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Abstract: Herein, micron-sized silver particles were prepared using the chemical reduction method
by employing a Y-type microjet reactor, silver nitrate as the precursor, ascorbic acid as the reducing
agent, and gelatin as the dispersion at room temperature (23 ◦C ± 2◦C). Using a microjet reactor,
the two reaction solutions collide and combine outside the reactor, thereby avoiding microchannel
obstruction issues and facilitating a quicker and more convenient synthesis process. This study
examined the effect of the jet flow rate and dispersion addition on the morphology and size of
silver powder particles. Based on the results of this study, spherical and dendritic silver particles
with a rough surface can be prepared by adjusting the flow rate of the reaction solution and gelatin
concentration. The microjet flow rate of 75 mL/min and the injected gelatin amount of 1% of the
silver nitrate mass produced spherical ultrafine silver particles with a size of 4.84 µm and a tap
density of 5.22 g/cm3.

Keywords: Y-type microjet reactor; spherical ultrafine silver particles; wet chemical reduction;
dendritic particle

1. Introduction

Silver is widely used in various industrial fields due to its good electrical conductivity,
thermal conductivity, and ductility. As a functional material, silver at the micronano level
shows a structure between crystalline and amorphous states, exhibits a modified surface
molecular arrangement and crystal structure, and features enhanced surface activity [1].
The ultrafine silver powder shows spherical (or quasispherical), flake-like, dendritic, and
microcrystalline morphologies [2–4]. Additionally, the micronano silver powder exhibits
excellent performance in the fields of sound, light, electricity, magnetism, heat, and catalysis
due to its small particle size, large specific surface area, high surface activity, and good
catalytic activity. Furthermore, silver powder has antibacterial and sterilization capabilities
because of its adsorption capacities and excellent optical properties due to its surface
plasmon resonance. These characteristics have expanded the application of silver powder
to fields such as electronics, the chemical industry, medicine, aerospace, the military
industry, and metallurgy [5,6].

Various methods can be used to prepare silver powders, including physical, chem-
ical, and biological methods [7]. Common physical preparation methods include the
high-energy ball-milling method [8], spray thermal decomposition method [9], plasma
evaporation condensation method [10], liquid phase reduction method [11,12], microemul-
sion method [13,14], liquid–solid phase reduction method [15], and microbial reduction [16].
The chemical method is widely used in large-scale industrial production because of its low
equipment requirements and energy consumption.
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Microchemical reactors mainly provide controllable and high-throughput chemical
synthesis methods with good stability, low energy consumption, small reaction volume,
and uniform reaction conditions [17–19]. Therefore, they provide a new process strategy
for materials science, chemical synthesis, biomedical diagnosis, and drug screening [20–22].
Fouling (i.e., unnecessary deposition on the surface) often occurs and causes local constric-
tion in microstructure equipment, which changes the flow rate and increases the pressure
drop or even completely blocks the microchannel. Hence, this is the biggest obstacle to
the effective operation of microstructure equipment [23]. Rathi [24] optimized the contin-
uous synthesis of crosslinked chitosan sodium tripolyphosphate (CS-TPP) nanoparticles
using a microreactor and compared it with a batch-stirred reactor. Lim [25] described
a straightforward and adaptable coaxial turbulent jet mixer that not only synthesized
various nanoparticles (NPs) at high throughput but also maintained the benefits of homo-
geneity, reproducibility, and tunability that could typically be attained only in specialized
microscale mixing equipment. Using various conditions, Sebastian [26] obtained complex
metal nanomaterials, such as Pt–Pd heterostructures, Ag–Pdcore–shell NPs, and Au–Pd
dumbbell structures and achieved fine control of material size and morphology using the
homogeneous microfluidic reactor. Baber [27] investigated AgNO3 reduction by NaBH4 in
an impinging jet reactor (IJR) to prepare silver NPs. Under certain conditions, the size of
the silver NPs could be controlled at 4.3 ± 1 nm and 4.7 ± 1.3 nm. Sahoo [28] reported that
the small size and uniformity (5.2 ± 0.9 nm) of silver NPs can be controlled using a free
impinging stream reactor at room temperature. The unique IJR characteristics are effective
mixing and the lack of channel walls to avoid fouling.

The Y-type microjet reactor makes the reaction solution converge outside the reactor;
therefore, the solutions are uniformly mixed and reacted. The process is safe, efficient,
and controllable, as required by modern chemical technologies, while effectively avoiding
precipitation blockage problems in the microchannel. In this study, the Y-type microjet
reactor was used to make two reactant solutions that are uniformly mixed and reacted at
room temperature (23 ◦C ± 2 ◦C). Additionally, the microjet method’s effects on micron
silver powder’s morphology, particle size, and dispersion performance were investigated
by controlling the gelatin amount in the system and the jet flow rate. It is hoped that silver
powder’s morphology and particle size can be controlled within a certain range.

