hyperelastic consti-
tutive models in the original peridynamics can be inherited without modification by the 
traction-associated peridynamics. 

3.2. Bond-Based Constitutive Models 
Bond-based (BB) constitutive models are simplified versions of state-based (SB) con-

stitutive models. For brevity, only the BB constitutive models are considered, not con-
cerned the SB constitutive models. The BB constitutive models have been systematically 
established by Silling [1], and their forms are not unique. The microelastic models [5] are 
used to describe the elastic deformation of isotropic materials. Two commonly used mi-
croelastic models are listed below. 
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1. General microelastic models: 

( )
( )            

, .
                                         otherwise

c δ
′ − ′ − − ≤ ′ −′ − = 




y yy y ξ ξ
y yf u u ξ

0
 (16) 

The linear form of Equation (16) is 

( )
( )2            

,
                                otherwise

c δ⊗ ′⋅ − ≤′ − = 



ξ ξ u u ξ
ξf u u ξ

0
， (17) 

where f(u′−u, ξ) is the force density vector [1] with the dimension of N/m6. The relation 
between f(u′−u, ξ) and the force vector state T in Equation (7) is represented as T[x, t] <ξ> 
= −T [x′, t] <−ξ> == f(u′−u, ξ)/2. The parameter c is called the spring constant or the bond-
constant, which reads [5] 

5

4

4

3
1

15           3 dimension

12         2 dimension plane stress
,64       2 dimension plane strain

5
3           1 dimension

E

E
hc E
h

E
h

πδ

π δ

π δ

δ

 −

 −= 
 −


 −
  

(18) 

where E is the Young’s modulus, h the thickness of plate and h1 the cross-sectional area of 
rod. 
2. The prototype microelastic (PM) model: 

PM model is another special form of the microelastic models 

( )
           

, .
                                       otherwise

c δ
′ − − ′ −

≤′ ′− = −



y y ξ y y ξ
f u u ξ ξ y y

0
 (19) 

The linear form of Equation (19) is 

( )
( )3            

, .
                                otherwise

c δ⊗ ′⋅ − ≤′ − = 



ξ ξ u u ξ
ξf u u ξ

0
 (20) 

The parameter c in Equations (19) and (20) is still the bond-constant and it takes the 
value below [4,5] 

4

3

3

2
1

12           3 dimension

9         2 dimension plane stress
.48       2 dimension plane strain

5
2           1 dimension

E

E
hc E
h

E
h

πδ

π δ

π δ

δ

 −

 −= 
 −


 −
  

(21) 
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It should be noted that in the BB models, the Poisson’s ratio of 3D and 2D plane strain 
problems are fixed at 1/4, while that of 2D plane stress problem are fixed at 1/3. 

3.3. Transfer Function of Boundary Traction 
According to Equations (2) and (3), the transfer function G(x, x′′′, t) of the boundary 

traction characterizes the change of intensity when the traction is transferred from the 
boundary surface to the interior of the body, which is determined by the weight function 
α(x′′′, x). In physics, α(x′′′, x) should attenuates to zero as it moves away from the boundary 
surface. Therefore, α(x′′′, x) can be defined a function with compact support, i.e., 

( ) ( )         
,

0       

0

 
,

                     otherwise

q
α

ι′′′ ′′′− ≠ ≤


−
′′′ =



x x x x
x x

 
(22) 

where x′′′ ∈ ∂Ωp while x ∈ Ω. ι is a scale parameter. For simplicity, we take ι = δ. As thus, 
Equation (22) means that the traction on the boundary surface is dispersed in the bound-
ary layer with the thickness of δ. 

Consider the quasi-static uniaxial tension of a rod subjected to tensile force p at two 
ends. Through the inverse method [36] and the undetermined coefficient method, we find 
that when the general microelastic constitutive Equations (16) and (17) are adopted, if 
α(x′′′, x) takes the form below 

( ) ( )22         
,

0                                otherwise

k x x x x
x xα

δ δ ′′′ ′′′− − − ≤′′′ =
  

(23) 

then the classical elasticity solution of the uniaxial tension can be acquired. 
Similarly, when the PM constitutive Equations (19) and (20) are used, if α(x′′′, x) is 

written as 

( ) ( )        ,
0                             otherwise

k x x x x
x xα

δ δ ′′′ ′′′− − − ≤′′′ =
  

(24) 

the same result is also given. It should be noted that k in Equations (23) and (24) is any 
constant and is not zero. For simplicity, we can take k = 1. 

