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Abstract: Candida albicans are highly widespread pathogenic fungi in humans. Moreover, its de-
veloped biofilm causes serious clinical problems, leading to drug failure caused by its inherent
drug tolerance. Hence, the inhibition of biofilm formation and virulence characteristics provide
other means of addressing infections. Polymer composites (PCs) derived from natural products
have attracted increasing interest in the scientific community, including antimicrobial applications.
PCs are a good alternative approach to solving this challenge because of their excellent penetration
power inside biofilms. The main objectives of this study were to synthesize a novel curcumin-based
polybenzoxazine polymer composite (poly(Cu-A) PC) using Mannich condensation reaction and
evaluate their potency as an antibiofilm and anticorrosive candidate against C. albicans. In addition,
their anticorrosive efficacy was also explored. PC exhibited significant antibiofilm efficacy versus
C. albicans DAY185 by the morphologic changing of yeast to hyphae, and>90% anticorrosive efficacy
was observed at a higher dose of PC. These prepared PC were safe in vivo against Caenorhabditis
elegans and Raphanus raphanistrum. The study shows that a polybenzoxazine polymer composite has
the potential for controlling biofilm-associated fungal infections and virulence by C. albicans, and
opens a new avenue for designing PCs as antifungal, anticorrosive agents for biofilm-associated
fungal infections and industrial remediation.
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1. Introduction

Polybenzoxazines are high-performance thermosetting resins produced by the poly-
merization of benzoxazine monomers produced by Mannich condensation from formalde-
hyde, phenol, and amine, which provides considerable flexibility as different amine and
phenol precursors can be used. Furthermore, benzoxazine monomers undergo thermally
induced ring-opening polymerization (ROP) to form polybenzoxazines. These polymers
have many advantages, such as zero shrinkage upon curing, no release of volatile prod-
ucts, low water absorption, appreciable mechanical and thermal properties, and superior
chemical and electrical resistance properties, and thus, they have many applications [1–3].
Curcumin is a polyphenolic compound available abundantly in turmeric (Curcuma longa).
It is extensively used in the medicinal field as it functions as an antioxidant, antibacterial,
antiviral, and anti-inflammatory agent [4,5]. Additionally, due to the existence of –OH
groups in its structure, curcumin can be used in the synthesis of several monomers or can
be made to blend with several polymers, where the –OH functional group is required [6,7].

The universal affliction of infectious diseases has substantially enhanced due to the
evolving and re-emerging progress of resistant strains of microbes. Recent reports show that
biofilm-producing bacterial strains are related to more than 65% of bacterial infections [8,9].
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Such challenging infections necessitate strategic therapeutic and prophylactic drug inter-
cessions. Within a matrix of extracellular polymeric substances (EPS), a consortium of
microorganisms attaches to an abiotic or biotic surface called biofilm. The capability to
develop biofilms is a significant virulence factor of numerous microbes. Therefore, elevated
concentrations of antimicrobial agents, rapid medical intervention, and an alternative to
infected devices are needed to manage biofilm infections [10,11].

The human body can be infected by various pathogenic agents such as viruses, fungi,
and bacteria. Bacterial and fungal infections are the most common type of acute and chronic
infections, causing worldwide morbidity [12]. C. albicans is an opportunistic pathogen
and the primary cause of superficial, mucosal, and dermal fungal infections, especially
in immunocompromised patients and individuals with inserted medical devices [13,14].
Mainly diseases produced by C. albicans are accompanied by the development of biofilms
on the host or abiotic surface, causing high mortality and morbidity. Biofilm formation
makes treatment challenging and highly resistant to current fungicidal drugs, sequentially
leading to the use of higher doses of antifungal agents to treat an infection. In some cases,
the use of higher amounts of antifungal agents can trigger serious difficulties, comprising
liver and kidney injury [15].

