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Abstract: The series of luminescent NaYF4:Sm3+ nano- and microcrystalline materials co-doped by
La3+, Gd3+, and Lu3+ ions were synthesized by hydrothermal method using rare earth chlorides as the
precursors and citric acid as a stabilizing agent. The phase composition of synthesized compounds
was studied by PXRD. All synthesized materials except ones with high La3+ content (where LaF3 is
formed) have a β-NaYF4 crystalline phase. SEM images demonstrate that all particles have shape
of hexagonal prisms. The type and content of doping REE significantly effect on the particle size.
Upon 400 nm excitation, phosphors exhibit distinct emission peaks in visible part of the spectrum
attributed to 4G5/2→6HJ transitions (J = 5/2–11/2) of Sm3+ ion. Increasing the samarium (III) content
results in concentration quenching by dipole–dipole interactions, the optimum Sm3+concentration is
found to be of 2%. Co-doping by non-luminescent La3+, Gd3+ and Lu3+ ions leads to an increase in
emission intensity. This effect was explained from the Sm3+ local symmetry point of view.

Keywords: luminescence; microcrystals; nanocrystals; hydrothermal synthesis; rare earth; samarium;
co-doping

1. Introduction

Lanthanide-doped inorganic materials have been attracting much attention from
scientists for several decades. These materials have promising applications in medicine
and technology as materials for optical devices, sensing, tumor therapy, bioimaging, drug
delivery, anti-counterfeiting, optical thermometry, etc. [1–9].

The optical properties of these materials depend on the particles’ size and morphology,
crystal symmetry, type, and concentration of rare earth ions in the host matrix [10–16].
Sodium yttrium fluoride is one of the best host matrices for luminescent rare earth-doped
inorganic materials because this matrix has only low-frequency vibrational modes, and
therefore does not quench the luminescence. In addition, NaYF4 possesses chemical in-
ertness, low toxicity, and the possibility to combine magnetic, optical, and radioactive
properties of lanthanide ions that opens the way to prepare new theranostic agents for
non-invasive therapy [17–22]. As a co-dopant, lanthanide ions play several key roles in
photoluminescent materials: they may absorb light as sensitizers or emit photons as lumi-
nescence activators as well as transfer energy from the sensitizer to activator [13,14,23–25].
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At the same time, the addition of non-luminescent dopants (e.g., alkali, alkali earth, some
p-, d- and f -metal ions) in host matrix doped with luminescent ions is known to enhance the
luminescence intensity [11,26–28]. This effect is assumed to be caused by several factors:
structural changes in the crystal lattice upon doping (e.g., formation of ionic vacancies)
and modification of the crystal field surrounding Ln3+ activators [28–30]. Yet, generally,
it is still early to believe that the mechanism of the co-doping effect on luminescence is
fully explained because there is no model to predict the impact of any dopant ions on
the optical properties of such doped materials. We presumed that this is caused by the
deficiency of studies. For example, to the best of our knowledge, the non-luminescent
dopants are mainly chosen from non-lanthanide elements. This approach neglects the fun-
damentally interesting details of the mutual effect of ions on similar electronic structures.
Previously we have reported the particle size and shape dependence on the nature of the
doping lanthanide (III) ions NaYF4:Ln3+ series and described the correlation between the
obtained nanoparticle morphologies and the type and content of doping ions [10]. We
found that the average diameter of particles reaches the least value for Sm3+, Eu3+, and
Gd3+ doped materials. We have studied NaYF4:Eu3+ particles co-doped with Gd3+ ions [11]
and revealed that Gd3+ doping results in particle size reduction as well as the increase in
emission intensity and 5D0 lifetime of europium (III). We have obtained a similar effect of
simultaneous size reduction and luminescence intensity enhancement for gadolinium ion-
doped materials for NaYF4:Yb3+, Tm3+/Er3+ up-conversion microcrystalline materials [16].
Further investigations of up-conversion materials based on NaYF4 doped with erbium,
ytterbium and co-doped with lutetium ions showed that the addition of optical inactive
Lu3+ results in both increasing particles size and luminescence intensity [31]. In order
to find out whether the luminescence intensity enhancement is the common trend upon
doping with gadolinium or other non-luminescent lanthanide ions, we intended to study
samarium-containing down-conversion phosphors in the current work.