Equations (23) and (24) can be extended to 2-dimensional and 3-dimensional form 
below 

( )
22         

0                           otherwise
,α

δ δ − − ≤



′′′ ′′′ −′′′ =
x x xx x x

 
(25) 

( )
        

.
0                       oth

,
erwise

α
δ δ′′′ ′′′ −

′′′ =
 − − ≤



x x x x
x x

 
(26) 

Thus, the concrete form of the induced body force is determined due to Equation (25) 
or (26), In the following, they will be directly used to analyze benchmark examples of 2D 
plane stress problems. 

3.4. Prototype Microelastic Brittle Damage Model 
In PD theory, local damage at a point is defined as the weighted ratio of the number 

of eliminated interactions to the total number of initial interactions of the material point 
with its family members, that is [4,19] 
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( )
( ),

, 1 .H

H

t dV
t

dV

µ
ϕ

′

′

= −
∫
∫

x

x

x

x

ξ
x  (27) 

It should be noted that the local damage φ ranges from 0 to 1. When φ = 1, all the 
interactions initially associated with the point have been eliminated, while φ = 0 means 
that all interactions exist. The measurement of the local damage value is an indicator of 
the possible formation of cracks within a body. In Equation (27), μ is a history-dependent 
scalar-valued function, which reads 

( ) ( )1       ,    0
, ,

0      otherwise
cs t S for all t t

tµ
′ ′ < ≤ ≤= 



ξ
ξ  (28) 

where Sc is the critical stretch of bond failure, while s is bond stretch defined by 

.s
′ − −

=
y y ξ

ξ
 (29) 

Therefore, a simple way to introduce failure into the constitutive model to allow 
bonds (springs) to break when they are stretched beyond a predefined limit. After bond 
failure, there is no tensile force sustainable in the bond, and once a bond fails, it is failed 
forever (there is no provision for “healing” of a failed bond). As thus, the PMB model to 
characterize brittle damage [4,5,19] can be written as 

( )
( ),               

, , .
                                    otherwise

cs t
t

µ δ
′ − ≤ ′ −′ − = 




y yξ ξ
y yf u u ξ

0
 (30) 

4. Numerical Algorithm 
4.1. Spatial Discretization 

Meshfree spatial discrete method [19] is used to discretize continuum into a range of 
arbitrary shaped subdomains, in which, the collocation points (nodes) are placed. With 
one-point Gauss quadrature strategy [37], the spatial discrete form of Equation (7) can be 
written as 

( ) ( )
( ) ( ) [ ]{ } (

,

, , , , ,
k j

p i

i i

i k k i j i j i j
H

t

t t A t t V

ρ

∂Ω

 = ⋅ + − − − + ∑ ∑
x

x x

x u x

G x x p x T x x x T x x x b x



 (31) 

The same spatial discrete strategy can be applied to acquire the integral value of G(x, 
x′′′). It is worth noting that the collocation points must also be set on the traction boundary 
surface due to the introduction of the boundary integration. 

4.2. Time Integration 
The adaptive dynamic relaxation (ADR) method [38] is used to solve Equation (31). 

After introducing new fictitious inertia and damping terms, Equation (31) is rewritten as 

,n n n
i i i i

n
icλ λ+ =u u F   (32) 

where n is n-th time (iterative) step, λi the fictitious density of the i-th node, and cn the 
damping coefficient. The vector Fin in Equation (32) is the summation of internal and ex-
ternal forces, which reads 
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( ) ( ) [ ]{ } ( ), , , , , , .
k j

p i

i k k i j i j i j i

n
i

H
t t A t t V t

∂Ω

 = ⋅ + − − − + ∑ ∑
x

x xG

F

x x p x T x x x T x x x b x  (33) 

By the explicit central-difference integration, the iterative scheme of displacements 
and velocities can be written as 

( )
1
2

1
2

1
1 2

22

.2
n

n
inn

i
n i
i n

nn
i i i

tc t

c t

t

λ
−

+

++


− +

 = +

∆


 = +

∆

∆

∆

u
u

u u u

F






 

(34) 

As Equation (34) has an unknown velocity field at t−1/2, the iterative process can be 
not started. However, if we assume ui0 ≠ 0 and vi0 = 0, the iteration can be completed by 
using 

2
01

.
2i

i

it
λ

∆
=

Fu
 

(35) 

In this algorithm, since the fictitious density λi, the damping coefficient cn and the 
time step Δt are not actual physical quantities, their values can be chosen so as to make 
the convergence of numerical solution as fast as possible. Therefore, we take Δt = 1, while 
the calculation of λi and cn can refer to [4,38–40]. 

5. Some Plane Stress Benchmark Problems 
The nonlinear PM constitutive model is adopted to analyze some benchmark exam-

ples of the plane stress problems. In calculation, we take the Young’s modulus E = 200 
GPa and the Poisson’s ratio ν = 1/3. 