In this study, a novel curcumin-based Pbz polymer composite (poly(Cu-A) PC) was
synthesized to adopt the properties of curcumin into the Pbz network. The synthesized
bio-based polybenzoxazine act as a nontoxic, eco-friendly green coating for antibiofilm
formation and anticorrosion. The synthesized polymer composite (PC) was examined by
differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR),
and thermogravimetric analysis (TGA) was conducted to examine the thermal behavior of
the poly(Cu-A) PCs. The produced polymer composite PCs were tested for their ability
to constrain biofilm development through fungal strain C. albicans DAY 185. Antifungal
and antibiofilm studies were performed to assess the impacts of the functionalized PCs
on C. albicans. The Candida hyphae morphology to support the antibiofilm potency and
microscopically hyphae of C. albicans and the fungal biofilm morphology were analyzed.
The toxicity of poly(Cu-A) PCs was assessed with plant seed germination and nematode
Caenorhabditis elegans. In addition, electrochemical studies were carried out to investigate
the anticorrosive efficiency of poly(Cu-A) PCs for low-carbon steel (LCS).

2. Materials and Methods
2.1. Experimental Section and Materials

Curcumin (95%), aniline, and paraformaldehyde (98.7) were acquired from Sigma–
Aldrich (St. Louis, MO, USA). DMSO (98.8%), along with NaOH (98.9%), was provided
by Samchun Pure Chemicals (Seoul, South Korea). For electrochemical studies, LCS was
used. For each experiment, LCS was sanded with SiC sandpaper and granulated from 200
to 3000. For in vitro studies of poly(Cu-A) C. albicans strain, namely DAY185 (fluconazole-
resistant) [16], was kindly offered by Prof. Jintae Lee, Yeungnam University, South Korea
and was originally acquired from the KCCM (South Korea) (http://www.kccm.or.kr/)
accessed on 15 December 2017. Potato dextrose agar (PDA) and broth (PDB) were used for
sub-culturing C. albicans. Biofilm experiments were performed by overnight incubation at
37 ◦C by inoculating a single colony into 15 mL of PDB medium. At least two independent
experiments were conducted.

2.2. Instrumentation Methods

Fourier transform infrared (FT-IR) spectra were found by using a Perkin Elmer MB3000
FTIR spectrometer (Waltham, MA, USA). The spectra were acquired at a resolution of
4 cm−1 in the IR range of 400–4000 cm−1. Samples were prepared by grinding with KBr
and compressed to form discs. 1H NMR NMR (nuclear magnetic resonance) spectra were
recorded using an Agilent NMR (VNS600, Santa Clara, CA, USA) at 600 MHz, and samples
were dissolved in DMSO. To determine the Tm and Tg and heat of curing of the monomers,
DSC was used and was performed in a TA instrument (New Castle, DE, USA) Q10 model

http://www.kccm.or.kr/
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at a heating rate of 10 ◦C min−1 from ambient to 300 ◦C in N2 atmosphere using 8–10 mg
of the sample. TGA thermograms were acquired using TA instruments SDT Q600 series
thermogravimetric analyzer. All the runs were conducted in a nitrogen atmosphere with a
gas flow rate of 30 mL/min. At a heating rate of 20 ◦C/min from ambient to 800 ◦C, all
TGA experiments were conducted.

2.3. Synthesis of Curcumin-Based Bzo Monomer

Cu-A-Bzo was produced by Mannich condensation, as follows [16]. In a round-
bottomed flask fitted with a reflux condenser, paraformaldehyde (1.2 g, 0.04 m) and DMSO
(15–20 mL) were added and allowed to stir for a few minutes, maintaining the temperature
at 70 ◦C. When paraformaldehyde started to dissolve in the solution, aniline (1.86 g,
0.02 m) and curcumin (3.68 g, 0.01 m) were taken separately to the stirring solution. The
temperature of the solution was increased to 120 ◦C and kept under stirring for 5 h. After
which, the reaction mixture was cooled to room temperature and poured into 1N NaOH
solution to precipitate the benzoxazine monomer. Using DI water, the precipitate was
washed 5 times and finally filtered and dried at 70 ◦C to produce a yellow-colored product
with an 85% yield. The obtained product is denoted as Cu-A-Bzo (Scheme 1). Curcumin
plays the role of phenolic moiety from a natural source and reacts with the amine group
(of aniline) and formaldehyde to form the benzoxazine structure. As curcumin has two
phenolic groups, a bifunctional benzoxazine monomer is formed, which further aids in
increasing the crosslink density during Pbz formation.
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2.4. Preparation of Polybenzoxazine [Poly(Cu-A)]

The synthesized benzoxazine monomer (Cu-A-Bzo) was polymerized to produce
Cu-A-Pbz by placing a few grams of Cu-A-Bzo on a glass Petri dish and subjecting it to; 1 h
at 100 ◦C, 1 h at 150 ◦C, 1 h at 200 ◦C, and 3 h at 250 ◦C (Scheme 1). The cured product, i.e.,
poly(Cu-A), was analyzed for various studies.

