

Article Boosting the Dehydrogenation Properties of LiAlH₄ by Addition of TiSiO₄

Nurul Yasmeen Yusnizam, Nurul Amirah Ali 🗅, Noratiqah Sazelee 🗅 and Mohammad Ismail *🗅

Energy Storage Research Group, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; nurulyasmeen.yusnizam@gmail.com (N.Y.Y.); nurulllamirah@gmail.com (N.A.A.); atiqahsazelee19@gmail.com (N.S.) * Correspondence: mohammadismail@umt.edu.my; Tel.: +60-9-6683487

Abstract: Given its significant gravimetric hydrogen capacity advantage, lithium alanate (LiAlH₄) is regarded as a suitable material for solid-state hydrogen storage. Nevertheless, its outrageous decomposition temperature and slow sorption kinetics hinder its application as a solid-state hydrogen storage material. This research's objective is to investigate how the addition of titanium silicate (TiSiO₄) altered the dehydrogenation behavior of LiAlH₄. The LiAlH₄-10 wt% TiSiO₄ composite dehydrogenation temperatures were lowered to 92 °C (first-step reaction) and 128 °C (second-step reaction). According to dehydrogenation kinetic analysis, the TiSiO₄-added LiAlH₄ composite was able to liberate more hydrogen (about 6.0 wt%) than the undoped LiAlH₄ composite (less than 1.0 wt%) at 90 °C for 2 h. After the addition of TiSiO₄, the activation energies for hydrogen to liberate from LiAlH₄ were lowered. Based on the Kissinger equation, the activation energies for hydrogen liberation for the two-step dehydrogenation of post-milled LiAlH₄ were 103 and 115 kJ/mol, respectively. After milling LiAlH₄ with 10 wt% TiSiO₄, the activation energies were reduced to 68 and 77 kJ/mol, respectively. Additionally, the scanning electron microscopy images demonstrated that the LiAlH₄ particles shrank and barely aggregated when 10 wt% of TiSiO₄ was added. According to the Xray diffraction results, TiSiO₄ had a significant effect by lowering the decomposition temperature and increasing the rate of dehydrogenation of LiAlH₄ via the new active species of AlTi and Si-containing that formed during the heating process.

Keywords: LiAlH₄; TiSiO₄; hydrogen storage; dehydrogenation properties

1. Introduction

Concerns about the energy crisis and the environment have led to an increase in the proportion of renewable energy sources in the energy system, such as wind, hydro, and other types. The supply and utilization times are typically out of sync and have some geographical restrictions. The proper secondary energy must be selected to match them, and hydrogen is a promising alternative to meet the demands for clean and sustainable energy technologies [1]. Hydrogen energy is a perfect substitute for petroleum because of its high energy density and lack of carbon emissions [2–7].

Hydrogen can be stored in a variety of ways for application purposes. As of now, compressed gas has been the most popular technique. It can also be kept as a liquid at extremely low temperatures. Other methods of storing hydrogen are via the solid-state method through physisorption and chemisorption [8]. Storing hydrogen via the solid-state method is regarded as the most promising method. Based on the US Department of Energy (DOE), by 2025, the fuel cell materials should store 5.5 wt% (gravimetric) and 40 g L⁻¹ (volumetric) of hydrogen [9]. Complex hydride has emerged as the most promising medium for solid-state hydrogen storage based on the DOE target due to its high hydrogen storage capacity. Additionally, based on previous research, storing hydrogen is promising in metal or complex hydrides via chemisorption. This technique involves absorbing and storing

Citation: Yusnizam, N.Y.; Ali, N.A.; Sazelee, N.; Ismail, M. Boosting the Dehydrogenation Properties of LiAlH₄ by Addition of TiSiO₄. *Materials* **2023**, *16*, 2178. https://doi.org/10.3390/ ma16062178

Academic Editors: Alessandro Dell'Era and Erwin Ciro Zuleta

Received: 7 February 2023 Revised: 21 February 2023 Accepted: 23 February 2023 Published: 8 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). hydrogen in a metal powder made of either pure metal or an alloy. The metal/complex hydride material generates heat when hydrogen is absorbed into it, and heat is required for the metal/complex hydride to generate hydrogen again. As a result of the hydrogen's strong bonding with the metal in some materials, it requires extreme temperatures, more than 400 °C for magnesium, as an example [10,11]. This is a disadvantage of the metal/complex hydride storage method [12–14]. Among metal or complex hydride materials, one of the best potential candidates is said to be lithium alanate (LiAlH₄) [15–20]. LiAlH₄ is thought to be a promising material for storing hydrogen in solid-state form as it has a greater capacity to store hydrogen compared to other complex hydrides. Table 1 compares the properties of LiAlH₄ with other complex hydrides.

Materials	Cost of Material (\$ g ⁻¹)	Desorption Kinetics	Gravimetric (wt%)	Volumetric (g L ⁻¹)
LiAlH ₄	3.7	~0.04 wt% (within 180 min, 90 °C)	10.5	96.7
NaAlH ₄	10.8	~0.01 wt% (within 150 min, 140 °C)	7.4	94.8
KBH4 NaNH2	1.41 6.19	NA NA	7.4 5.2	87.1 71.9

Table 1. Properties of LiAlH₄ and other complex hydrides [21-25].