2. Materials and Methods
2.1. Materials

Gelatin (industrial gelatin) was purchased from Shanghai Maclean Biochemical Tech-
nology Co., Ltd. (Shanghai, China) Silver nitrate (AgNO3) was purchased from Tongbai
Hongxin New Material Co., Ltd. (Henan, China) Ascorbic acid (C6H8O6) was purchased
from Zhengzhou Tuoyang Industrial Co., Ltd. (Zhengzhou, China) Sodium chloride (NaCl),
nitric acid (HNO3), and absolute ethanol (C2H6O) were purchased from Chengdu Kelong
Chemical Co., Ltd. (Chengdu, China) Water used in this study was deionized. All the
reagents were of analytical purity and were used without additional purification.

2.2. Experimental Methods

The experimental device for preparing silver powder particles, the Y-type microjet
reactor, is shown in Figure 1. The Y-type microjet reactor is made of 3D-printed photosensi-
tive resin. The channel’s inner diameter is 1.0 mm, the distance between the two outlets is
d = 10 mm, and the jet’s intersection angle is 45◦.

Ascorbic acid and silver nitrate undergo the following chemical reduction reaction:

2AgNO3 +C6H8O6 = 2Ag↓+C6H6O6 +2HNO3 (1)
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Figure 1. Schematic flow diagram of the reaction device.

The synthesis procedure and other experimental conditions for the silver particles’
preparation in this study are shown in Figure 2. Solutions (A and B) were prepared as
follows: A certain amount of AgNO3 and C6H8O6 were dissolved in deionized water,
and an appropriate amount of HNO3 was added to adjust the pH value of the C6H8O6
solution. Further, gelatin (1.0–3.0% of the AgNO3 mass) was added to the C6H8O6 solution
as a dispersant.
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The prepared solutions A and B were delivered to the two inlets of the microjet mixing
reactor by advection pumps, thereby providing appropriate flow rates and producing the
desired jets at the two outlets. When the two jets collide, the solvents mix and subsequently
react. The mixed solutions were poured vertically into a lower beaker filled with 100 mL of
deionized water and rotated at 200 rpm. The spraying of the two solutions was arranged to
ensure that the total volume of the final solution was 200 mL and the solution in the beaker
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was stirred for 30 s. Following the reaction, the solution stratified and precipitated after
standing. The supernatant was removed and mixed with a 10% NaCl solution without white
flocculent precipitation, which revealed that the silver nitrate had been totally reduced.
The reaction was conducted at room temperature (23 ◦C ± 2 ◦C); all concentrations stated
are those of the inflow before reagent mixing. The layered solution was filtered, washed,
and dried before yielding the silver powders.

2.3. Characterization Testing

The morphology of silver powders was investigated using Nova Nano SEM450 field
emission scanning electron microscopy (SEM, American FEI Company, Hillsboro, OR, USA).
The physical phases of the silver powders were characterized by X-ray diffraction (XRD,
Xpert powder, PANalytical, Amsterdam, The Netherlands). The particle size distribution of
the silver powder was determined using a laser particle size meter (Rise-2002, Jinan Runzhi
Technology Co., Ltd., Jinan, China). The specific surface area of silver powders was tested
with BET-specific surface area measurement (DX 400, Beijing Jingwei Gaobo Science and
Technology Co., Ltd., Beijing, China).

3. Results and Discussion
3.1. Effect of Preparation Method on the Morphology of Silver Powders

The silver powder prepared by the conventional method, and the microjet reactor was
characterized by XRD, and the results are shown in Figure 3.
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Figure 3. XRD patterns of silver powders were obtained using different preparation methods.
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by adding 1.5% gelatin; and (d) microinjection method by adding 2% gelatin.

As seen in Figure 3, the spectral lines have characteristic peaks at 38.1◦, 44.23◦, 64.37◦,
77.36◦, and 81.46◦, which correspond to the (111), (200), (220), (311), and (222) crystal planes
of cubic crystalline silver, respectively. Furthermore, these spectral lines are consistent with
the monolithic silver standard pattern (JCPDS 04-0783). There were no other diffraction
peaks in the spectrum, and the diffraction peaks of the curve were quite sharp. This
indicates that the silver powder products obtained by the two experimental methods were
highly crystalline and comprised monolithic silver.

The gelatin addition of 1% was chosen in the conventional approach to configure the
AgNO3 solution and the C6H8O6 solution under the same other conditions. The AgNO3
solution was added into a beaker containing C6H8O6 mixed solution. The reaction solution
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was rinsed three times with deionized water and anhydrous ethanol before being dried at
60 ◦C for 4–6 h to obtain the silver powder product.