5.1. Example 1: A Rectangular Plate with Two Opposite Edges Subjected to Tension 
As shown in Figure 1, the upper and lower edges of an isotropic rectangular plate 

are subjected to uniform tension q = 200 MPa. The length of the plate L = 1 m, the width W 
= 0.5 m, and the thickness h = ∆. 

 
Figure 1. The rectangular plate subjected to uniform tension. 

The rectangular plate (excepting near the boundary) is uniformly discretized into a 
particle set with the equal spacing Δ in the plane, as shown in Figure 2. 
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Figure 2. The spatial discretization of the rectangular plate. 

In Figure 2, the black dots represent the collocation points (nodes). Due to the sym-
metry of the structure and load, the constrains to rigid-body displacement need be im-
posed at the two symmetrical axes of the plate. It is necessary to collocate nodes on the 
boundary. The volume of subdomain associated with the boundary node is Δ2h/2 or Δ2h/4. 

When the horizon size is specified as δ = 3.015Δ, three different grid sizes Δ = L/50, 
L/100, and L/200 are used to show the influence of the grid density on the convergence 
and computational accuracy, as illustrated in Figures 3 and 4. 

 
Figure 3. δ-convergence of displacement with time step at different nodes. 
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(a) (b) 

Figure 4. The displacement along central lines of the rectangular plate: (a) ux along y = 0; (b) uy along 
x = 0. 

It can be seen from Figure 3 that the numerical calculation converges at the 500th 
time step regardless of the grid size. Moreover, Figure 4 shows that the computational 
results are close to each other for different grid density, and the errors between them and 
classical solutions are all within 5%. Therefore, the numerical algorithm can be considered 
to satisfy the δ-convergence requirement [41–44]. 

When the horizon size is fixed as δ = mΔ = 0.06 m, three different combinations (Δ = 
L/50, m = 3; Δ = L/100, m = 6; Δ = L/200, m = 12) are used to study m-convergence. The results 
are illustrated in Figures 5 and 6. 

 
Figure 5. m-convergence of displacement with time step at different nodes. 



Materials 2023, 16, 2252 11 of 21 
 

 

  
(a) (b) 

Figure 6. The displacements along central lines of the rectangular plate for three different combina-
tions: (a) ux along y = 0; (b) uy along x = 0. 

Figure 5 that the calculation converges very quickly with time step, no matter which 
combination mode is adopted. From Figure 6, we see that the numerical results of the 
three different combinations agree with each other, and the errors between them and clas-
sical solutions are all within 5%. Therefore, the numerical algorithm is of m-convergence 
[41–44]. 

Comparison between Equation (7) and the original PD is carried out through numer-
ical calculation. Figures 3 and 7 show that the displacements calculated by Equation (7) 
and the original PD converges very quickly with time step, and the convergence modes 
are similar. As can be seen from Figures 8–10, there exist good matches between predic-
tions of traction-associated peridynamic motion equation and analytical solutions as well 
as original PD predictions. 

 
Figure 7. Convergence of original PD with time step. 
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(a) (b) 

Figure 8. The displacement along the bottom side and left side of the rectangular plate subjected to 
tension: (a) ux along y = −0.25 m; (b) uy along x = −0.5 m. 

  
(a) (b) 

Figure 9. The displacement along central lines of the rectangular plate subjected to tension: (a) ux 
along y = 0; (b) uy along x = 0. 

  
(a) (b) 
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(c) (d) 

Figure 10. The distribution of displacement in the rectangular plate subjected to tension: (a) ux cal-
culated by original PD; (b) uy calculated by original PD; (c) ux calculated by Equation (7); (d) uy 
calculated by Equation (7). 

In order to balance the computational accuracy and efficiency, in the following, the 
horizon size is specified as δ = 3.015Δ and grid size Δ = L/100. The total time step is set to 
3000. The material parameters of plates in all examples are the same as those of the plate 
in Figure 1, and the same discretization as Figure 2 is adopted. 

5.2. Example 2: A Rectangular Plate Subjected to Bending 
As shown in Figure 11, a rectangular plate with the same size as the plate in Figure 1 

is subjected to an anti-symmetrically distributed loads with a maximal value q = 200 Mpa. 
This is a pure bending problem with the stress boundary condition. 

 
Figure 11. The plate subjected to bending. 

The convergence analysis is shown in Figure 12. It can be seen that the displacements 
calculated by the original PD and Equation (7) converge with time step in the same way, 
and completely converge at the 1000th time step. 

 
Figure 12. Convergence of displacement at x = −0.25 m and y = −0.12 m with time step. 
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The numerical results are illustrated in Figures 13–17, From which, it can be seen that 
the displacement distribution predicted by Equation (7) agrees with that by original PD, 
and the two have better matching with analytical solutions. 