LiAlH₄ decomposes in three steps, as shown in Equations (1)–(3),

$$LiAlH_4 \rightarrow 1/3Li_3AlH_6 + 2/3Al + H_2 (about 5.3 wt\% of H_2 liberated)$$
(1)

$$Li_3AlH_6 \rightarrow 3LiH + Al + 3/2H_2 \text{ (about 2.6 wt\% of H}_2 \text{ liberated)}$$
 (2)

$$\text{LiH} + \text{Al} \rightarrow \text{LiAl} + 1/2\text{H}_2 \text{ (about 2.6 wt\% of H}_2 \text{ liberated)}$$
 (3)

However, its application is hampered by its high dehydrogenation temperature, slow dehydrogenation kinetics, and reversibility issues. According to previous studies [19,26–28], these challenges were addressed through several modifications, such as particle size reduction utilizing the ball milling method and doping with a catalyst. Some examples of doping with catalysts in the literature [19,29–35] include doping with metal halides, metal oxides, and carbon-based additives.

Complex metal oxide additives, especially secondary metal oxides, are a newly emerging research area to further enhance LiAlH₄'s dehydrogenation abilities [36–38]. The study of the catalysis of Al₂TiO₅ on the dehydrogenation properties of LiAlH₄ demonstrated that the onset temperatures dropped significantly after milling with 5 wt% Al₂TiO₅ [39]. The hydrogen began to be liberated at about 90 °C and 137 °C for both steps, respectively. Meanwhile, Zhai et al. [36] investigated how MnFe₂O₄ affected LiAlH₄'s dehydrogenation properties and discovered that the temperature at which decomposition began was about 70 °C lower than it would have been otherwise. Moreover, the research conducted by Ismail et al. [40] proved that the onset desorption temperature of the two stages of the LiAlH₄ was reduced to 80 °C and 120 °C, respectively, when doped with SrTiO₃, as opposed to the as-obtained LiAlH₄. The LiAlH₄ dehydrogenation kinetics were also enhanced as the SrTiO₃-doped LiAlH₄ composite could liberate about 3.0 wt% of hydrogen at 90 °C in 20 min as opposed to the undoped composite's 0.2 wt% in the same time frame.

However, more research is necessary to determine whether other secondary metal oxide-based catalysts could lower the decomposition temperature and improve LiAlH₄ dehydrogenation kinetic efficiency. In this study, we have used another secondary metal oxide to boost the dehydrogenation properties of LiAlH₄. To the best of our knowledge, no research has been conducted on enhancing LiAlH₄'s ability to store hydrogen using TiSiO₄ as a catalyst.

2. Materials and Methods

Sigma Aldrich (Burlington, MA, USA) provided LiAlH₄ (purity 95.0%) and TiSiO₄ (purity 99.8%) powders that were used without any changes. Every stage of the sample preparation process, including loading and weighing, was completed in an MBraun Unilab glove box to avoid oxidation. The sample (LiAlH₄ + 10 wt% TiSiO₄) was then directly milled in an NQM-0.4 planetary ball mill for 1 h (15 min milling, followed by three cycles of 2 min rest between rotations) at a rate of 400 rpm.

A Sievert-type apparatus (Advanced Materials Corporation, Pittsburgh, PA, USA) was used to study the onset dehydrogenation temperature and the kinetic property for the liberation of H_2 from the undoped LiAl H_4 and the TiSiO₄-added LiAl H_4 composite. The sample was heated from room temperature to 250 °C at a heating rate of 5 °C/min in a vacuum environment for the onset dehydrogenation temperature characterization. To determine the kinetics of H_2 liberation, the sample was heated at a constant temperature of 90 $^{\circ}$ C while being exposed to an H₂ pressure of 1.0 atm. Differential scanning calorimetry (DSC) from Setline STA: Simultaneous Thermal Analysis (SETARAM) was used to investigate the thermal properties of the samples. The DSC measurements were run at heating rates of 15 °C/min, 20 °C/min, 25 °C/min, and 30 °C/min. The argon gas flow rate was set to 50 mL/min, and the temperature range for this measurement was set to 300 °C. The microstructure of the sample before and after the milling process was examined using scanning electron microscopy (SEM; JEOL JSM 6360LA). The phase structure of the sample before and after the ball mill and after the dehydrogenation process was studied using an X-ray diffractometer (XRD, Rigaku Miniflex, Tokyo, Japan) and Fourier transform infrared (IR, Shimadzu Tracer-100, Tokyo, Japan).