The SEM images of the silver powder prepared using the conventional and microjet
methods are shown in Figure 4.
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Figure 4a demonstrates that the silver powder particles prepared using the conven-
tional method were not agglomerated and were monodispersed and polyhedral in shape.
The silver powder particle size was about 2–5 µm, and the surface was smoother than the
silver particles prepared using the Y-type microjet reactor. Figure 4b shows that the silver
particles prepared using the Y-type microjet reactor aggregated from smaller particles into
large spherical particles. Moreover, the silver powder morphology was mostly spherical
with a rough surface.

3.2. Effect of Dispersant Dosage on the Morphology under Microjet Conditions

The microjet flow rate effect on the silver powder morphology was investigated at
different contents of gelatin addition.

The flow rates of the microjet reactor were set at 50, 75, and 100 mL/min. A sufficient
amount of gelatin was adsorbed on the silver particles’ surface, successfully preventing the
particles from adhering together. The silver powder was produced by mixing the reactant
solutions (A and B) at a certain gelatin dispersion amount (1%, 1.5%, and 2%). Other
conditions were consistent with the description of the experimental procedure presented
in Section 2.2. Prior research has demonstrated that the amount of mixing between the
two reactant solutions as well as the morphology and size of the micron and nanoparticles
formed as a result of chemical reduction were all considerably influenced by the flow rate
of the microjet reactor [27].

The high-magnification SEM images of the silver powder prepared under different jet
flow rates by adding 1% gelatin are shown in Figure 5. Furthermore, Figure 5a demonstrates
that when the solution flow rate was 50 mL/min, the formed silver powder particles
contained both a sizable number of symmetrical dendritic particles as well as near-spherical
particles with rough surfaces. When the flow rate was 75 mL/min, the formed silver powder
particles were spherical particles with a rough surface. When the solution flow rate was
100 mL/min, the prepared silver powder particles were spherical particles with a rough
surface, similar to that observed in the case of the particles in Figure 5b.

The high-magnification SEM images of the silver powder prepared using the Y-type
microjet reactor by adding 1.5% gelatin while keeping other experimental conditions
constant is shown in Figure 6.
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Figure 6 shows that the morphology of the silver powder changed considerably with
an increase in the solution flow rate. It can be seen from Figure 6a that when the solution
flow rate was 50 mL/min, the prepared silver powder particles were mostly spherical
with a few dendritic particles. However, when the solution flow rate was 75 mL/min, the
formed silver powder particles were mostly dendritic with a certain thickness and fewer
sphere-like particles (Figure 6b). It can be observed from Figure 6c that when the solution
flow rate was 100 mL/min, the formed silver powder particles were almost dendritic with
very few spherical particles. However, compared with Figure 5a (the 1.5% gelatin addition),
the branches of dendritic particles formed in Figure 6b were wider and thicker.

Figure 7 shows the high-magnification SEM images of the silver powder fabricated
with the microjet method under the same experimental circumstances except that here, 2%
gelatin is added.
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Under this condition, the change in silver powder morphology was not obvious with
an increase in the solution flow rate. When the solution flow rate was varied between 50,
75, and 100 mL/min, the morphological changes in the synthesized silver powder particles
were not obvious; moreover, all of them were irregular dendrites with irregular particle
surfaces. The dendritic particles formed by adding 2% gelatin had wider branches and
rougher surfaces than those prepared with less gelatin addition (Figures 5 and 6).

3.3. Effect of Dispersant Dosage on the Particle Size of Silver Powder under Microjet Conditions

The effect of the microjet flow on the particle size of silver powder was investigated by
adding different amounts of gelatin. The microjet reactor’s flow rates were set at 50, 75, and
100 mL/min. Similarly, the silver powder was prepared by mixing the reactant solutions
(A and B) with three different gelatin amounts (1, 1.5, and 2%) using the Y-type microjet
reactor, and other conditions were consistent with the description of the experimental
procedure in Section 2.2.

Figure 8d displays the low magnification SEM pictures, distribution map, and diameter
D50 distribution map of the silver powder created at different jet flow rates with a 1% gelatin
addition. When the gelatin addition was 1%, it can be seen that the particle size distribution
of the silver powder did not change much with the modification of the jet flow rate. As
shown in Figure 8d, the jet flow rates of 50, 75, and 100 mL/min correspond to the diameters
D50 of the silver powder of 4.88, 4.84, and 5.35 µm. This demonstrates that when the amount
of gelatin added is 1%, jet flow has little effect on the particle size of silver powder.
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The low-magnification SEM images, particle size distributions, and D50 diameter
distributions of the silver powder prepared under different jet flow rates by adding.5%
gelatin are shown in Figure 9. From Figure 9d, it can be seen that the particle size of silver
powder particles gradually increases with an increase in the microjet flow rate. Figure 9a
shows that when the jet flow rate was low (50 mL/min), the silver powder particles were
dispersed and had smaller particle sizes compared to Figure 8b,c.
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Therefore, when the gelatin addition was 1.5%, the sphericity of the synthesized silver
powder particles decreased. The particle size increased considerably when the microjet
flow rate was higher. When the jet flow rate was too high, irregular and flaky silver powder
particles with large particle sizes and low dispersion were formed.

