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Abstract: The present study evaluates the ratcheting response at notch roots of 1045 steel specimens
experiencing uniaxial asymmetric fatigue cycles. Local stress and strain components at the notch
root were analytically evaluated through the use of Neuber, Glinka, and Hoffman-Seeger (H-S) rules
coupled with the Ahmadzadeh-Varvani (A-V) kinematic hardening model. Backstress promotion
through coupled kinematic hardening model with the Hoffman-Seeger, Neuber, and Glinka rules was
studied. Relaxation in local stresses on the notched samples as hysteresis loops moved forward with
plastic strain accumulation during asymmetric loading cycles was observed. Local ratcheting results
were simulated through FE analysis, where the Chaboche model was employed as the materials
hardening rule. A consistent response of the ratcheting values was evidenced as predicted, and
simulated results were compared with the measured ratcheting data.

Keywords: local ratcheting; A-V kinematic hardening model; backstress evolution; neuber; Hoffman-
Seeger; Glinka rule; finite element analysis; Chaboche’s model

1. Introduction

In the presence of stress raisers, load-bearing components are vulnerable to catas-
trophic failure, especially when they are subjected to asymmetric stress cycles in which the
local stress state exceeds the elastic limit resulting in plastic strain accumulation referred
to as local ratcheting. The presence of stress raisers intensifies the ratcheting progress
during loading cycles. Investigations on how the ratcheting progress at the notch root
behaves and how local stresses at the notch root relax out have been the center of attention
for researchers [1–4]. Wang et al. [3] investigated steel specimens subjected to asymmet-
ric loading cycles. They proposed an integral approach to define the plastic shakedown
rate as the loading cycles proceeded. Hu et al. [4] reported that, as the applied strain
increased, the local ratcheting and stress relaxation rate was further promoted at the notch
root. Their measured ratcheting data and stress relaxation at the notch roots were reported
in consistent agreement with those predicted by means of the Chaboche hardening rule.
Rahman et al. [5] performed ratcheting tests on notched 304L steel plates with various
notch geometries/shapes. They employed Chaboche, Ohno-Wang, and AbdelKarim-Ohno
hardening rules to evaluate the ratcheting response of notched specimens. The ratcheting
response and mean stress relaxation of S32750 steel bars were examined in a paper by
Lee et al. [6] under the step-loading spectra. They developed a constitutive model to predict
the mean stress relaxation and ratcheting, whose accuracy was confirmed through uniaxial
loading tests. Strains were measured at the notch root of 1070 steel specimens undergoing
axial-torsional loading cycles by Firat [7]. He employed the Chaboche model and Neuber’s
rule to evaluate progressive plastic strains over cycles. The predicted local ratcheting strain
values at the notch root of 1070 steel specimens were found in close agreement with those
measured values reported in reference [8]. Kolahsangiani and Shekarian [9,10] examined
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local ratcheting at the notch root of 1045 steel plate specimens with various circular notch
sizes. They discussed the influence of the notch size and stress levels on the local ratcheting
magnitude and rate as the stress cycles increased. The coupled A-V hardening model [1]
with the Neuber rule [11] was utilized to study the local ratcheting and stress relaxation
at the notch vicinity of 1045 steel specimens [12]. The coupled framework governed the
progressive plastic strain and stress relaxation at the notch root concurrently. Liu et al. [13]
carried out some experimental tests with a high-stress concentration on Z2CND18.12N
austenitic stainless steel elbow pipes. The measured local strains through strain gauges
mounted on the circumference of pressurized elbow pipes closely agreed with the predicted
ratcheting by means of the Chen-Jiao-Kim (CJK) model [14]. Ratcheting progress over
loading cycles as well as stress relaxation at the notch roots of steel plates at constant strain
ranges, was evaluated by Shekarian et al. [15]. They coupled the kinematic hardening rules
of Chaboche and A-V with the Neuber rule to estimate local ratcheting at the notch roots.
They found a close agreement between the predicted and measured values at various notch
sizes and load levels. In another study, ratcheting at the roots of different elliptical and
circular notches in 316 stainless steel specimens [16] was evaluated by means of the A-V
and Chaboche hardening models in conjunction with the Neuber rule. Local ratcheting
results were discussed on the basis of the choice of hardening models and their related
influential parameters.