2.5. Electrochemical Studies

Electrochemical measurements were performed using a Corrtest CS2350 potentiometer
(Wuhan, China) and CS Studio5 analysis software. A three-electrode set-up was used,
viz. an LCS working electrode, a platinum counter electrode, and an Ag/AgCl reference
electrode. The contact area between the LCS and electrolyte was 1 cm2 [17], and the LCS
electrode was held at open circuit potential (OPC) for > 60 min after being submerged in 1 M
HCl with or without Cu-A-Pbz [18]. The PDP was conducted at a scan rate of 1 mV/s in the
vicinity of 1200 mV vs. OCP. The impedance measurements were conducted with an equal
amplitude (10 mV) in the frequency range of 100 kHz to 0.1 Hz at room temperature [19–21].
Nyquist and Bode graphs were used to assess the findings’ corrosion performance. ZView
Software was used to mimic the impedance behavior using an electrical equivalent circuit.

2.6. Antibiofilm Potency of Poly(Cu-A) against C. albicans

Biofilm assays were performed using the crystal violet staining method [22]. Briefly,
overnight culture of C. albicans DAY185 was inoculated in PDB at a dilution ratio of 1:25,
and PDB cultures in 96-well microtiter plates were treated with poly(Cu-A) at 0–100 µg/mL
for 24 h at 37 ◦C. Biofilm development was verified by staining with 0.1% crystal violet
for 30 min and frequently washed with distilled water; then, in each well, 300 µL of 95%
ethanol was added. Using an Elisa microplate reader with (Biobase, Jinan city, China),
the absorbance of each 96-well microtiter plate was noted at 570 nm. Biofilm assay was
performed with two independent cultures in triplicates. According to Clinical Laboratory
Standards Institute (CLSI) for yeast, [23] MIC was defined as the lowest concentration that
inhibited cell growth. Briefly, freshly grown C. albicans cells were diluted for the optimum
size of inoculum for MICs. Cation-adjusted Mueller–Hinton broth media were used in this
study. Experiments were performed using at least two independent cultures.

2.7. Yeast Hyphae-Switch Assay

A yeast hyphae-switch assays were performed as previously described [24]. C. albicans
DAY185 cells were suspended in PDB in 14 mL polypropylene tubes and treated or not
treated with poly(Cu-A) (0–200 µg/mL) under static conditions for 24 h at 37 ◦C. Images
were captured using an optical imaging system (Nikon Eclipse 50i, Seoul, South Korea).

2.8. Time–Kill Kinetics

Time-to-kill kinetic studies were performed, as previously described [25]. Briefly,
overnight cultures of C. albicans in PDB (dilution 1:25) were incubated with 0–400 µg/mL
of poly(Cu-A) for 2 h at 37 ◦C with shaking (240 rpm). At precise time intervals, aliquots of
treated and untreated cells were collected and diluted in PBS and plated on PDA plates.
After 24 h incubation of PDA plates at 37 ◦C, colony-forming units (CFUs) were counted
and plotted against specific time intervals. The assay was conducted at least three times
using two independent cultures.