3. Results and Discussion

Figure 1 depicts the results of the research on the onset thermal dehydrogenation and dehydrogenation kinetics processes for both added and undoped composites (LiAlH₄ and 10 wt% TiSiO₄ systems). Two distinguishing features of each composite's dehydrogenation reaction are shown on the graph. As shown in Figure 1a, at about 146 °C, the as-obtained LiAlH₄ has initiated the liberation of hydrogen, and further heating has led to the beginning of a second stage dehydrogenation process at about 180 °C. After 1 h of the LiAlH₄ milling process, the first and second steps' onset dehydrogenation temperatures drop to about 144 °C and 174 °C, respectively. This result demonstrates how the ball milling technique insignificantly influenced the dehydrogenation temperature of LiAlH₄. Moreover, doping 10 wt% of TiSiO₄ drastically lowered the decomposition temperatures for the two steps at 92 °C and 128 °C. Adding TiSiO₄ as a catalyst proved to enhance the dehydrogenation performance of LiAlH₄.

Figure 1b shows the isothermal dehydrogenation kinetics at 90 °C for doped and undoped samples. Less than 1.0 wt% of hydrogen was liberated in 80 min by the undoped sample. Under the same conditions, the hydrogen's liberate capacity increased significantly to 5.7 wt% after 10 wt% TiSiO₄ was added. As a result, the TiSiO₄-added LiAlH₄ sample desorbs at a rate that is, on average, 5 to 6 times higher than the undoped LiAlH₄. According to this result, the catalyst addition of TiSiO₄ improved the kinetics of LiAlH₄ dehydrogenation. The outcome shows that the kinetics of LiAlH₄ dehydrogenation were improved by the catalyst doping, as previous studies stated [15,41,42].

Figure 1. (a) TPD curve of as-obtained LiAlH₄, post-milled LiAlH₄, and LiAlH₄ added with 10 wt% TiSiO₄ at 250 °C and (b) the dehydrogenation kinetics performance at a constant temperature of 90 °C for the added and undoped composites.

The catalytic effects of TiSiO₄ on the thermal properties of LiAlH₄ were validated using DSC measurements on added and undoped LiAlH₄. Temperatures ranging from 25 °C to 300 °C, with an argon flow rate of 50 mL/min, were used for the investigation. Figure 2 displays the DSC curves for added and undoped LiAlH₄ at a rate of 15 °C/min. The thermal characteristics of as-obtained LiAlH₄ have four peaks. Two are exothermic, while the other two are endothermic. The interaction of hydroxyl impurities with LiAlH₄'s surface caused the first exothermic peak to appear at 150 °C, while the melting of LiAlH₄ caused the first endothermic peak to appear at 175 °C [37,40,43,44]. In the meantime, the dehydrogenation of liquid LiAlH₄ causes the second exothermic peak (190 °C). Li₃AlH₆ decomposition (265 °C) was responsible for the second endothermic peak. These second exothermic and endothermic peaks were assigned to Equations (1) and (2), respectively. These similar peaks also occurred to the post-milled LiAlH₄, but at lower temperatures.

The thermal event of LiAlH₄ is lowered from four to two after the addition of TiSiO₄. The exothermic event peak at around 120 °C seems to correspond to the decomposition of LiAlH₄ (Equation (1)), and the endothermic event peak at around 176 °C is most likely to correspond to the decomposition of Li₃AlH₆ (Equation (2)). The first endothermic event associated with LiAlH₄ melting has vanished from the DSC curve of TiSiO₄-doped LiAlH₄. The disappearance of the melting event is most likely owing to the fact that the decomposition temperature of the first stage of the doped sample is lower than the melting temperature of post-milled LiAlH₄.

Different heating rates were measured using DSC to examine the impact of TiSiO₄ addition on the activation energy (E_A) for hydrogen desorbed from LiAlH₄. The DSC curves for the added and undoped LiAlH₄ samples at various heating rates (15, 20, 25, and 30 °C/min) are shown in Figure 3a,b. The Kissinger equation used to calculate the E_A values of the dehydrogenation process of the 1 h milled LiAlH₄ and LiAlH₄–10 wt% TiSiO₄ composite is as follows:

$$\ln\left[\beta/T_p^2\right] = -E_A/RT_p + A \tag{4}$$

where *R* is the gas constant, *A* is a linear constant, T_p is the peak temperature on the DSC dehydrogenation curves, E_A is the activation energy, and β is the DSC heating rate.

Consequently, the E_A was determined using the graph's slope, $\ln \left[\beta/T_p^2\right]$ vs. $1000/T_p$. The Kissinger plots for the dehydrogenation of LiAlH₄ (1st stage) and the dehydrogenation of Li₃AlH₆ (2nd stage) for both composites are shown in Figure 3c,d. Based on the slopes, E_A for the post-milled LiAlH₄ are 103 kJ/mol (1st stage dehydrogenation) and 115 kJ/mol (2nd stage dehydrogenation), respectively. Meanwhile, the E_A for the first and second stages of dehydrogenation, respectively, are reduced to 68 kJ/mol and 77 kJ/mol for the added system with 10 wt% TiSiO₄.

Figure 2. DSC data recorded at a rate of 15 $^{\circ}$ C/min for as-obtained LiAlH₄, post-milled LiAlH₄, and LiAlH₄ added with 10 wt% TiSiO₄.