The present study evaluated the measured local ratcheting response of 1045 steel
specimens [17–19] at the notch root employing the A-V hardening rule coupled with the
Neuber, Glinka, and H-S models. Local ratcheting strains at the notch roots were calculated
through the hardening framework during asymmetric loading cycles. Backstress evolution
through the A-V model directly affected the local ratcheting rate and magnitude as different
models were employed. The H-S model with equivalent stress terms presented a slightly
sharper drop in stress at the notch root as loading cycles were applied. This model, however,
resulted in lower ratcheting as coupled with the A-V hardening model. The corresponding
backstress terms in this model affected the ratcheting rate and magnitude as the H-S
rule was coupled in the framework. Numerically determined local ratcheting strains at
notch root by means of the FE analysis fell below the experimental and predicted results.
Simulated results were affected by the FE element size and types taken at different distances
at the notch root vicinity and their related convergence. The choice of models in assessing
the local strain components and their terms/constants was found to affect the rate and
magnitude of ratcheting and stress relaxation during stress cycles.

2. Modeling and Formulation
2.1. Elastic and Plastic Strains

The total strain increment tensor was determined through the summation of elastic
and plastic strain increments tensors as:

dε = dεe + dεp (1)

While the elastic strain increment tensor was determined by Hooke’s law as:

dεe =
dσ

2G
− ϑ

E
(
dσ. I

)
I (2)

where E is the modulus of elasticity, G is the shear modulus, ϑ is Poisson’s ratio, and terms
I and σ correspond to unit and stress tensors, respectively.

Based on the associated flow rule, the plastic strain increment tensor can be defined as:

dεp =
1

Hp
(ds. n)n (3)

where Hp is the plastic modulus, ds is the increment of the deviatoric tensor, and n cor-
responds to the normal vector of the yield surface. The yield criterion represents the
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onset of yielding where the yield contour separates the elastic domain from the plastic
region through:

f
(
s, α, σy

)
=

3
2
(s− α)(s− α)− σ2

y (4)

In Equation (4), α corresponds to the backstress tensor, translating the yield surface
within the deviatoric stress space as the loading exceeds an elastic domain.

2.2. The Ahmadzadeh-Varvani (A-V) Kinematic Hardening Rule

During plastic deformation, the movement direction of the yield surface in the stress
space is governed by the kinematic hardening rule. The A-V nonlinear hardening model [1]
was structured to control the evolution of backstress increments over the loading process.
The general form of the A-V rule is given as:

dα = Cdεp − γ1

(
α− δb

)
dp (5a)

db = γ2

(
α− b

)
dp (5b)

The first term of the A-V model corresponds to strain hardening, and the second term
presents the dynamic recovery term to accommodate plastic strain accumulation. The inter-
nal variable, b, with a zero initial value, was introduced to the dynamic recovery term of the
hardening rule to gradually control backstress α over loading cycles. Details of how to deter-
mine variables in Equations (5a) and (5b) were given in Ref. [1]. In Equations (5a) and (5b),
dp is defined through the dot product of plastic strain increment dεp as:

dp =
√

dεp.dεp (6)

Coefficients C and γ1 in Equation (5) are defined from uniaxial stress-strain hysteresis
loops. Constants γ2 and δ are material-dependent coefficients [17]. For uniaxial loading
conditions, δ is defined as (α/k)m expanding Equation (5a) to:

dα = Cdεp − γ1

(
α− (α/k)m b

)
dp (7)

where the coefficient k is defined as k = C/γ1. Exponent m is material dependent and stays
less than the unity 0 < m < 1.0.

2.3. Local Components of Stress and Strain at Notch Root and Local Ratcheting Strains
2.3.1. Neuber’s Rule

Neuber’s rule relates the stress and strain concentration factors, Kσ, and Kε to the
theoretical stress concentration factor, Kt through:

KσKε = K2
t (8)

where:
Kσ =

σ

S
(9)

Kε =
ε

e
(10)

Substituting Equations (9) and (10) into Equation (8) resulted in:

(KtS)
2 = Eσε (11)

For the cyclic stress and strain ranges, Equation (11) is rewritten as:

(Kt∆S)2

E
= ∆σ∆ε (12)
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where S is the nominal stress, e is the nominal strain, E is the modulus of elasticity, σ, and
ε are the local stress and strain at the notch root, respectively. To predict the local stress
and strain at the notch root, Neuber’s rule [11] was developed for plane stress conditions
as [9,10,12,15,16,18]:

(εBL − εAL)(σBL − σAL) = K2
t (SB − SA)(eB − eA) dεp < 0 (13)