2.9. Reactive Oxygen Species Assay

The ROS production in C. albicans was determined, as previously described [25,26].
C. albicans cells were grown overnight in PDB washed with PBS, resuspended in PBS at
105 CFU/mL, and treated with poly(Cu-A) (0–100 µg/mL) or H2O2 (50 µg/mL; positive
control) at 240 rpm for 1 h at 37 ◦C. Cells were then treated in the dark for 30 min at 37 ◦C
with 2′,7′-dichlorofluorescein diacetate (5 µM; Sigma-Aldrich, USA). Growth was used
to standardize fluorescence intensities (FI)/OD600. Optical densities and fluorescence of
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treated and untreated cultures were measured using a 3220 UV spectrometer (Optizen,
Daejeon, South Korea) and multimode microplate reader JASCO-F-2700 (Hitachi, Tokyo,
Japan), respectively. The excitation and emission slits were set to 5 nm, the excitation
wavelength to 506 nm, and the emission intensities to 526 nm, respectively. Results are
presented as the means of three independent experiments.

2.10. Architecture of C. albicans Biofilm

The phenotypic and biofilm architecture of C. albicans DAY185 on LCS were ex-
amined as previously described [22,24]. Briefly, LCS was sanded with SiC sandpaper
(80–3000 grades), and sterile blocks (1.0 cm × 1.0 cm × 0.3 cm) were added to the wells of
6-well plates containing C. albicans in PDB and poly(Cu-A) (0–100 µg/mL) and incubated
for 24 h, 37 ◦C. C. albicans cells adhered to LCS surfaces and were fixed by adding 100 µL of
1:1 mixture of formaldehyde (2%) and glutaraldehyde (2.5%) in each well. Cells were then
fixed and stained with osmium tetroxide: PBS (1:1) and dehydrated using an ethanol series
(50, 70, 80, 90, 95, and 100%). All samples were coated with platinum for 100 s, followed
by SEM images observed by SEM (S-4800 SEM, Hitachi, Tokyo, Japan) at an accelerating
voltage of 15 kV.

2.11. In Vivo Toxicity Assessment of Poly(Cu-A) on C. elegans

poly(Cu-A) toxicity was examined using synchronized adult C. elegans (fer-15(b26);fem-
1(hc17)) nematodes, as previously described [27,28]. Briefly, 30–40 noninfected worms in
every single well were added to a 96-well plate containing M9 buffer. The adult nematodes
were treated with poly(Cu-A) at 0–500 µg/mL for seven days at 25 ◦C with gentle shaking.
By using optical imaging equipment (Nikon Eclipse 50i, Daejeon, South Korea), the viabili-
ties of worms were evaluated by exposing them to LED or UV LED lights [18] for 10–50 s.
Three independent experiments were performed, and results are expressed as percentage
nematode survivals.

2.12. In Vitro Seed Germination Toxicity Assay

The effects of poly(Cu-A) on Raphanus raphanistrum seed germination were analyzed
using Murashige and Skoog agar plates, as previously described [29,30]. Overnight water-
soaked seeds of R. raphanistrum seeds were used for seed germination toxicity assay. Seeds
were sterilized by using 1 mL of 100% ethanol and 3% sodium hypochlorite solution
treatment for 15 min. Then, sterilized seeds were put on agar plates containing 0.86 g/L
Murashige and Skoog medium and poly(Cu-A) at 0–500 µg/mL with 0.7% bacto-agar.
Plates were then incubated at room temperature for 7 days and photographed.

2.13. Statistical Analysis

All experiments were conducted at least in triplicate, and the results are expressed as
the mean ± standard deviation. The Student’s t-test was used to determine the significance
of differences between untreated and treated samples, and statistical significance was
accepted for p values of <0.05 or <0.01, as indicated.

3. Results and Discussion
3.1. Structure Analysis of Cu-A-Bzo

The structure of the synthesized Cu-A-Bzo monomer was analyzed by FT-IR and NMR
spectroscopy. The FT-IR spectrum of Cu-A-Bzo is shown in Figure 1A. The formation of the
benzoxazine ring is identified by the absorption bands at 927 cm−1, corresponding to the
oxazine ring vibrations of the –CH2 group. In addition to it, the asymmetric and symmetric
stretching vibrations of C-O-C and C-N-C gave bands at 1274, 1092, and 1156 cm−1, respec-
tively. Other vibrations of the curcumin moiety gave absorption bands at 1598 cm−1 due
to the stretching vibration of the carbonyl group, and at 1490 cm−1, due to the aromatic
C=C stretching vibrations. Moreover, the asymmetric and symmetric stretching vibrations
of the aromatic –CH group were identified by weak bands at 3024 and 2926 cm−1, respec-
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tively. The structure of Cu-A-Bzo was further confirmed by 1H-NMR analysis, as shown
in Figure 1B. The spectrum shows two singlets at 5.9 and 5.4 ppm, corresponding to the
presence of oxazine ring protons, viz., O-CH2-N and Ar-CH2-N, respectively. The methoxy
protons of the curcumin moiety produced a singlet at 3.6 ppm. Other aromatic protons
resonated between 6.5 and 8.0 ppm. Thus, results confirmed the formation of curcumin
containing benzoxazine monomer [31,32].
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3.2. Curing Behavior of Cu-A-Bzo