Samarium compounds are of interest in medicine and the production of functional
nanoparticles. For example, the decay energy of the samarium 153Sm nuclide allows using
this isotope for cancer therapy and SPECT imaging [32,33]. Sm3+ ions are also known
to be used as a part of optically active materials because of their orange luminescence,
originating from the 4G5/2 → 6HJ/2 (J = 5, 7, and 9) transitions [14,34–37]. Nevertheless,
the works devoted to the co-dopant effect on samarium-doped compounds as a way to
control the luminescence properties of these materials are limited, and this effect should be
studied in detail.

In this present study, we reported the effect of rare earth doping concentration on the
morphology, structure, and luminescence properties of the series of NaYF4 compounds
doped with Sm3+ and co-doped with non-luminescent La3+, Gd3+, and Lu3+ ions and
proposed the theoretical explanations of such effects.

2. Materials and Methods

Anhydrous chlorides of the rare earth elements (YCl3, SmCl3, LaCl3, GdCl3, LuCl3,
99.999%) were purchased from Chemcraft (Kaliningrad, Russia), KBr, NaOH, NH4F, citric
acid, and ethanol were purchased from Sigma-Aldrich Pty Ltd. (Darmstadt, Germany),
and used without additional purification.

Microcrystalline β-NaYF4 samples co-doped with Sm3+, La3+, Gd3+, and Lu3+ were
synthesized using the hydrothermal method using citric acid as a stabilizing agent, de-
scribed previously [11,16]. Rare earth chlorides taken in stoichiometric amounts (total
amount of rare earth chlorides was 0.75 mmol) with 3 mmol of citric acid were dissolved
in distilled water to obtain 5 mL solution in total. Then, 2.5 mL of an aqueous solution
containing 9 mmol of NaOH was added to the reaction mixture. After vigorous stirring
for 30 min, 8 mL of aqueous solution containing 11 mmol of NaOH and 11 mmol of NH4F
was added into the above solution. The solution was maintained after vigorous stirring
for 30 min at room temperature before being transferred to a Teflon-lined autoclave with
an internal volume of 20 mL and heated for 17h at the temperature of 180 ◦C. After that,
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the precipitate was separated from the reaction mixture by centrifugation, washed with
ethanol and deionized water, and dried at 60 ◦C for 24 h. The desired microcrystalline
materials were obtained in the form of white powders.

In this work, we synthesized and studied four series of luminescent powders:
NaY1-xSmxF4 (x = 0–0.4) and NaY0.98−ySm0.2LnyF4 (Ln = La, Gd, Lu; y = 0–0.6). Among
NaY1−xSmxF4 series, materials containing 2% (x = 0.02) of Sm3+ demonstrated the highest
luminescence intensity (discussed below in the Results and Discussion section). Therefore,
to follow the effect of Ln3+ (Ln = La, Gd, Lu) co-doping on the luminescence properties,
we kept the concentration of Sm3+ equal to 2% in the NaY0.98−ySm0.2LnyF4 series. The
relative content of the rare earth elements in the synthesized compounds was confirmed
by energy-dispersive X-ray spectroscopy. The particles’ morphology was characterized
using scanning electron microscopy (SEM) on a Zeiss Merlin electron microscope (Zeiss,
Oberkochen, Germany) using an energy-dispersive X-ray spectroscopy (EDX) module (Ox-
ford Instruments INCAx-act, Oxford, UK). powder X-ray diffraction (PXRD) measurements
were performed on a D2 Phaser (Bruker, Billerica, MA, USA) X-ray diffractometer using
Cu Ka radiation (λ = 1.54056 Å). To carry out quantitative photoluminescence studies, the
synthesized samples (20 mg) and potassium bromide (300 mg) were pressed into pellets
(diameter 13 mm). The luminescence spectra were recorded on Fluorolog-3 fluorescence
spectrometer (Horiba Jobin Yvon, Kyoto, Japan). Lifetime measurements were performed
using the same spectrometer using a pulsed Xe lamp (pulse duration 3 µs).