(εCL − εBL)(σCL − σBL) = K2
t (SC − SB)(eC − eB) dεp ≥ 0 (14)

where subscripts A, B, C correspond to the loading turning points starting from zero to the
maximum load (point A), minimum load (point B), and maximum load (point C), and Kt
is the stress concentration factor. The uniaxial nominal strain and stress range are related
through the Ramberg-Osgood equation as:

∆e =
∆S
E

+ 2
(

∆S
2K′

) 1
n′

(15)

where K′ and n′ correspond to the cyclic hardening coefficient and exponent, respectively.
Substituting Equation (15) into Equations (13) and (14) resulted in Equations (16) and (17)

being related to the local strain and stress components as [9,10,12,15,16,18]:

(εB − εA)(σB − σA) = K2
t (SB − SA)

(
SB − SA

E
+ 2
(

SB − SA
2K′

) 1
n′
)

, dεp < 0 (16)

(εC − εB)(σC − σB) = K2
t (SC − SB)

(
SC − SB

E
+ 2
(

SC − SB
2K′

) 1
n′
)

, dεp ≥ 0 (17)

For components subjected to uniaxial loading, the local backstress component for
loading the half-cycle could be related to local stress at turning points [3]. It can be used for
unloading (A→B) and reloading conditions (B→C) through Equations (18)–(20):

αAL =
2
3
(
σAL − σy

)
(18)

αBL =
2
3
(
σBL + σy

)
(19)

αCL =
2
3
(
σCL − σy

)
(20)

2.3.2. Glinka’s Rule

Molski and Glinka [20] presented an alternative to Neuber’s rule, which was based on
the equivalent strain energy density (ESED). This method took the strain energy density at
the notch root equal to a condition at which the loaded specimen stayed within the elastic
domain. They attributed the stress concentration factor, Kt to the strain energy through:

Kt =
σ

S
=

(
Wσ

WS

)1/2
(21)

where terms WS and Wσ corresponded to the elastic strain energy per unit volume due to
the nominal remote stress S and the strain energy per unit volume due to the local strain
and stress at the notch root, respectively. For the notched specimen, the elastic and total
strain energy per unit volume were determined by:

WS =
1
2

S.e = S2/2E (22)
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and

Wσ =
∫ ε

0
σ(ε)dε =

σ2

2E
+

σ

n′ + 1

( σ

K′
) 1

n′ (23)

where, through Hooke’s law, the elastic strain and stress is related by σ(ε) = Eε. By
replacing terms WS and Wσ from Equations (22) and (23) with Equation (21), the stress
concentration factor Kt could be rewritten as:

Kt =


(

σ2

2E + σ
n′+1

(
σ
K′
) 1

n′

)
S2

2E


1/2

(24)

Through the use of Equation (24), the relationship between the applied and local stress
ranges could be determined as:

(Kt∆S)2

4E
=

∆σ2

4E
+

∆σ

n′+ 1

(
∆σ

2K′

) 1
n′

(25)

To relate the stress and strain terms, the Ramberg-Osgood equation was adapted along
with Equation (25) as:

∆ε(2E(∆σ)) + (n′ − 1)∆σ2 = K2
t (∆S)2(n′+ 1) (26)

Considering subscripts turning points A, B, C over A→B and B→C loading paths,
Equation (26) was expended as:

(εB − εA)(2E(σB − σA)) + (n′ − 1)(σB − σA)
2 = K2

t (SB − SA)
2(n′+ 1) dεp < 0 (27)

(εC − εB)(2E(σC − σB)) + (n′ − 1)(σC − σB)
2 = K2

t (SC − SB)
2(n′+ 1) εp ≥ 0 (28)

2.3.3. Hoffman and Seeger (H-S) Approach

Hoffman and Seeger (H-S) [21,22] proposed a method to establish a load-equivalent
notch stress and strain relationship. The H-S method consisted of two steps: (i) uniaxial
quantities σ, ε, and Kt were initially replaced by the equivalent quantities (σq, εq, and Ktq)
on the basis of the von-Mises yield criterion; (ii) the equivalent values were related to the
principal stress and strain components at the notch root. Within the elastic limit, the general
form of the H-S model was presented as:

εq =
σq

E
F
(

σe,q

σq

)
(29)

where εq and σq respectively correspond to the equivalent strain and stress components

at notch root. Function F
(

σe,q
σq

)
falls between 1 ≤ σe,q

σq
< Kp. Term Kp corresponds to the

limit load factor, which is the ratio of the ultimate load Lp to the yield initiation load Ly for
elastic-perfectly plastic material.