Figure 3. DSC dehydrogenation curves at different heating rates for (**a**) post-milled LiAlH₄, (**b**) LiAlH₄–10 wt% TiSiO₄ and Kissinger's plot for the (**c**) first and (**d**) second dehydrogenation stage of post-milled LiAlH₄ and LiAlH₄ added with 10 wt% TiSiO₄.

Figure 4 shows the morphology differences between the TiSiO₄, added, and undoped LiAlH₄ samples. Figure 4a shows the morphology for the as-obtained TiSiO₄, which is a fine particle. Figure 4b depicts the as-obtained LiAlH₄'s morphology, which is described as rough and asymmetrical in shape. The particle size of LiAlH₄ was smaller but aggregated and inhomogeneous after a 1 h milling process (Figure 4c). The particle size of the 10 wt% TiSiO₄-doped LiAlH₄ sample (Figure 4d) has shrunk and is less aggregated compared to post-milled LiAlH₄. The 10 wt% TiSiO₄-added LiAlH₄ composite has a larger surface area due to the smaller particle sizes. Previous research has shown that surface modification significantly improves the hydrogen storage properties of metals and complex hydride materials [34,45–47].

Figure 4. The morphological structures of (**a**) as-obtained TiSiO_4 , (**b**) as-obtained LiAlH_4 , (**c**) postmilled LiAlH_4 , and (**d**) LiAlH_4 added with 10 wt% TiSiO_4 .

The particle size distribution of the TiSiO₄, added, and undoped LiAlH₄ samples were determined using the Image J software, as demonstrated in Figure 5. Based on the histogram shown in Figure 5a–d, the estimated average particle sizes for the as-obtained TiSiO₄, as-obtained LiAlH₄, post-milled LiAlH₄, and LiAlH₄ added with 10 wt% TiSiO₄ were determined to be 6.10, 81.58, 61.71, and 28.13 μ m, respectively. These findings demonstrated that the addition of 10 wt% TiSiO₄ to LiAlH₄ significantly reduced particle size. Previous studies by Ahmad et al. [22] and Cai et al. [48] stated the added LiAlH₄ increased the rate of hydrogen diffusion, which resulted in fast dehydrogenation kinetics and low activation energy. Additionally, its smaller particle size results in a larger surface area and more grain boundaries [36,38,49].

25

20

15

10

5

0

40

35

30 25

20

15 10

5

0

0

20

40

60

Diameter (um)

80

100

120

140

Frequency (%)

0

Frequency (%)

C

15

Figure 5. Particle size distribution histograms of the (**a**) as-obtained TiSiO₄, (**b**) as-obtained LiAlH₄, (**c**) post-milled LiAlH₄, and (**d**) LiAlH₄ added with 10 wt% TiSiO₄.

20

25

30

Diameter (µm)

35

40

45

50

Figure 6 shows the XRD pattern of the as-obtained and post-milled LiAlH₄, TiSiO₄doped LiAlH₄ composite, and as-obtained TiSiO₄ sample. The sample of as-obtained TiSiO₄ shows the high purity of TiSiO₄ [50]. For the as-obtained LiAlH₄ sample, as shown in Figure 6a, the peaks of LiAlH₄ are dominant, and there are no other peaks detected, proving that the as-obtained LiAlH₄ sample is pure, as stated by the supplier. Furthermore, as shown in Figure 6b, even after the ball milling process of 1 h, LiAlH₄ initial phase remains unchanged. According to this outcome and the findings of Sazelee et al. [15] and Balema et al. [51], LiAlH₄ was stable even after being subjected to ball milling. Figure 6c shows the XRD pattern of the LiAlH₄–10 wt% TiSiO₄ composite. In addition to the majority peaks of LiAlH₄, there is a new peak corresponding to the Al for the TiSiO₄-doped LiAlH₄ after 1 h milling. The appearance of Al peaks indicates that with the presence of TiSiO₄, hydrogen is slightly released from LiAlH₄ after milling (Equation (1)). However, the peaks that correspond to Li₃AlH₆ could not be detected in this pattern. Additionally, due to the small amount of TiSiO₄ used or the fact that TiSiO₄ became amorphous after 1 h of the milling process, the peaks of TiSiO₄ could not be detected with an XRD pattern [39,49,52].

Figure 7 depicts the FTIR spectrum used to investigate the effect of TiSiO₄ as a catalyst on the LiAlH₄ infrared spectroscopy band and to confirm the presence of Li₃AlH₆ in the TiSiO₄-doped LiAlH₄ sample after milling. In the previous studies [15,37,53], LiAlH₄ was represented by peaks with two bending modes between 800 and 900 cm⁻¹ and two stretching modes between 1600 and 1800 cm⁻¹. Figure 7a,b show these peaks in the asobtained and post-milled LiAlH₄ samples. After 1 h of milling (Figure 7c), a new peak at 1403 cm⁻¹ was discovered in the TiSiO₄-doped LiAlH₄ sample. This new peak corresponds to the Al–H stretching mode of Li₃AlH₆. Although the peak of Li₃AlH₆ could not be detected in the XRD pattern (Figure 6c), the appearance of the Al–H stretching mode of Li_3AlH_6 in the FTIR result proves that the $TiSiO_4$ -doped $LiAlH_4$ sample slightly released hydrogen during the milling process (Equation (1)).