3. Results and Discussion
3.1. Crystal Structure

The powder X-ray diffraction (PXRD) patterns are shown in Figure 1a–d). Analysis of
PXRD patterns demonstrates that all synthesized materials of three series (NaY1−xSmxF4,
NaY0.98−xSm0.02GdxF4 and NaY0.98−xSm0.02LuxF4) have the same crystalline phase, which
corresponds to the hexagonal β-NaYF4 (JCPDS No. 16-0334). Additional diffraction
peaks corresponding to the impurities are not observed. In opposition to the above-
mentioned series, we have found that substitution of yttrium by the lanthanum ions in
NaY0.98−xSm0.2LaxF4 series results in the formation of either β-NaYF4 or LaF3 (JCPDS No.
32-0483) crystalline phases depending on the lanthanum content. Thus, at the lanthanum
content less 20 at.% and less, only β-NaYF4 crystalline phase is formed similarly to other
series. At the lanthanum content of 40 at.%, β-NaYF4 or LaF3 phases coexist. At the content
of lanthanum of the 60 at.%, compounds precipitate exclusively in a form of LaF3 phase.

Unit cell parameters were refined using UnitCell software [38]. This program can re-
trieve unit cell parameters from diffraction data using a method of least squares from the po-
sitions of the indexed diffraction maxima of the PXRD patterns (Pawley method [39]). The
uncertainties of unit cell parameters are shown in parenthesis in Tables S1–S4,
Supplementary Materials. The dependence of refined unit cell volumes on the sample
composition is shown in Figure 2. Unit cell volume linearly depends on dopant concen-
tration, therefore, Vegard’s law [40] obeys the studied systems; hence, Ln3+ (Ln = Sm, Gd,
Lu, La) ions isomorphically substitutes Y3+ ions in the β-NaYF4 structure. For compounds
NaY1−xSmxF4, the increase in Sm3+ content leads to unit cell volumes increase due to a
higher ionic radius of Sm3+ ions (1.132 Å, the coordination number is nine) than the ionic
radius of Y3+ ions (1.075 Å) [41]. Similarly, the doping of NaY0.98Sm0.2F4 by lanthanide (III)
ions with higher ionic radius than Y3+ ions (Gd3+: 1.107 Å; La3+: 1.216 Å) results in increas-
ing the unit cell volumes. Moreover, for the NaY0.98−xSm0.02LaxF4 series, unit cell volume
increases significantly faster than for the NaY0.98−xSm0.02GdxF4 one because La3+ ions have
a larger ionic radius than Gd3+. Meanwhile, the unit cell volumes for NaY0.98−xSm0.02LuxF4
series decrease upon lutetium concentration rise, which can be similarly explained by the
lower ionic radius of Lu3+ ions (1.032 Å) than the ionic radius of Y3+ ions.
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Figure 1. PXRD patterns of (a) NaY1−xSmxF4, (b) NaY0.98−xSm0.02LaxF4, (c) NaY0.98−xSm0.02GdxF4,
and (d) NaY0.98−xSm0.02LuxF4.

Figure 2. The dependence of unit cell volumes of NaY1−xSmxF4 on the Sm3+ content (a) and
NaY0.98−xSm0.02LnxF4 (Ln = La, Gd, Lu) samples on the Ln3+ content (b).

3.2. Morphology

A scanning electron microscope (SEM) was used to observe the shape and size of the
particles in synthesized materials. SEM images of the synthesized materials are shown
in Figures 3–6. The particles have the shape of hexagonal prisms. The particle diameter
was obtained from SEM images, the particle size distribution is shown in the inserts of
Figures 3–6. The average diameter of the particle was calculated from this distribution
and is given in the legends in Figures 3–6. The particle size strongly depends on the
sample composition ranging from 46 to 1916 nm. In the NaY1−xSmxF4 series, the size
reduction is observed upon increasing the samarium content, Figures 3 and 7. Thus, the
NaYF4 particles have an average size of 682 ± 41 nm, whereas NaY0.5Sm0.5F4 particles
are significantly smaller, 78 ± 9 nm. In the NaY0.98−xSm0.02LnxF4 (Ln = La, Gd, Lu) series
(Figures 3b and 4–6), the substitution of the yttrium ion by the lanthanum and lutetium
ions results in particle size increase, whereas particle size reduction is observed upon
gadolinium doping, Figure 7. This observation can be explained by the mechanism of
crystal growth [10]. We assume that the particle size is determined by nucleation and