Kp =
Lp

Ly
(30)

Using the von-Mises yield criterion, the theoretical elastic equivalent stress at notch
root, σeq, can be defined as:

σeq = σe1

√
1
2

[
(1− ae)

2 + (1− be)
2 + (ae − be)

2
]

(31)
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Subscripts 1, 2, and 3 denote principal stress directions, and subscripts e represent
stress levels within the elastic domain. Stress ratios within the elastic domain ae and be are
defined as:

ae =
σe2

σe1
(32)

be =
σe3

σe1
(33)

The equivalent stress concentration Ktq is defined as:

Ktq =
σeq

S
(34)

The relationship between Ktq and Kt is given as [21]:

Ktq = Kt

√
1
2

[
(1− ae)

2 + (1− be)
2 + (ae − be)

2
]

(35)

The H-S approach [21] was developed based on the equivalent strain at notch root
through:

εq =
K2

tqS2

σq

e∗

S∗
(36)

where σq is the equivalent stress obtained through the von-Mises yield criterion. Terms S∗

and e∗ are respectively defined as S∗ =
(
Ktq/Kp

)
S and e∗ =

(
σy/E

)(
S∗/σy

) 1
n .

The equivalent applied stress and strain terms are then related to the local components
over the unloading (A→B) path and reloading (B→C) path for each stress cycle through
Equations (37) and (38), respectively.

(εqB − εqA)
(
σqB − σqA

)
=

K2
tq(SB − SA)(
S∗B − S∗A

) (e∗B − e∗A) dεp < 0 (37)

(εqC − εqB)
(
σqC − σqB

)
=

K2
tq(SC − SB)(
S∗C − S∗B

) (e∗C − e∗B) dεp ≥ 0 (38)

2.4. Ratcheting Analysis Algorithm

An algorithm was developed to predict the ratcheting and stress relaxation of notched
1045 steel specimens through the coupled hardening framework. Through the A-V harden-
ing rule, the yield surface evolution was controlled within the plastic domain and backstress
term

(
a− δb

)
and dropped up to a steady-state condition as asymmetric loading cycles

progressed. To evaluate local ratcheting, local cyclic stress and strain components at the
notch root were calculated by coupling Neuber, Glinka, and H-S rules to the hardening
framework. The algorithm program enabled an assessment of local ratcheting at constant
stress cycles, and stress relaxation was monitored over asymmetric loading cycles at a
given constant strain. Backstress α and internal variable b were to control the increments of
plastic strain dεp. The algorithm to run the ratcheting program through the hardening rule
framework was developed through a number of steps:

(i) Applied cyclic stresses to the notched specimens were introduced into the program,
(ii) Through Equations (5a) and (5b), the backstress component α, internal variable b, and

term
(

a− δb
)

were related to plastic strain increments over the loading progress,

(iii) The plastic strain increment, dεp, was computed through (i) Equations (16) and (17) based
on Neuber’s rule, (ii) Equations (27) and (28) based on the Glinka approach, and
(iii) Equations (37) and (38) by means of the H-S model.
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(iv) The accumulation of the progressive local plastic strain at the notch root, dεp was
controlled through the A-V hardening model while Neuber, Glinka, and H-S rules
were coupled to the hardening framework.

(v) Through Equations (18)–(20), the backstress components were defined during unload-
ing (A→B)/reloading (B→C) paths and set as equal to their counterpart increments
in Equations (5a)–(7). This enabled us to set relationships between nominal and local
stress components in the coupled framework.

(vi) The ratcheting strain was calculated from the average of maximum and minimum
local strains over asymmetric loading cycles.

3. Testing Conditions and Ratcheting Data

Ratcheting data sets on notched 1045 steel specimens were taken from an earlier article
conducted by Varvani and coworkers [18]. Local strain data were measured in the vicinity
of the notch roots through the use of strain gauges. Strain gauges were mounted to make
an approximate distance of 0.5 mm from the grid circuit edge of the strain gauge to the
notch root [19]. Asymmetric cyclic tests were conducted on rectangular specimens with
dimensions of 100 × 50 × 3 mm. Specimens with different central notch diameters between
9 mm and 15 mm were cyclically tested with a Zwick/Roell HB 100 servo-hydraulic
machine. Figure 1 illustrates a drawing of the specimen with a notch diameter of 15 mm.
Experiments were conducted under stress-controlled conditions with a stress ratio of R = 0,
an asymmetric loading frequency of 0.5 Hz, and at room temperature. Details of ratcheting
tests, including the notch diameter, D, stress concentration factor, Kt, and nominal stress
level Sm ± Sa applied on notched specimens, are listed in Table 1. Figure 2 presents
the measured ratcheting strains at the notch root of 1045 steel specimens undergoing
asymmetric loading cycles for different notch diameters and various stress levels.