The curing behavior of the Cu-A-Bzo monomer was analyzed by DSC. The DSC
thermogram of Cu-A-Bzo is shown in Figure 1C and shows an endothermic and exothermic
curve. The endotherm at 167 ◦C corresponds to the melting point of the Cu-A-Bzo, and
the exothermic curve provides information on curing behavior. The onset of curing (Tonset)
starts at 184 ◦C with maximum curing (Tmax) at 218 ◦C and final curing (Tfinal) at 249 ◦C.
This means that a temperature of 250 ◦C is necessary for the complete polymerization
of Cu-A-Bzo. Moreover, the amount of heat liberated during the curing/polymerization
process is calculated to be 284 J/g. Therefore, the synthesized Cu-A-Bzo follows similar
curing behavior w.r.t. bisphenol-A-based benzoxazine (BA).

3.3. Thermal Stability of Poly(Cu-A)

The thermal stability of poly(Cu-A) was analyzed by TGA (Figure 1D). The figure
shows the weight loss of poly(Cu-A) with respect to temperature along with its derivative
curve (DTG). The thermogram showed degradation occurred in one step and that poly(Cu-
A) was thermally stable up to 300 ◦C. Its 10% degradation (T10) was found at 350 ◦C,
and 50% degradation (T50) was found at 460 ◦C. The derivative curve shows maximum
weight loss at 400 ◦C. The degradation of the polymer occurs between 300 and 500 ◦C,
indicating a maximum steep in the curve. Moreover, a char yield of 35% was obtained after
heating to 800 ◦C. These results showed poly(Cu-A) has a degradation profile similar to
polybenzoxazine (Pbz) [33,34].
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3.4. PDP and EIS Investigations

Potentiodynamic polarization experiments were conducted to understand the corro-
sion inhibition capabilities and the adsorption mechanism of the inhibitors on the LCS
surface in a 1 M HCl medium. Figure 2A displays the polarization bending of LCS in
this corrosive solution of 1 M HCl at 293 K in the presence and absence of poly(Cu-A) at
different concentrations. PDP measurements provide critical factors, such as corrosion
potential (Ecorr), cathodic (βc) and anodic (βa) Tafel slope, corrosion current density (icorr),
etc. The following equation was used to compute the resistance to corrosion or corrosion
inhibition efficiency [35].

IE(%) =
icorr − iinh

corr
icorr

× 100 (1)

where:

icorr = the corrosion current density without inhibitor;
iinh
corr = the corrosion current density with inhibitor.
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Figure 2. Electrochemical analysis of LCS: (A) Nyquist impendence curves; (B) potentiodynamic
polarization curves in 1 M HCl at 293 K.