Materials 2023, 16, 2157 5 of 16

crystal growth rates. If the nucleation rate is larger than the crystal growth rate, small single
crystals are formed. In the opposite case, when nucleation is slow, but crystal growth is
fast, large single crystals are formed. The crystal growth rate is significantly affected by the
Cit3− and Na+ adsorption on (1010) and (0001) facets, respectively [17,42]: adsorption of
the ions on the grain facets slows down crystal growth [42,43], therefore, higher adsorption
of ions on the crystal nuclei results in lower particle size. The ionic radius decreases in
the row La3+-Sm3+-Gd3+-Y3+-Lu3+, therefore, surface charge density increases in this order.
Nucleation is faster for ions with larger ionic radius, which means that this process slows
down in the row La3+-Sm3+-Gd3+-Y3+-Lu3+. Adsorption of Cit3− and Na+ ions is more
pronounced for the particles with higher surface charge density increasing from La3+ to
Lu3+. Therefore, the observed particle size reduction upon substitution of the yttrium ion
to La3+, Sm3+, and Gd3+ ions is dominated by the decrease in crystal growth rate due to the
adsorption of Na+ and Cit3− ions inhibiting crystal growth. We assume that from Gd to
Lu, the crystal growth rate changes insignificantly because the large amount of Na+ and
Cit3− ions covers the crystal grain surface, and additional Na+ and Cit3− adsorption is not
favorable anymore. At the same time, the nucleation rate monotonically decreases from
La3+ to Lu3+, which explains the particle size growth upon substitution of the yttrium by
lutetium ions. We found that co-doping of the large amounts of La3+ ions results in the
formation of the two types of hexagonal particles of significantly different sizes (Figure 4e,f).
Thus, the NaY0.58Sm0.02La0.4F4 compound consists of large (1517 ± 64 nm) and small
(254 ± 16 nm) particles. The average size of the NaY0.38Sm0.02La0.6F4 sample also contains
two sorts of particles with an average size of 1916 ± 132 and 102 ± 9 nm. The fraction of
the smaller particles significantly increases from 40 to 60 at.% La3+, therefore, according to
PXRD data, we assume that larger particles correspond to β-NaLnF4 and smaller particles
are attributed to the LnF3 crystalline phase.

Figure 3. SEM images of the samples NaY1−xSmxF4 (a–h): x = 0, 2, 5, 10, 20, 30, 40, and 50 at.%
of Sm3+. Particle size distribution of the samples is shown in the insets. The average diameter of
particles is equal to about 682 ± 41, 568 ± 44, 520 ± 43, 463 ± 31, 295 ± 32, 210 ± 19, 108 ± 11, and
78 ± 9 nm for the Sm3+ concentration of 0, 2, 5, 10, 20, 30, 40, and 50 at.%, respectively.
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Figure 4. SEM images of the samples NaY0.98−xSm0.02LaxF4 (a–f): x = 2, 5, 10, 20, 40, and 60 at.%
La. Particle size distribution of the samples is shown in the insets. The average diameter of particles
is equal to about 646 ± 33, 698 ± 38, 754 ± 36, 1094 ± 69, 1517 ± 64 (254 ± 16 for small particles)
and 1916 ± 132 (102 ± 9 for small particles) nm for the La3+ concentration of 2, 5, 10, 20, 40, and
60 at.%, respectively.

Figure 5. SEM images of the samples NaY0.98−xSm0.02GdxF4 (a–f): x = 2, 5, 10, 20, 40, and 60 at.% Gd,
respectively. Particle size distribution of the samples is shown in the insets. The average diameter of
particles is equal to about 550 ± 9, 511 ± 18, 412 ± 15, 252 ± 15, 66 ± 6, and 46 ± 2 nm for the Gd3+

concentration of 2, 5, 10, 20, 40, and 60 at.%, respectively.
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Figure 6. SEM images of the samples NaY0.98−xSm0.02LuxF4 (a–f): x = 2, 5, 10, 20, 40, and 60 at.% Lu,
respectively. Particle size distribution of the samples is shown in the insets. The average diameter of
particles is equal to about, 657 ± 29, 676 ± 31, 681 ± 24, 721 ± 46, 949 ± 50, and 1283 ± 13 nm for the
Lu3+ concentration of 2, 5, 10, 20, 40, and 60 at.%, respectively.

Figure 7. The effect of dopant nature and concentration on NaY1−xSmxF4 (a) NaY0.98−xSm0.02LnxF4

(b) particle size.