Figure 1. Drawing of the specimen with 15 mm notch diameter (dimensions are in mm).

Table 1. Loading condition for 1045 steel specimens with different notch diameters [18].

Test Specimen Notch Diameter (D) (mm) Kt Sm±Sa(MPa)

S3 9 2.53 105± 105
S7 9 2.53 130± 130

S11 9 2.53 155± 155
S16 9 2.53 203± 203
S4 15 2.36 124± 124
S8 15 2.36 152± 152

S12 15 2.36 181± 181
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Figure 2. Ratcheting data collected at notch roots of 1045 steel specimens with different notch
diameters and stress levels [18].

Figure 3 compares the measured stress-strain hysteresis loops and local maximum
strain data at the notch root of a typical 1045 steel specimen with the loops and local
strains generated through analysis. Different coefficients C, γ1, and γ2 in Figure 3a–c
were implemented through several trials to achieve a consistency condition. Figure 3c
presents a set of coefficients C = 50,000 MPa, γ1= 350, and γ2 = 10 representing a close
agreement between the measured and predicted loops, while different values of coefficients
in Figure 3a,b resulted in a noticeable difference within the measured loop. Figure 3d plots
measured and predicted maximum strain values at the notch root versus loading cycles.
The coefficient γ2 = 10 resulted in a great agreement between the measured ratcheting data
and the predicted curve. The predicted curve position below and above the experimental
data for coefficients were γ2 > 10 and γ2 < 10, respectively.

Figure 3. Cont.
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Figure 3. Determination of coefficients C, γ1, and γ2 to achieve consistency condition based on the
A-V model. (a–c) several trials of coefficients C, γ1, and γ2 to achieve a consistency condition, and
(d) measured and predicted maximum strain values at the notch root versus loading cycles.

The measured hysteresis loops in Figure 3d present stress relaxation as the number of
stress cycles progressed. A drop in the width of loops with asymmetric loading cycles in this
figure verifies the cyclic hardening phenomenon at the notch root of 1045 steel specimen.

4. Simulation of Local Ratcheting Strain through Finite Element Analysis

The finite element software ABAQUS version 6.13 [23] was used to simulate the local
ratcheting response of steel specimens. Figure 4 shows the meshed specimen undergoing
an axial load and its constraints surrounding the circular notch with quadratic elements.
Elements were extended in size from the notch root to a distance of 1 mm over the X-
direction with a mesh size increment of 0.15 mm. The smaller elements were taken at the
vicinity of the notch root to achieve a realistic strain/stress comparable with the Neuber,
Glinka, and H-S models. The gradual increase in the element size from the notch root
enabled them to achieve a better assessment of the strain distribution throughout the
modeling process. Translational and rotational axes of the lower end surface of the meshed
specimen were constrained (along the X- and Z-axes) through adapted fixed supports, and
the specimen was allowed to take the load along the Y-axis. The upper-end surface of the
specimen was fixed. The axial load cycles were applied to the lower end of the specimen
under a stress-controlled condition with a testing frequency of 0.5 Hz.

The total number of quadratic elements of type C3D8R for the samples with notch
diameters of 9 mm and 15 mm were taken, respectively, at 24,306 and 23,748. The former
consisted of 29,952 nodes, and the latter possessed 29,670 nodes, respectively. Elements
were featured with twenty-four degrees of freedom and with three degrees of freedom per
node (eight nodes for each quadratic element). The smallest size of 0.15 mm at the notch
root resulted in a consistent convergence as the FE program was run at different applied
stress levels and notch sizes. Convergence was consistently achieved for element sizes
ranging between 0.15 mm and 0.40 mm, as the program was run for samples during the
first hundred loading cycles. For this element, the range size ratcheting at the vicinity of
the notch root stayed nearly constant, as presented in Figure 5. In this figure, as elements
increased in size beyond 0.40 mm, local ratcheting resulted in decay at different stress levels.
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Figure 4. (a) Meshed specimen loaded axially along Y-axis and boundary conditions, (b) Meshing at
the vicinity of notch root through quadratic elements.