  
(a) (b) 

Figure 13. The displacement along the bottom side when the plate bending: (a) ux along y = −0.25 m; 
(b) uy along y = −0.25 m. 

  
(a) (b) 

Figure 14. The displacement along the left side when the plate bending: (a) ux along x = −0.5 m; (b) 
uy along x = −0.5 m. 
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(a) (b) 

Figure 15. The displacement along the horizontal line y = 0 when the plate bending: (a) ux along y = 
0; (b) uy along y = 0. 

  
(a) (b) 

Figure 16. The displacement along the vertical line x = 0 when the plate bending: (a) ux along x = 0; 
(b) uy along x = 0. 

  
(a) (b) 
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(c) (d) 

Figure 17. The distribution of displacement when the plate bending: (a) ux calculated by original 
PD; (b) uy calculated by original PD; (c) ux calculated by Equation (7); (d) uy calculated by Equation 
(7). 

5.3. Example 3: A Square Plate with A Circular Hole Subjected to Tension by Two Opposite 
Edges 

As shown in Figure 18, a squared plate with central circular hole is subjected to uni-
form tension q = 200 MPa. The side length of the plate L = 0.5 m and the radius of the 
circular hole r = 0.05 m. 

 
Figure 18. Squared plate with central circular hole subjected to uniform tension. 

The convergence analysis is shown in Figure 19. It can be seen that the displacements 
calculated by the original PD and Equation (7) converge with time step in the same way, 
and completely converge at the 500th time step. 
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Figure 19. Convergence of displacement at x = −0.125 m and y = −0.125 m with time step. 

The results in Figure 20 show that the displacements given by FEA, PD, and Equation 
(7) are close to each other in distribution. The relative error between them is less than 6.7%. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 20. The distribution of displacement in the plate with central circular hole: (a) ux calculated 
by ABAQUS; (b) uy calculated by ABAQUS; (c) ux calculated by original PD; (d) uy calculated by 
original PD; (e) ux calculated by Equation (7); (f) uy calculated by Equation (7). 

5.4. Example 4: Failure of A Square Plate with A Circular Hole under Quasi-Static Loading 
We continue to investigate the fracture of the plate with central circular hole under 

tension. As shown in Figure 21, in order to avoid nodes occurring at the propagation path 
of cracks, all nodes (red and black dots) have been anew collocated. The grid size is taken 
as Δ = L/100. The nodes on the boundary surface (red dots) are only involved in the inte-
gration of the boundary traction and correspond to a volume of 0. In calculation, the crit-
ical stretch Sc of bond failure takes 0.0058. 

 
Figure 21. The discretization of the square plate. 

The propagation of crack is characterized by the value of the damage φ. When the 
load q arrives at 380 MPa, the plate breaks due to cracking. Figure 22 shows the damage 
φ calculated by the original PD. At the 500th time step, the crack initiates from two sides 
of the hole. As the time step increases to 700, the crack propagates and the damage φ 
reaches 0.479. As the time step continues to increase, the plate breaks at the 900th time 
step. 



Materials 2023, 16, 2252 19 of 21 
 

 

   
(a) (b) (c) 

Figure 22. Damage plots for the square plate with a circular hole at the end of different time steps 
based on original PD: (a) 500 time steps; (b) 700 time steps; (c) 900 time steps. 

The damage φ calculated by Equation (7) is illustrated in Figure 23. The results show 
that the crack initiates at the 700th time step, and at the 900th time step, the damage φ of 
the crack propagation reaches 0.42. When the time step arrives at 1125, the plate fails due 
to cracking. 

   
(a) (b) (c) 

Figure 23. Damage plots for the square plate with a circular hole at the end of different time steps 
based on Equation (7): (a) 700 time steps; (b) 900 time steps; (c) 1125 time steps. 

6. Conclusions 
Through introducing the induced body force defined by boundary traction, the Sil-

ling’s peridynamic motion equation is extended to the traction-associated peridynamic 
motion equation. From investigation on this equation, the conclusions are summarized as 
follows. 
• The traction-associated peridynamic motion equation is consistent with the conser-

vation laws of linear and angular momentum, and it is form-invariant under the Gal-
ileo transformation. 

• The constitutive models in the original peridynamics can be inherited without mod-
ification by the traction-associated peridynamics. The concrete form of the induced 
body force is determined by matching with the constitutive models. 

• Numerical calculations for the typical plane stress problems are in good agreement 
with the classical elasticity solutions, and the volume correction and the surface cor-
rection are no longer needed in the numerical algorithm. 
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