3.3. Luminescence Properties

Excitation spectra of NaY1−xSmxF4 samples monitored at the 5G5/2 → 6H7/2 (595 nm)
transition were in the spectral range of 350–500 nm, Figure 8a. One can see that spectra con-
sist of sharp peaks attributed to the f-f electron transitions of the Sm3+ ion: 6H5/2 → 4F9/2
(361 nm), 6H5/2 → 4D5/2 (373 nm), 6H5/2 → 6P7/2 (389 nm), 6H5/2 → 4K11/2 (400 nm),
6H5/2 → 6P5/2 + 4M19/2 (415 nm), 6H5/2 → 4G9/2 + 4I15/2 (440 nm), 6H5/2 → 4F5/2 + 4I13/2
(462 nm) and 6H5/2 → 4I11/2 + 4M15/2 (476 nm). The 6H5/2 → 4K11/2 transition centered
at 400 nm is dominated in the obtained spectra. Figure 8b presents emission spectra of
NaY1−xSmxF4 concentration series upon 400 nm excitation into the 6H5/2 → 4K11/2 band.
Emission spectra included lines corresponding to transitions from excited 4G5/2 to lower
6HJ levels: 4G5/2→ 6H5/2 (561 nm), 5G5/2→ 6H7/2 (595 nm), 4G5/2→ 6H9/2 (641, 646 nm)
and 4G5/2 → 6H11/2 (703 nm). The most prominent transition in the spectra was the
5G5/2 → 6H7/2 transition. Analysis of the emission spectra has demonstrated that the
spectral shape excitation and emission spectra do not depend on the Sm3+ content, whereas
the Sm3+ doping concentration significantly affected the emission intensity, Figure 8a,b.
The concentration dependence of integral intensities of the 5G5/2 → 6H7/2 emission band
is presented in Figure 8c. The emission intensity non-monotonically depends on the Sm3+
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concentration reaching the maximum at the Sm3+ content of 2 at.% (x = 0.02). Such type of
concentration dependence can be explained by the two competitive effects in phosphors
upon Sm3+ concentration rise [44,45]. Thus, the rise of the number of luminescent sites
results in radiative emission probability increase and, as a result, the emission intensity
increase. At the same time, upon Sm3+ concentration rise, the distance between Sm3+ ions
decreases resulting in the nonradiative processes probability increase, which leads to the
emission quenching. If doping ions occupy a single crystallographic position in the host,
the energy transfer mechanism is determined by the critical energy transfer distance (Rc).
This distance can be calculated by the following formula [46]:

Rc = 2
(

3V
4πχcN

) 1
3
, (1)

where χc is a critical concentration of luminescent ion (0.02), V is unit cell volume for
NaY0.98Sm0.02F4 (109.64 Å3), N—number of cation sites in crystal structure (1.5 for
β-NaYF4 [47]). Using these parameters, the critical energy transfer distance Rc in
NaY1−xSmxF4 is calculated to be of 19.11 Å. According to Blasse theory [46], when Rc > 5 Å,
the main contribution to non-radiative energy transfer occurs by the multipole–multipole
interactions. At high samarium (III) concentration, the probability of radiative emission is
constant; therefore, the energy transfer between Sm3+ ions in the NaYF4 host is dominated
by the multipole–multipole interactions. For the determination of interaction type, Van
Uitert [48] proposed an equation, which later was modified by Ozawa and Jaffe [49]:

I
χ
=

k

1 + βχ
θ
3

, (2)

where I is integral intensity, χ is the concentration of the luminescent ion. Assuming that
βχ

θ
3 � 1, one can build the linearized coordinates lg I

χ − lgχ (Figure 8d). Linear fitting of

dependence in these coordinates gives the value θ
3 = 2.05. It is known that dipole–dipole,

dipole–quadrupole, and quadrupole–quadrupole interactions correspond to θ values of 6,
8, and 10, respectively [50]. For NaY1−xSmxF4, θ = 6, therefore nonradiative energy transfer
between samarium (III) ions in the NaYF4 host is caused by dipole–dipole interactions.