The findings of LCS’s potentiodynamic polarization with and without the Cu-A-Pbz
are shown in Table 1. Corrosion of the LCS was inhibited because poly(Cu-A) media binds
to the surface [36]. As a result of this, anodic and cathodic Tafel slopes (βa and βc, respec-
tively) reduced the increasing poly(Cu-A) concentration. In addition, icorr (corrosion current
density) resulted in increasing poly(Cu-A) concentration [37]. The anodic tafel slope (βa)
and cathodic Tafel slope (βc) for blank shows 116.56 mV/dec and −171.86 mV/dec, which
transfer to 112.21 mV/dec and−129.21 mV/dec at 200 µg/mL inhibitor concentration. Dur-
ing this investigation, most of the cathodic curves are in the form of Tafel lines, suggesting
that the hydrogen reduction process takes place on the surface of the mild steel following
an activation kinetic pattern. Moreover, for the four inhibitors, a pseudo-bridge is observed
with a higher potential than 300 mV/Ag/AgCl (desorption potential or polarization poten-
tial). This phenomenon is caused by the desorption of these molecules on the steel surface
by a strong polarization of the working electrode. The displacement of Ecorr is within the
bracket of 85 mV with respect to the blank (399.57 mV), which suggests the mixed-type
nature of the studied inhibitor. For the blank, the corrosion potential value is 399.57 mV,
while at 200 µg/mL inhibitor concentration, it shows 382.79 mV. Additionally, it was
noted that as poly(Cu-A) concentration increases, values of icorr (corrosion current density)
continually drop [38]. This may be caused by the strong coordination connection that exists
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in the poly(Cu-A) compound between the free electrons of heteroatoms and the unoccupied
d-orbitals of iron. For blank, the corrosion current density value is 11.25 mA/cm2, while
at 200 µg/mL, it shows 0.83 mA/cm2. At a 200 µg/mL concentration, poly(Cu-A) had
the most significantly lowered icorr value (830 µA cm−2). At this concentration, it displays
92.62% IE.

Table 1. The key parameters for LCS in 1 M HCl at 293 K obtained by electrochemical analysis.

Sample
(µg/mL)

Rs
(Ω cm2)

Rp

(Ω cm2)
Cdl

(µF/cm2)
IE

(%)
−Ecorr
(mV)

icorr
(mA/cm2)

βa
(mV/dec)

−βc
(mV/dec)

IE
(%)

Blank 0.54 5.59 1352.80 - 399.57 11.25 116.56 171.86 -

50 0.73 11.32 951.64 50.62 322.51 5.58 85.06 114.24 50.40

100 0.74 19.37 667.80 71.14 350.35 3.01 94.72 145.76 73.24

200 0.85 79.07 577.60 92.93 382.79 0.83 112.11 129.21 92.62

EIS spectra were drawn using Nyquist plots (Figure 2B) [35]. The results are shown in
Table 1. The following equation was used to calculate corrosion inhibition effectiveness
and other important factors [36]:

IE(%) =
Rinh

ct − Rct

Rinh
ct

× 100 (2)

where:

Rinh
ct = the charge transfer resistance with inhibitor;

Rct = the charge transfer resistance without inhibitor.

LCS corrosion is represented by the capacitive loops, and it is controlled by the charge
transfer mechanism of corrosion [39]. As shown in Figure 2B, the semicircles’ diameter
grows as poly(Cu-A) is added to the corrosive medium. The greater the corrosion inhibition,
the larger the loop’s diameter [40], and poly(Cu-A) had the greatest semicircle diameter
at 200 µg/mL, indicating maximum corrosion resistance [41]. Table 1 shows that when
the inhibitor concentration increased, Cdl decreased and Rp increased. The Rs values
show the solution resistance; for blank, it shows 0.54 Ωcm2, while at 200 µg/mL inhibitor
concentration, it shows 0.85 Ωcm2. Polarization resistance also increases from 5.59 Ωcm2

(blank) to 79.07 Ωcm2 for 200 µg/mL inhibitor solution showing its extraordinary ability of
corrosion resistance. Cdl values dropped from 1335.80 µF/cm2 (blank) to 577.60 µF/cm2 for
200 µg/mL inhibitor concentration, showing its best adsorption abilities. These findings
exhibit extraordinary surface adsorption of poly(Cu-A). The outcomes achieved by the EIS
technique are in agreement with the PDP [42,43]. Poly(Cu-A) showed 92.93% hindrance at
200 µg/mL and Rp (79.07 Ω cm2).