The low-magnification SEM images, particle size distributions, and D50 diameter
distributions of the silver powder prepared under different jet flow rates by adding 2%
gelatin are shown in Figure 10. It is obvious from the figure that when too much gelatin
was added (2%), the silver powder particles had poor dispersion and large particle sizes,
and the maximum D50 diameter size of particles reached 17.75 µm.
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However, excessive gelatin will make the reaction liquid viscous, thereby decreasing
the contact area of ascorbic acid and silver nitrate and slowing down the reaction rate.
Simultaneously, the elemental silver formation also slows down because of the thicker
gelatin film diffusion. This results in particle nucleation and growth from the two phases
that cannot be effectively separated, and the resulting silver powder would have larger
particle sizes [29]. Moreover, the amount of gelatin used is too large and inconvenient
for washing and filtration later. The microreactor has a high jet flow rate when using a
Y-type microjet reactor to prepare silver powder particles. When impinging and mixing,
faster formation of silver crystal nuclei occurs but not fast enough to consume all silver
ions. Hence, there will still be regular crystal growth, forming a large number of dendritic
silver crystals. Therefore, the added dispersant gelatin amount should not exceed 1% of the
AgNO3 mass, and the jet flow rate should not be too high when preparing silver powder
particles by impinging the jet method.

3.4. Effect of Dispersant Addition on Silver Powder Parameters

A potential synthesis mechanism of silver particles by conventional and microjet
methods is shown in Figure 11. The morphology of the silver powder produced by various
preparation techniques was quite diverse, as can be seen from the image. Ag+ in the
solution was gradually converted to silver atoms by adding the reducing agent ascorbic
acid. The silver atoms developed into polyhedral, spherical, and dendritic particles due to
the addition of gelatin and the mixing method of reaction solutions.
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A larger D90/D10 ratio indicates a wide particle size distribution and low dispersion [30].
The D90/D10 ratio of the six samples was low, and the greatest value achieved was 4.24,
as shown in Figure 12a. The D90/D10 ratio essentially exhibited a decreasing trend when
the amount of gelatin was added. When the gelatin amount injected was fixed, a slightly
higher jet flow rate could result in a smaller D90/D10 ratio.

As can be observed from Figure 12b, the maximum tap density (5.46 g/cm3) was
obtained when 1% gelatin was added. When the tap density of silver powders was high,
the crystallinity was enhanced, the buildup between the silver powder particles in the
natural state showed enhanced density, and the void ratio was small. When it is used
for silver paste and other applications, the conductive film obtained after sintering the
slurry has fewer and smaller voids, the resistance of series in the circuit is small, and the
electrode conductivity is excellent [31]. The tap density of the silver powder particles fell as
the gelatin amount increased. When 1% gelatin was introduced, the tap density increased
as the jet flow rate increased. When 2% and 3% of gelatin were applied, the tap density
decreased as the jet flow rate rose.

The morphology of the silver particles changed from spherical to dendritic as more
gelatin was added, and the specific surface area gradually expanded, as illustrated in
Figure 8c. As the particular surface area increased, the surface activity of silver powder in-
creased. The maximum specific surface area of the produced silver particles was 1.43 m2/g
when the gelatin content was 2%. When 1% gelatin was added, the specific surface area
of the silver powder particles gradually reduced with an increasing flow rate, although
the difference was not considerable. Alternatively, the specific surface area of the silver
powder particles gradually increased at 2% and 3% of added gelatin.

4. Conclusions

(1) The outcomes of this study demonstrate that under specific circumstances and within
a specific range, the Y-type microjet reactor may be utilized to regulate silver particles’
morphology and particle size.

(2) By changing the experimental conditions, spherical and dendritic silver particles
can be obtained using a Y-type microjet reactor. When the microjet flow rate was
75 mL/min, and the gelatin content was 1% of the AgNO3 mass, the ultrafine spherical
silver powder with a particle size of 4.84 µm and a tap density of 5.22 g/cm3 could be
synthesized using the microreactor at room temperature.

(3) Compared to conventional stirred reactors, the Y-type microjet reactor can quickly
and efficiently mix reactant solutions, and the process is controllable. This reactor,
unlike other microchemical reactors, does not have synthetic product deposition or
channel blockage problems. The controlled synthesis of silver nanoparticles offers a
potential future application for the microjet reactor.
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