Luminescence decay curves of NaY1−xSmxF4 phosphors monitored at 595 nm
(5G5/2 → 6H7/2 transition) upon 400 nm excitation are presented in Figure 9a. All ex-
perimental decay curves displayed non-single exponential behavior and, therefore, bi-
exponential models were applied for fitting (Equation (3)). The best-fit parameters are
given in Table S5 (Supplementary Materials). Bi-exponential decay of small-sized materials
is usually explained by the presence of two types of luminescent ions situated in the volume
and on the surface of the particles, which have different decay times [51,52]. Sm3+ ions
situated on the surface display lower lifetimes due to a higher probability of quenching.

I(t) = A1e
t
τ1 + A2e

t
τ2 , (3)

where A1 and A2 are pre-exponential constants, and τ1 and τ2 are fitting lifetimes.
Average luminescence lifetime (τav), which corresponds to the 5G5/2 level lifetime,

was calculated according to the following equation to simplify comparison [53,54]:

τav =
A1τ

2
1 + A2τ

2
2

A1τ1 + A2τ2
, (4)
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Figure 8. The luminescence excitation (a) emission (b) spectra of NaY1-xSmxF4 concentration series;
dependence of integral intensities of 5G5/2 → 6H7/2 emission band on Sm3+ concentration (c),
logarithmic plot NaY1−xSmxF4 of emission integral intensity dependence on dopant concentration
fitted to the linear function (d).

Figure 9. (a) Luminescence decay curves of NaY1−xSmxF4 phosphors monitored at 595 nm upon
400 nm excitation; and (b) doping concentration effect on 5G5/2 level lifetime. Experimental values
and best biexponential fits are shown as dots and lines, respectively.
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The Sm3+ concentration dependence of the obtained lifetimes is shown in Figure 9b.
One can see a monotonic decrease in the lifetimes from 4.3 ms to 0.4 ms along with the
increase in samarium concentration. Such behavior is most likely linked to the growth of
the nonradiative decay rate due to the increase in spatial energy migration followed by
further quenching of impurities.

Further studies were devoted to the co-doping effect of non-luminescent Gd3+, Lu3+,
and La3+ ions on the luminescence properties of NaYF4: Sm3+ powders. As was demon-
strated earlier, Sm3+ optimum concentration is 2%, so this samarium concentration was used
for samples with Gd3+, Lu3+, and La3+ co-doping. Emission spectra of NaY0.98−xSm0.02LnxF4
(Ln = Gd, Lu, La) compounds upon 400 nm excitation, Figure 10a–c. One can notice that
Gd3+, Lu3+, and La3+ co-doping affect only the emission intensity and alternate neither the
positions of the emission bands corresponding to 4G5/2-6HJ transitions nor their relative
intensities. In order to estimate this effect, the integral emission intensities corresponding
to the most intense 5G5/2 → 6H7/2 transition of Sm3+ ions (595 nm) were calculated and
plotted in Figure 10d–f relative to the NaY0.98Sm0.02F4 sample. We found that co-doping by
the abovementioned rare earth ions results in an increase in the luminescence intensities.
Thus, the substitution of Y3+ ion by Gd3+ results in the most emission enchantment up
to 2.4 times, Figure 10d. The maximum emissions intensities are observed for the Gd3+

content of 0.5 and 10 at.% corresponding to the increase in the luminescence intensity
at 2.4, and 2.2 times, respectively. The co-doping of NaY0.98Sm0.02F4 compound by Lu3+

ion results in emission enchantment up to 2.1 times, the maximum effect is observed for
the lutetium content of 1 at.%, Figure 10e. The least prominent effect is observed for
co-doping of NaY0.98Sm0.02F4 materials by La3+ ion, where the emission enchantment is
barely noticeable, Figure 10f. Therefore, it is difficult to mention the precise position of
the La3+ concentration corresponding to the largest effect. To reveal the mechanism of the
luminescence enhancement effect by Gd3+, Lu3+, and La3+ co-doping, the luminescence
kinetics was studied for the samples with various concentrations of co-doping ions. Lumi-
nescence decay curves of NaY0.98−xSm0.02LnxF4 (Ln = Gd, Lu, La) phosphors monitored
at 595 nm (5G5/2 → 6H7/2 transition) upon 400 nm excitation are presented in Figure 11.
All experimental decay curves displayed non-single exponential behavior and two expo-
nential models were applied for fitting (Equation (3)). The best-fit parameters are given
in Tables S6–S8 (Supplementary Materials). The average luminescence lifetimes, which
correspond to the 5G5/2 level lifetimes, were calculated using Equation (4) and given in
Table 1. We revealed that co-doping of NaY0.98Sm0.02F4 by Gd3+, Lu3+, and La3+ does not
result in a change in the 5G5/2 excited state lifetime. Therefore, the substitution of yttrium
ions by gadolinium, lutetium, and lanthanum ions does not change the probability of the
4G5/2-6HJ radiative transition.