Figure 6. XRD results of (**a**) as-obtained LiAlH₄, (**b**) post-milled LiAlH₄, (**c**) LiAlH₄ added with 10 wt% of TiSiO₄, and (**d**) as-obtained TiSiO₄.

Figure 7. FTIR pattern of the (**a**) as-obtained LiAlH_4 , (**b**) post-milled LiAlH_4 , and (**c**) LiAlH_4 added with 10 wt% of TiSiO₄.

The XRD analysis helped to identify the catalytic and reaction mechanism behind the improvement of the dehydrogenation properties of TiSiO₄-added LiAlH₄. Figure 8 shows the results of 10 wt% and 20 wt% TiSiO₄-added LiAlH₄ composites after the dehydrogenation process at 250 °C. Due to the small amount of catalyst used, it may be challenging to identify the active species in the 10 wt% TiSiO₄-added LiAlH₄, so 20 wt% TiSiO₄ was added to LiAlH₄. The presence of the Al and LiH peaks in both samples (Figure 8a) indicates that LiAlH₄ has been completely dehydrogenated (Equation (2)). In addition to Al and LiH peaks, the peaks that correspond to the AlTi species can also be detected in the dehydrogenation sample. However, the peaks that correspond to the Si or Si-containing patterns could not be observed after the dehydrogenation process. This may be because the Si or Si-containing patterns were in an amorphous state. According to this research, it was hypothesized that the enhanced dehydrogenation behaviors of LiAlH₄ were attributed to the formation of AlTi and Si or Si-containing species. Furthermore, there were no new peaks found in the XRD patterns of the desorbed 20 wt% TiSiO₄-added LiAlH₄ composite (Figure 8b), which are similar to those of the 10 wt% TiSiO₄-added LiAlH₄ composite (Figure 8a). The peak of Al, LiH, and AlTi did not change, and no other patterns were discovered in the dehydrogenation composite, possibly because these patterns were in an amorphous state when the dehydrogenation process was complete.

Figure 8. XRD pattern of the dehydrogenation at 250 °C of the added LiAlH₄ with (**a**) 10 wt% and (**b**) 20 wt% of TiSiO₄.

Previous studies have shown that the *in-situ* emergence of AlTi helps to improve the dehydrogenation behavior of LiAlH₄ [39,49,54]. Strong surface reactions between the Ti atom and LiAlH₄ caused a reduction in the H binding energy. The correlation between the charge transfer change between Al and H and the rapid kinetic efficiency of LiAlH₄ may explain the decrease in binding energy. Although the Si or Si-containing phase was not found, these species likewise play a particular role in enhancing the dehydrogenation behavior of LiAlH₄. For example, the Si-containing species have been proven to play a significant role in enhancing the hydrogen storage properties of MgH₂ [55]. Another study

proved that SiC could enhance the hydrogen storage properties of MgH₂ by reducing grain size and increasing defect concentration in MgH₂ particles [56,57]. However, more research is still needed, such as using high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy to clarify the exact catalytic role of TiSiO₄ on the hydrogen storage properties of LiAlH₄.

4. Conclusions

In conclusion, the addition of TiSiO₄ improved the dehydrogenation properties of LiAlH₄. The introduction of TiSiO₄ to LiAlH₄ reduced the dehydrogenation temperatures for the first and second stages (start decomposing at 92 °C and 128 °C, respectively). Dehydrogenation kinetic analysis at 90 °C revealed that after 2 h, the TiSiO₄-added LiAlH₄ composite was able to liberate more hydrogen (about 6.00 wt%) than the undoped LiAlH₄ composite (less than 1.00 wt%). The E_A for hydrogen liberated from LiAlH₄ was reduced after TiSiO₄ was added. According to the Kissinger equation, the E_A for hydrogen liberated in the two-step dehydrogenation of post-milled LiAlH₄ was 103 and 115 kJ/mol, respectively. The E_A were lowered to 68 and 77 kJ/mol, respectively, after milling LiAlH₄ with 10 wt% of TiSiO₄. The addition of 10 wt% of TiSiO₄ also caused the LiAlH₄ particles to shrink and become less aggregated. According to the XRD results, TiSiO₄ significantly enhanced the dehydrogenation properties of LiAlH₄ by forming active AlTi and Si-containing species during the heating process.