Figure 5. Convergence of ratcheting strain at notch root of the 1045 steel specimen (D = 9 mm) versus
the quadratic mesh size at different stress levels for a given hysteresis loop.

The simulation of ratcheting at the notch root was conducted on the basis of the elastic-
plastic materials kinematic hardening model of Chaboche [24]. Based on Chaboche’s non-
linear model, the yield surface was translated in the deviatoric stress space as the materials
were deformed beyond the elastic limit. The yield surface translation was described based
on Chaboche’s postulation as backstress increments were integrated through:

dα =
3

∑
i=1

dαi, dαi =
2
3

Cidεp − γi
′αidp (39)
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Components of backstress αi during the unloading and reloading paths were defined
as [24]:

αi =
2Ci
3γi
′ +

(
αi0 −

2Ci
3γi
′

)
exp

[
−γi

′(εp − εp0
)]

dεp ≥ 0 (40a)

αi = −
2Ci
3γi
′ +

(
αi0 +

2Ci
3γi
′

)
exp

[
γi
′(εp − εp0

)]
dεp < 0 (40b)

where εp0 represents the initial plastic strain and αi0 corresponds to the initial backstress.
Coefficients C1, C2, C3 and γ′1, γ′2, γ′3 are Chaboche’s materials constants. These coef-
ficients for the 1045 steel alloy were determined from a stress-strain hysteresis loop that
was generated based on a strain-controlled test of ±0.8%. Chaboche parameters were
obtained by simulating the half, or the lower half of the stabilized hysteresis curve, from
the strain-controlled test [24]. The parameter C1 was obtained from the slope of the initial
part of the stabilized hysteresis curve with a high plastic modulus at the yield point and the
parameter C3 was determined from the linear part of the stabilized hysteresis curve with a
high strain range. The coefficient γ′1 should be large enough to stabilize the first hardening
parameter of Chaboche’s rule. Figure 6 presents an experimentally obtained stress-strain
hysteresis loop for the 1045 steel alloy. This figure presents three sets of coefficients C1−3
and γ′1−3 and their corresponding loops simulated through FE analysis. These coefficients
are chosen to achieve a close agreement between the experimental and simulated hysteresis
loops. Figure 6c shows a close agreement of experimental and simulated loops for the 1045
steel alloy for coefficients C1−3 = 75,000, 40,000, and 2500 MPa and γ′1−3 = 2200, 215, and 1.
Figure 6a,b shows deviations and changes in the simulated loops as different sets of C1−3
and γ′1−3 were taken.

Figure 6. Coefficients C1−3 and γ′1−3 achieved a close agreement between the stress-strain hysteresis
loop obtained from a test conducted under the strain-controlled condition and the one simulated
through FE analysis [25]. (a–c) the strain-based hysteresis loops for different sets of C1−3 and γ′1−3.

5. Results and Discussion

The local ratcheting and stress relaxation at the notch root of steel specimens were
evaluated through the A-V hardening framework. Local stress and strain components were
coupled with the framework through the use of different model choices of Neuber, Glinka,
and H-S. Ratcheting at the notch roots was also simulated by FE analysis where Chaboche’s
hardening rule was employed.

5.1. Local Ratcheting Prediction through the A-V Hardening Rule
5.1.1. Estimation of Local Strain/Stress at Notch Roots through Different Models

To better estimate the local stress and strain terms at the notch root, different choice
models of Neuber, Glinka, and H-S were examined. Steel specimens with notch diameters of
9 and 15 mm were tested under nominal stress levels of 155± 155 MPa and 203± 203 MPa
loading conditions. These tests enabled us to evaluate the stress and strain components
at the notch root and compare the employed models for their strain energies at applied
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nominal stresses and at different notch diameters. Figure 7 presents the state of nominal
and local stress and strain components for these models at different applied stress levels
and notch sizes. In this figure, the pseudo-elastic lines were obtained by applying the
constraints of each model, and stress–strain curves were developed based on the Ramberg-
Osgood equation. In Figure 7a, the H-S model presented a noticeable increase in the
stress and strain components on a specimen with a notch size of 9 mm as the stress level
changed from 155 ± 155 MPa to 203 ± 203 MPa. At the given nominal stress level of
155± 155 MPa in Figure 7b, the H-S model depicted smaller progress in the local stress and
strain components as the notch size of the specimens changed from 9 to 15 mm. A change
in the nominal stress level and notch diameter directly affected the extent of stress–strain
area based on Glinka and Neuber models. In Figure 7c,d, at higher applied stress levels of
203± 203 MPa, the Glinka model resulted in a greater area underneath the stress—strain
curve while, for the constant stress level, the specimen with a notch size of 15 mm caused
a smaller increase in the local stress/strain data on the curve. Neuber’s rule, however,
involved a greater amount of energy from the product of stress and strain obtained from
the rectangular area in Figure 7e,f. In the Neuber and Glinka rules, the total strain energy
density at the notch root was taken as equal to the total pseudo strain energy density
assuming that the specimen did not exceed the elastic domain even beyond its yield point.