Table 1. Lifetimes of 4G5/2 excitation state of Sm3+ ion in NaY0.98-xSm0.02LnxF4 (Ln = Gd, Lu, La).

Ln3+Content, at.% Ln3+ = Gd3+ Ln3+ = Lu3+ Ln3+ = La3+

τav, ms τav, ms τav, ms

0 3.54 ± 0.05 3.54 ± 0.05 3.54 ± 0.05
0.25 3.51 ± 0.05 3.58 ± 0.05 3.46 ± 0.05
0.5 3.50 ± 0.05 3.46 ± 0.05 3.55 ± 0.05
1 3.47 ± 0.05 3.42 ± 0.05 3.46 ± 0.05
7 3.46 ± 0.05 3.46 ± 0.05 3.47 ± 0.05

60 3.58 ± 0.05 3.45 ± 0.05 3.53 ± 0.05
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Figure 10. The emission spectra of synthesized compounds NaY0.98−xSm0.02LnxF4 (Ln = Gd, Lu, La on
(a–c), respectively), upon 400 nm excitation; dependence of integral intensities of 5G5/2→ 6H7/2 emission
band (595 nm) on Gd3+ (d), Lu3+ (e), and La3+ (f) content) relative to the NaY0.98Sm0.02F4 sample.

Figure 11. Luminescence decay curves of NaY0.98−xSm0.02LnxF4 (Ln = Gd, Lu, La on the panels (a–c),
respectively), phosphors monitored at 595 nm upon 400 nm excitation. Experimental values and best
biexponential fits are shown as dots and lines, respectively.

Emission enhancement resulting from Gd3+, Lu3+, and La3+ co-doping of NaY0.98Sm0.02F4
materials, in principle, can be caused by the absorption and/or emission probability
increase. However, in the second case, excited state lifetimes must change, which is not
observed in our experiments. Therefore, one can conclude, that doping by Ln3+ ions
results in changing only extinction coefficients due to the changing probability of symmetry
forbidden 6H5/2 → 4K11/2 transition. Luminescence intensity enhancement resulted from
co-doping of Eu3+-containing materials by non-luminescent ions such as Bi3+, Gd3+, alkali,
and alkali earth metal ions was reported previously [11,26,27,55–64]. The observed effect
was explained by structure distortion due to the difference between radii of substituted and
doping ions resulting in the increase in the emission and absorption probabilities. In our
case, Gd3+, Lu3+, and La3+ co-doping of NaY0.98Sm0.02F4 materials at low concentrations
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of the dopant results in symmetry lowering of Sm3+ local environment that leads to an
increase in the absorption probability and, obviously, extinction coefficients [57,65]. Indeed,
the maximum emission effect is observed when about 1% yttrium ions are substituted with
gadolinium or lutetium ions. Meanwhile, compounds containing a significant amount of
gadolinium ions also demonstrate larger emission intensity than NaY0.98Sm0.02F4. A similar
effect was observed by Martins and co-workers [66] where co-doping of Y2O3: Eu3+ by
Gd3+ ions resulted in an increase in the emission intensity. They explain this phenomenon
of partial absorption by the host Gd2O3 matrix followed by the energy transfer to Gd3+

ion, and then from Gd3+ to Eu3+ ion. It is known, that the β-NaYF4 host absorbed light
at 200–450 nm [7]. Most probably, the addition of Gd3+ ion results in the more prominent
absorption of β-NaYF4: Gd3+ matrix at the same range of UV spectrum. We propose that
400 nm excitation of NaY0.98−xSm0.02GdxF4 promotes β-NaYF4: Gd3+ host matrix into the
excited state (in parallel with 6H5/2 → 4K11/2 transition of Sm3+ ion) followed by energy
transfer from the host matrix to Sm3+ ions, which results in increases in luminescence
intensities relative to NaY0.98Sm0.02F4.