Author Contributions: N.Y.Y., investigations, formal analysis, and writing—original draft preparation; N.A.A., writing—review and editing; N.S., writing—review and editing; M.I., supervision, writing—original draft preparation. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Universiti Malaysia Terengganu through Golden Goose Research Grant (GGRG) (VOT 55190).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: Universiti Malaysia Terengganu is fully acknowledged for supporting this study through Golden Goose Research Grant (GGRG) (VOT 55190). N.A.A. and N.S. are grateful for the scholarship provided by Universiti Malaysia Terengganu (SIPP and BUMT).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Ye, Y.; Lu, J.; Ding, J.; Wang, W.; Yan, J. Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank. *Appl. Energy* **2020**, *278*, 115682. [CrossRef]
- Huang, Y.; Cheng, Y.; Zhang, J. A review of high density solid hydrogen storage materials by pyrolysis for promising mobile applications. *Ind. Eng. Chem. Res.* 2021, 60, 2737–2771. [CrossRef]
- 3. Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen storage for mobility: A review. Materials 2019, 12, 1973. [CrossRef]
- Moore, J.; Shabani, B. A critical study of stationary energy storage policies in Australia in an international context: The role of hydrogen and battery technologies. *Energies* 2016, 9, 674. [CrossRef]
- 5. Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. J. Nat. 2001, 414, 353–358. [CrossRef] [PubMed]
- Mustafa, N.S.; Yahya, M.S.; Itam Sulaiman, N.N.; Yap, F.A.H.; Ismail, M. Enhanced the hydrogen storage properties and reaction mechanisms of 4MgH₂+ LiAlH₄ composite system by addition with TiO₂. Int. J. Energy Res. 2021, 45, 21365–21374. [CrossRef]
- Salehabadi, A.; Umar, M.F.; Ahmad, A.; Ahmad, M.I.; Ismail, N.; Rafatullah, M. Carbon-based nanocomposites in solid-state hydrogen storage technology: An overview. *Int. J. Energy. Res.* 2020, 44, 11044–11058. [CrossRef]
- 8. Egeland-Eriksen, T.; Hajizadeh, A.; Sartori, S. Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives. *Int. J. Hydrog. Energy* **2021**, *46*, 31963–31983. [CrossRef]
- 9. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. Available online: https://www.energy.gov/eere/ fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed on 19 February 2023).
- 10. Aziz, M.; Wijayanta, A.T.; Nandiyanto, A.B.D. Ammonia as effective hydrogen storage: A review on production, storage and utilization. *Energies* **2020**, *13*, 3062. [CrossRef]