3.5. Antibiofilm Potency and SEM Analysis Poly(Cu-A) PCs Treated C. albicans

A biofilm assay was used to investigate the antibiofilm potency of poly(Cu-A) against
C. albicans. Treatments with poly(Cu-A) at 20, 50, or 100 µg/mL dose-dependently in-
hibited biofilm formation (Figure 3A). At 50 µg/mL poly(Cu-A) and incubation for 24 h
poly(Cu-A) inhibited biofilm formation by >65%, and at 100 µg/mL, this inhibition in-
creased to > 92%, and cell growth was only marginally affected. Furthermore, the MICs of
poly(Cu-A) against C. albicans was 250 µg/mL. Optical microscopy was used to assess the
effects of poly(Cu-A) PC on the C. albicans morphology. (Figure 3D). Non-treated C. albicans
colonies containing large cell aggregations by pseudo hyphae were observed after incuba-
tion for 24 h. However, poly(Cu-A) PC substantially reduced cell aggregation (Figure 3D).
SEM showed that poly(Cu-A) PC in PDB medium at 50 and 100 µg/mL suppressed the
hyphae transition on the surface of LCS, as shown in Figure 3E. C. albicans contained a
predominance of large hyphal cells in untreated biofilms, whereas poly(Cu-A) PC-treated
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biofilms were composed of yeast cells with rare hyphae. Additionally, the cell-aggregation
and hyphal findings were harmonious in conjunction with the detected antibiofilm activ-
ity in the treatment group. Modified chitosan-based benzoxazine precursor and amino
cellulose-based bio-films are capable of acting as antimicrobial and antifungal agents [44].
Renewable benzoxazine-based thermosets from cashew nuts [45] and biobased chitosan-
grafted polybenzoxazine films are excellent antimicrobial agents [46]. As reported by
Yadav et al. (2021), reversible labile linkages, expansion of chitosan galleries, and leaching
of phenolic species from biobased polymer films led to improved antimicrobial activity [46].
Additionally, our research group synthesized bio-based Pbz films by blending chitosan
with benzoxazine (Bzo) from curcumin and furfuryl amine, shown significant antibacterial
and antibiofilm activity against Staphylococcus aureus and Escherichia coli [47]. These
findings concurred with observed antibiofilm activities in the treatment group and showed
that poly(Cu-A) prevented hyphal growth, biofilm formation, and the aggregation of C.
albicans and had little impact on planktonic cell growth (Figure 3D,E).
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Figure 3. Evaluation of antifungal and antibiofilm potency of poly(Cu-A) compared to C. albicans
DAY185: (A) biofilm formation of C. albicans DAY185 in the existence of poly(Cu-A); (B) rapid killing
of C. albicans by poly(Cu-A), after incubation of 2 h with poly(Cu-A); (C) Poly(Cu-A)-induced ROS
production by C. albicans; (D) hyphae were pictured after incubation over 24 h; (E) SEM analysis of
C. albicans biofilm against poly(Cu-A). Scale bars: black = 100 µm, white = 20 µm. The findings are
explained as means ± SDs of triplicate. The error bars indicate standard deviations. ** p < 0.01 and
* p < 0.05.

3.6. Rapid Killing Activity

The time–kill kinetic study revealed poly(Cu-A) at 200 µg/mL needed 1 h to achieve a
60 ± 7.1% decrease in cell viability, whereas at 400 µg/mL, it killed more than 82 ± 1.6%
of C. albicans cells within 30 min (Figure 3B) and at 400 µg/mL of poly(Cu-A) killed
97.2 ± 0.5% of cells in 2 h. These results suggest that the higher concentration of synthesized
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PC could be used to control the growth C. albicans DAY185. Several studies recently
reported natural products containing polymeric and nonpolymeric composites used to
eradicate human pathogens, such as C. albicans [44,48]. Additionally, benzoxazine-linked
covalent organic framework materials have shown promising antimicrobial activity via
postsynthetic cyclization [48,49].

3.7. ROS Assay

The generation of reactive oxygen species (ROS) causes oxidative stress in C. albicans
and induces cytotoxicity and cell death [50]. Therefore, in the presence of poly(Cu-A),
we investigated intracellular ROS production in C. albicans. Treatment with poly(Cu-
A) considerably and dose-dependently enhanced ROS concentrations (Figure 3C). For
example, at 50 or 100 µg/mL, poly(Cu-A) increased ROS levels by four- and seven-fold,
respectively, whereas H2O2 (the positive control) at 50 µg/mL increased ROS intracellular
production 29-fold. However, various research has been conducted on the generation
of ROS by polyaniline nanocomposite, and polymeric composites worked as a versatile
antifouling coating on implant surfaces against C. albicans [51,52].