4. Conclusions

In the present work, four series of NaYF4 particles doped with Sm3+, Gd3+, Lu3+,
and La3+ ions, NaY1−xSmxF4 (x = 0–0.5) and NaY0.98−ySm0.02LnyF4 (Ln = Gd, Lu, La;
y = 0–0.6), were synthesized by a hydrothermal method at a temperature of 180 ◦C
using citric acid as a stabilizing agent. Analysis of PXRD patterns demonstrated that
NaY1−xSmxF4 and NaY0.98−xSm0.02LnxF4 (Ln = Lu, Gd) have similar crystal structures
corresponding to the hexagonal β-NaYF4. For the NaY0.98−xSm0.2LaxF4 series, the
β-NaYF4 crystalline phase is dominated at La3+ content up to 20%. At higher La3+

concentrations, the solid solutions are formed as a LaF3 crystalline phase. Among the
β-NaYF4 phase, unit cell volumes linearly depend on dopant concentration, which
demonstrates that Sm3+, Gd3+, Lu3+, and La3+ ions isomorphically substitute Y3+ ions
in the β-NaYF4 structure. Sm3+, Gd3+, and La3+ doping results in unit cell volumes
increase because the Y3+ ion has a smaller ionic radius (1.075 Å) than Sm3+ (1.132 Å)
and Gd3+ (1.107 Å) ions. The substitution of Y3+ ions by smaller Lu3+ ions (1.032 Å)
leads to unit cell volume reduction. According to SEM data, particles of all synthesized
compounds have the shape of hexagonal prisms and sizes ranging from 46 to 1916 nm
depending on the sample composition. In the NaY1−xSmxF4 series, the substitution of
Y3+ by Sm3+ ions leads to the particle size reduction from 682 nm (NaYF4) down to 78 nm
(NaY0.5Sm0.5F4). Co-doping of NaY0.98Sm0.02F4 by La3+ and Lu3+ ions results in particle
size increases due to faster growth (for La3+) and slower nucleation (for Lu3+) [10]. In
contrast to La3+ and Lu3+, co-doping of these materials by Gd3+ ions leads to particle
size reduction because the lowest growth/nucleation rates are characteristic of Gd3+.
All synthesized compounds demonstrate photoluminescence under 400 nm excitation
(6H5/2→ 4K11/2 transition in Sm3+). Experimental Sm3+ optimal doping concentration in
β-NaYF4 host is 2%. Further increasing of Sm3+ concentration leads to strong quenching
due to dipole–dipole interactions between Sm3+ ions. We demonstrated that co-doping
by different non-luminescent Ln3+ ions (where Ln is not only Gd, but also La and
Lu) in low dopant concentration (in the range from 0 to 10 at.%) results in increasing
luminescent intensities. Co-doping of NaY0.98Sm0.02F4 by Gd3+, Lu3+, and La3+ ions
does not lead to the change in 4G5/2 excited state lifetimes, therefore co-doping by
non-luminescent ions leads to increase in absorption probability due to the Sm3+ local
symmetry distortion. Therefore, we discovered that enhancement of luminescence
intensity as a result of co-doping by non-luminescent Gd3+, Lu3+, and La3+ ions is a
general phenomenon and can be applied to improve the optical properties of a wide
range of inorganic REE-containing phosphors.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma16062157/s1, Table S1: Unit cell parameters of the
NaY(1−x)SmxF4 samples; Table S2: Unit cell parameters of the NaY(0.98−x)Sm0.02LaxF4 samples;
Table S3: Unit cell parameters of the NaY(0.98−x)Sm0.02GdxF4 samples; Table S4: Unit cell parameters
of the NaY(0.98−x)Sm0.02LuxF4 samples; Table S5: Pre-exponential constants, fitting lifetimes, and av-
erage luminescence lifetimes of NaY(1−x)SmxF4 powders; Table S6: Pre-exponential constants, fitting
lifetimes and average luminescence lifetimes of NaY(0.98−x)Sm0.02GdxF4 powders; Table S7: Pre-
exponential constants, fitting lifetimes and average luminescence lifetimes of NaY(0.98−x)Sm0.02LuxF4
powders; Table S8: Pre-exponential constants, fitting lifetimes and average luminescence lifetimes of
NaY(0.98−x)Sm0.02LaxF4 powders.
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