5.1.2. Backstress Evolution during Loading

Over the loading paths, backstress evolution was controlled through the A-V kinematic
hardening model. Backstress α and the internal variable b controlled the plastic strain
increment dεp and its accumulation during asymmetric loading cycles. The magnitude
of backstress α gradually stabilized over loading cycles in a nonlinear form through the
term (α− δb) in the dynamic recovery of the A-V model. This term in the A-V model was
analogous to the integration of backstress increments dα = ∑3

i=1 dαi, as proposed earlier
by Chaboche [24]. The plastic strain accumulation was attributed to the cross-slip, and as
the stress cycles proceeded, the accumulation of dislocations and their interactions led to a
decrease in the ratcheting strain rate [26]. Figure 8 shows the evolution of the backstress
term (α− δb) over the first thirty loading cycles on a typical 1045 steel specimen through a
choice of different models. The decay in the backstress term during stress cycles was more
pronounced as the Neuber and Glinka rules were coupled with the A-V model compared
to that of the H-S model. This figure shows a sudden drop in term (α− δb) over the first
few cycles. Following the initial loading cycles, a steady state was achieved. The smaller
difference in terms (α− δb) between the Neuber and Glinka rules was associated in relation
to the nominal and local stresses through Equation (13). A larger product of the local stress
and strain components in Figure 7e,f resulted in a larger nominal stress component and a
small drop in term (α− δb) over the loading cycles. The lowest backstress term in Figure 8
was attributed to the equivalent stress components, as defined in the H-S model. In the
presence of the H-S model, the backstress term achieved its stability after the first seven
cycles, while backstress curves that were generated through the use of Neuber and Glinka
models required an even smaller number of cycles to gain a steady condition.

5.2. Predicted and Simulated Local Ratcheting Curves

The coupled kinematic hardening framework was employed to assess the ratcheting
response of notched 1045 steel specimens undergoing asymmetric stress cycles. The pre-
dicted and experimental ratcheting results at various stress levels and notch sizes were
plotted in Figure 9. The predicted ratcheting curves in this figure show a consistent re-
sponse compared with the experimental data. Predicted local ratcheting over the first few
cycles showed an abrupt increase, and shortly after, as the number of cycles increased, the
ratcheting rate dropped, and the slope of the ratcheting progress stayed nearly constant.
Considering Glinka, Neuber, and H-S models, the choice of the H-S model resulted in
lower ratcheting curves, and those curves were predicted on the basis of the hardening
framework coupled with the Glinka model, which possessed the highest ratcheting val-
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ues. The H-S model has, however, shown closer agreements with the experimental data
at different stress levels and notch sizes over the first 20–40 cycles. Ratcheting curves
predicted by the coupled framework of the A-V hardening rule and Neuber model closely
agreed with the measured values of ratcheting strains over the loading cycles. Lower local
stress and strain at the notch root were calculated based on the H-S model and suppressed
the predicted ratcheting curves by the hardening framework. Higher strain energy was
achieved through the Neuber and Glinka models, which increased the predicted local
ratcheting as local stress and strain values at the notch root increased. Figure 9 shows the
simulated ratcheting results through the use of FE analysis for 1045 steel specimens with
different notch sizes undergoing different stress levels, which fell below the experimental
and predicted ratcheting curves. Simulated curves were affected by the FE element size
taken at different distances from the notch root to achieve a consistent convergence. The
simulated curves correspond to lower local ratcheting values with a noticeable difference
between the measured ratcheting data and those of the predicted curves.
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Figure 7. (a,c,e) Cyclic and pseudo–elastic curves for steel specimens with D = 9 mm notch diameter
subjected to different loading values using H-S, Glinka and Neuber models. (b,d,f) cyclic and pseudo–
elastic curves for a steel specimen undergoing 155± 155 MPa for notched specimens with D = 9 and
D = 15 mm notch diameters using the H-S, Glinka, and Neuber models.
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Figure 8. Backstress evolution over the first 30 loading cycles based on the Neuber, H-S, and Glinka
rule coupled with the A-V kinematic hardening rule for a steel specimen and an 8 mm diameter
under 155± 155 MPa.