3.8. In Vitro and In Vivo, and Environmental Toxicities of Poly(Cu-A)

C. elegans was used to examine the toxic effects of poly(Cu-A). Microscopic ex-
aminations showed nematodes survived exposure to poly(Cu-A) at concentrations of
0–500 µg/mL for 7 days (Figure 4A,C). After 7 days trial, poly(Cu-A) treated nematode
showed a similar trend to the non-treated controls (Figure 4A,C), confirming that poly(Cu-
A) was nontoxic to worms and did not affect the survival rate. In particular, poly(Cu-A) at
doses of <500 µg/mL did not influence survival or induce phenotypic changes in nematode
morphology. For instance, >84% of worms were endured at different concentrations of
poly(Cu-A), suggesting no toxicity effect by synthesized polymer composite. C. elegans is
a premier toxicology model that has developed our understanding of cellular responses
to synthetic, natural compounds or environmental pollutants and boasts robust genomic
resources and high levels of genetic variation across the species [53]. There was a strong
correlation between the toxicities between C. elegans and animals, which is the reason for
assessing C. elegan’s toxicity [54,55].

The phytotoxicity and environmental impact of poly(Cu-A) were assessed using a seed
germination experiment (Figure 4B). R. raphanistrum seeds were developed on Murashige
and Skoog agar containing poly(Cu-A) in the range of 0–500 µg/mL. Poly(Cu-A) did not
show any phenotypic changes to the germination of seeds for the three days, while at
≥200 µg/mL, the rate of R. raphanistrum germination was postponed after seven days
(Figure 4B,D). Seed germination and seedling growth were slightly reduced by increasing
the concentration of poly(Cu-A) from 100 to 500 µg/mL. These results indicate that poly(Cu-
A) appears to be safe and environmentally friendly. As per recent reports polybenzoxazine
based polymers, such as PAB/BX or bio-based phosphorus-containing benzoxazine [56,57],
could be safer to discharge for agricultural fields and also to combat MDR microbes in the
plant soil [29–58].
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4. Conclusions

A curcumin functionalized benzoxazine monomer (Cu-A-Bzo) was successfully synthe-
sized by Mannich condensation, as confirmed by FT-IR and NMR. The poly(Cu-A)polymer
produced by thermally treating Cu-A-Bzo inhibited C. albicans biofilm formation and acted
as an effective corrosion inhibitor. The poly(Cu-A) at 100 µg/mL concentration possesses
>92% inhibition against C. albicans, which is higher than our previous work [57] based on
arbutin-based polybenzoxazine with PEG-PPG-PEG (90.9% inhibition against C. albicans
at 100 µg/mL concentration). Our results support the hypothesis that poly(Cu-A) might
help prevent or treat C. albicans biofilm-associated infections. Interestingly, poly(Cu-A)
also exhibited an exceptional ability to penetrate C. albicans biofilm in vitro. This is the
first report on the synthesis of poly(Cu-A) PCs and their applications to the treatment of
Candida biofilms and environmental remediation. Furthermore, the high MIC of poly(Cu-
A) PC for C. albicans 250 µg/mL might allow it to be combined with fungicides to treat
biofilm-associated chronic infections. The corrosion inhibition properties of poly(Cu-A)
were effectively obtained in 1 M HCl corrosive media for LCS at 293 K. Depending on the
acquired outcomes, it can be advised that after the measurement of the electrochemical
investigation, the inhibition efficacy of poly(Cu-A) at 200 µg/mL was discovered to be
approximately 93%. With every addition of inhibitory concentration, anodic and cathodic
Tafel slopes essentially changed, which implies that the inhibitor molecule resists both the
hydrogen evolution reaction and the metal dissolution process. Moreover, poly(Cu-A) at
200 µg/mL concentration has the largest semicircle, suggesting its best corrosion resistance
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performance. Thus, our results indicate poly(Cu-A) might be used to treat C. albicans
biofilms or as an anticorrosive agent for further use.
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