- Ouyang, L.; Liu, F.; Wang, H.; Liu, J.; Yang, X.-S.; Sun, L.; Zhu, M. Magnesium-based hydrogen storage compounds: A review. J. Alloys Compd. 2020, 832, 154865. [CrossRef]
- Ouyang, L.; Chen, K.; Jiang, J.; Yang, X.-S.; Zhu, M. Hydrogen storage in light-metal based systems: A review. J. Alloy. Compd. 2020, 829, 154597. [CrossRef]
- Ali, N.A.; Ismail, M. Advanced hydrogen storage of the Mg–Na–Al system: A review. J. Magnes. Alloy 2021, 9, 1111–1122. [CrossRef]
- Ali, N.A.; Sazelee, N.A.; Ismail, M. An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. *Int. J. Hydrog. Energy* 2021, 46, 31674–31698. [CrossRef]
- Sazelee, N.A.; Yahya, M.S.; Idris, N.H.; Din, M.M.; Ismail, M. Desorption properties of LiAlH₄ doped with LaFeO₃ catalyst. *Int. J. Hydrog. Energy* 2019, 44, 11953–11960. [CrossRef]
- Ali, N.A.; Yahya, M.S.; Mustafa, N.S.; Sazelee, N.A.; Idris, N.H.; Ismail, M. Modifying the hydrogen storage performances of NaBH₄ by catalyzing with MgFe₂O₄ synthesized via hydrothermal method. *Int. J. Hydrog. Energy* 2019, 44, 6720–6727. [CrossRef]
- Halim Yap, F.A.; Ali, N.A.; Idris, N.H.; Ismail, M. Catalytic effect of MgFe₂O₄ on the hydrogen storage properties of Na₃AlH₆– LiBH₄ composite system. *Int. J. Hydrog. Energy* 2018, 43, 20882–20891. [CrossRef]
- Juahir, N.; Mustafa, N.S.; Yap, F.A.H.; Ismail, M. Study on the hydrogen storage properties and reaction mechanism of NaAlH₄– Mg(BH₄)₂ (2:1) with and without TiF₃ additive. *Int. J. Hydrog. Energy* 2015, 40, 7628–7635. [CrossRef]
- Sazelee, N.A.; Yahya, M.S.; Ali, N.A.; Idris, N.H.; Ismail, M. Enhancement of dehydrogenation properties in LiAlH₄ catalysed by BaFe₁₂O₁₉. J. Alloys Compd. 2020, 835, 155183. [CrossRef]
- Zheng, S.; Fang, F.; Zhou, G.; Chen, G.; Ouyang, L.; Zhu, M.; Sun, D. Hydrogen storage properties of space-confined NaAlH₄ nanoparticles in ordered mesoporous silica. *Chem. Mater.* 2008, 20, 3954–3958. [CrossRef]
- Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/MY/en/campaigns/connected-lab-instrumentation (accessed on 20 February 2023).
- Ahmad, M.A.N.; Sazelee, N.A.; Ali, N.A.; Ismail, M. Enhancing the dehydrogenation properties of LiAlH₄ using K₂NiF₆ as additive. Int. J. Hydrog. Energy 2022, 47, 24843–24851. [CrossRef]
- 23. Fu, J. Advanced Doping Techniques and Dehydrogenation Properties of Transition Metal-Doped LiAlH₄ for Fuel Cell Systems. Ph.D Thesis, Dresden University of Technology, Dresden, Germany, 2015.
- 24. Orimo, S.-I.; Nakamori, Y.; Eliseo, J.R.; Züttel, A.; Jensen, C.M. Complex hydrides for hydrogen storage. *Chem. Rev.* 2007, 107, 4111–4132. [CrossRef]
- 25. Liu, Y.; Liang, C.; Zhou, H.; Gao, M.; Pan, H.; Wang, Q. A novel catalyst precursor K₂TiF₆ with remarkable synergetic effects of K, Ti and F together on reversible hydrogen storage of NaAlH₄. *Chem. Commun.* **2011**, *47*, 1740–1742. [CrossRef]
- Andreasen, A.; Vegge, T.; Pedersen, A.S. Dehydrogenation kinetics of as-received and ball-milled LiAlH₄. J. Solid State Chem. 2005, 178, 3672–3678. [CrossRef]
- Liu, S.-S.; Sun, L.-X.; Zhang, Y.; Xu, F.; Zhang, J.; Chu, H.-L.; Fan, M.Q.; Zhang, T.; Song, X.Y.; Grolier, J.P. Effect of ball milling time on the hydrogen storage properties of TiF₃-doped LiAlH₄. *Int. J. Hydrog. Energy* 2009, *34*, 8079–8085. [CrossRef]
- Liu, X.; McGrady, G.S.; Langmi, H.W.; Jensen, C.M. Facile cycling of Ti-doped LiAlH₄ for high performance hydrogen storage. *J. Am. Chem. Soc.* 2009, 131, 5032–5033. [CrossRef] [PubMed]
- Li, Z.; Li, P.; Wan, Q.; Zhai, F.; Liu, Z.; Zhao, K.; Wang, L.; Lü, S.; Zou, L.; Qu, X.; et al. Dehydrogenation improvement of LiAlH₄ catalyzed by Fe₂O₃ and Co₂O₃ nanoparticles. *J. Phys. Chem. C* 2013, 117, 18343–18352. [CrossRef]
- Resan, M.; Hampton, M.D.; Lomness, J.K.; Slattery, D.K. Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH₄. Int. J. Hydrog. Energy 2005, 30, 1413–1416. [CrossRef]
- Balema, V.P.; Wiench, J.W.; Dennis, K.W.; Pruski, M.; Pecharsky, V.K. Titanium catalyzed solid-state transformations in LiAlH₄ during high-energy ball-milling. J. Alloys Compd. 2001, 329, 108–114. [CrossRef]
- Shenglin, L.; Qiuhua, M.; Xueping, Z.; Xin, F.; Guo, X.; Jiaojiao, Z. Influences of Y₂O₃ doping on hydrogen release property of LiAlH₄. *Rare Metal Mat. Eng.* 2014, 43, 287–290. [CrossRef]
- Cao, Z.; Ma, X.; Wang, H.; Ouyang, L. Catalytic effect of ScCl₃ on the dehydrogenation properties of LiAlH₄. J. Alloys Compd. 2018, 762, 73–79. [CrossRef]
- 34. Varin, R.A.; Zbroniec, L. Fast and slow dehydrogenation of ball milled lithium alanate (LiAlH₄) catalyzed with manganese chloride (MnCl₂) as compared to nanometric nickel catalyst. *J. Alloys Compd.* **2011**, *509*, S736–S739. [CrossRef]
- Sazelee, N.A.; Ismail, M. Recent advances in catalyst-enhanced LiAlH₄ for solid-state hydrogen storage: A review. Int. J. Hydrog. Energy 2021, 46, 9123–9141. [CrossRef]
- Zhai, F.; Li, P.; Sun, A.; Wu, S.; Wan, Q.; Zhang, W.; Li, Y.; Cui, L.; Qu, X. Significantly improved dehydrogenation of LiAlH₄ destabilized by MnFe₂O₄ nanoparticles. *J. Phys. Chem. C* 2012, *116*, 11939–11945. [CrossRef]
- Ismail, M.; Zhao, Y.; Yu, X.; Nevirkovets, I.; Dou, S. Significantly improved dehydrogenation of LiAlH₄ catalysed with TiO₂ nanopowder. *Int. J. Hydrog. Energy* 2011, *36*, 8327–8334. [CrossRef]
- Xuanhui, Q.; Ping, L.; Zhang, L.; Ahmad, M. Hydrogen sorption improvement of LiAlH₄ catalyzed by Nb₂O₅ and Cr₂O₃ nanoparticles. J. Phys. Chem. C 2011, 115, 13088–13099.
- Ismail, M.; Ali, N.A.; Sazelee, N.A.; Suwarno, S. Catalytic effect of Al₂TiO₅ on the dehydrogenation properties of LiAlH₄. Int. J. Hydrog. Energy 2022, 47, 31903–31910. [CrossRef]

- Ismail, M.; Sazelee, N.A.; Ali, N.A.; Suwarno, S. Catalytic effect of SrTiO₃ on the dehydrogenation properties of LiAlH₄. J. Alloys Compd. 2021, 855, 157475. [CrossRef]
- 41. Li, L.; An, C.; Wang, Y.; Xu, Y.; Qiu, F.; Wang, Y.; Jiao, L.; Yuan, H. Enhancement of the H₂ desorption properties of LiAlH₄ doping with NiCo₂O₄ nanorods. *Int. J. Hydrog. Energy* **2014**, *39*, 4414–4420. [CrossRef]
- 42. Liu, S.-S.; Li, Z.-B.; Jiao, C.-L.; Si, X.-L.; Yang, L.-N.; Zhang, J.; Zhou, H.Y.; Huang, F.L.; Gabelica, Z.; Schick, C.; et al. Improved reversible hydrogen storage of LiAlH₄ by nano-sized TiH₂. *Int. J. Hydrog. Energy* **2013**, *38*, 2770–2777. [CrossRef]
- Ismail, M.; Zhao, Y.; Yu, X.B.; Ranjbar, A.; Dou, S.X. Improved hydrogen desorption in lithium alanate by addition of SWCNT– metallic catalyst composite. *Int. J. Hydrog. Energy* 2011, 36, 3593–3599. [CrossRef]
- Ismail, M.; Zhao, Y.; Yu, X.B.; Dou, S.X. Effects of NbF₅ addition on the hydrogen storage properties of LiAlH₄. Int. J. Hydrog. Energy 2010, 35, 2361–2367. [CrossRef]
- Czujko, T.; Oleszek, E.E.; Szot, M. New aspects of MgH₂ morphological and structural changes during high-energy ball milling. *Materials* 2020, 13, 4550. [CrossRef]
- Révész, Á.; Gajdics, M. Improved H-storage performance of novel Mg-based nanocomposites prepared by high-energy ball milling: A review. *Energies* 2021, 14, 6400. [CrossRef]
- Varin, R.A.; Czujko, T.; Wronski, Z. Particle size, grain size and γ-MgH₂ effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. *Nanotechnology* **2006**, *17*, 3856. [CrossRef]
- Cai, J.; Zang, L.; Zhao, L.; Liu, J.; Wang, Y. Dehydrogenation characteristics of LiAlH₄ improved by in-situ formed catalysts. J. Energy Chem. 2016, 25, 868–873. [CrossRef]
- Ali, N.A.; Ahmad, M.A.N.; Yahya, M.S.; Sazelee, N.; Ismail, M. Improved dehydrogenation properties of LiAlH₄ by addition of nanosized CoTiO₃. *Nanomaterials* 2022, 12, 3921. [CrossRef] [PubMed]
- 50. Devrim, Y.; Erkan, S.; Bac, N.; Eroglu, I. Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique. *Int. J. Hydrog. Energy* **2012**, *37*, 16748–16758. [CrossRef]
- 51. Balema, V.P.; Pecharsky, V.K.; Dennis, K.W. Solid state phase transformations in LiAlH₄ during high-energy ball-milling. *J. Alloys Compd.* **2000**, *313*, 69–74. [CrossRef]
- 52. Xia, Y.; Zhang, H.; Sun, Y.; Sun, L.; Xu, F.; Sun, S.; Zhang, G.; Huang, P.; Du, Y.; Wang, J.; et al. Dehybridization effect in improved dehydrogenation of LiAlH₄ by doping with two-dimensional Ti₃C₂. *Mater. Today Nano* **2019**, *8*, 100054. [CrossRef]
- Rafi ud, d.; Zhang, L.; Ping, L.; Xuanhui, Q. Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH₄. J. Alloy. Compd. 2010, 508, 119–128. [CrossRef]
- 54. Zang, L.; Cai, J.; Zhao, L.; Gao, W.; Liu, J.; Wang, Y. Improved hydrogen storage properties of LiAlH₄ by mechanical milling with TiF₃. *J. Alloy. Compd.* **2015**, *647*, 756–762. [CrossRef]
- 55. Ismail, M.; Yahya, M.S.; Sazelee, N.A.; Ali, N.A.; Yap, F.A.H.; Mustafa, N.S. The effect of K₂SiF₆ on the MgH₂ hydrogen storage properties. *J. Magnes. Alloy* **2020**, *8*, 832–840. [CrossRef]
- 56. Ranjbar, A.; Guo, Z.; Yu, X.; Attard, D.; Calka, A.; Liu, H.-K. Effects of SiC nanoparticles with and without Ni on the hydrogen storage properties of MgH₂. *Int. J. Hydrog. Energy* **2009**, *34*, 7263–7268. [CrossRef]
- 57. Kurko, S.; Rašković, Ž.; Novaković, N.; Mamula, B.P.; Jovanović, Z.; Baščarević, Z.; Novaković, J.G.; Matović, L. Hydrogen storage properties of MgH₂ mechanically milled with α and β SiC. *Int. J. Hydrog. Energy* **2011**, *36*, 549–554. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.