The test samples with the same diameter consistently showed that an increase in the
applied stress led to a higher ratcheting strain. At the same applied stress level, an increase
in the diameter of the specimen from D = 9 mm to 15 mm decreased the ratcheting strain
noticeably. While the ratcheting strain was promoted during asymmetric stress cycles in
Figure 9, the cyclic stress levels gradually dropped to lower levels revealing stress relaxation
at the notch root of the steel specimens. Stress relaxation over the stress cycles at the notch
root of specimens was found at slightly different rates as the A-V hardening model was
coupled with different models. Hysteresis loops of a typical 1045 steel specimen with a
notch diameter of D = 9 mm were tested at 203±203MPa and showed that the H-S model
resulted in the widening of loops while the Glinka model lowered the plastic strain range
in the progressing loops. Loops generated by the hardening rule coupled with the Neuber
model possessed an intermediate width. These hysteresis loops are presented in Figure 10.
It is intended to keep the stress and strain axes in this figure within the same scale for a better
comparison of these models and their generated loops. The peaks of progressing loops
were connected as the number of cycles proceeded in Figure 11, resulting in a decreasing
trend with nearly the same pace for all models. The horizontal axis in these figures was
normalized with the strain at the 100th cycle to be able to present stress relaxation when
three different models were compared. The ratcheting progress was controlled through
the hardening framework at constant stress cycles, while stress relaxation at the notch root
was controlled at a constant local strain leading to progressive loops experiencing a drop
in the stress magnitude. Predicted curves in Figure 11 show relatively lower values of
stresses and noticeable rates of relaxation compared with the simulated curve through the
FE analysis. In this figure, the simulated stress relation for cycles beyond the first 20 cycles
is presented for a consistent comparison with the predicted curves.
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Figure 9. Predicted ratcheting curves using three different models coupled with the A-V hardening
rule versus experimental ratcheting data for 1045 steel notched specimens undergoing various stress
levels of (a) 105± 105 MPa with D = 9 mm, (b) 130± 130 MPa with D = 9 mm, (c) 155± 155 MPa with
D = 9 mm, (d) 203± 203 MPa with D = 9 mm, (e) 124± 124 MPa with D = 15 mm, (f) 152± 152 MPa
with D = 15 mm, (g) 181± 181 MPa with D = 15 mm.
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Figure 10. (a–c) Predicted stress-strain hysteresis loops based on Neuber’s rule, H-S rule, and Glinka’s
approach coupled with the A-V model, respectively, and (d) simulated stress-strain hysteresis loops
by FE analysis on the basis of Chaboche’s model.

Figure 11. Stress relaxation for a steel specimen with a 9 mm notch diameter subjected to
203 ± 203 MPa, using three different rules coupled with the A-V kinematic hardening rule and
through FE analysis.

5.3. Discussion

Ratcheting strain progress with asymmetric loading cycles took place over the transient
and steady stages. Over stage II, ratcheting was found to be associated with the coefficient
δ in the dynamic recovery of the A-V hardening rule. This coefficient was defined to be
related to the backstress evolution and materials constants, C, γ1, and m through (α/k)m.
The local ratcheting rates (slopes) were predicted based on the coupled framework with
different models and were found to be relatively smaller than that of the experimental data
for stage II.
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Various cyclic tests were conducted to examine the local ratcheting response of
1045 steel specimens at the vicinity of notch roots. While the present authors studied
a number of influential parameters on the local ratcheting in the presence of the notch in
steel plates, including stress levels and notch sizes, the open literature lacks a pertinent
volume of experimental and theoretical research on local ratcheting phenomenon. More
investigation is required to fully address the local ratcheting and stress relaxation at the
notch root. Challenges in research include the complexity of cyclic tests to examine/detect
the notch root plasticity and accurately measure local strains, as well as the lack of hard-
ening frameworks/theories to sufficiently address the plastic flow in the vicinity of notch
roots. The authors believe that more experimental investigation and analysis are required
to fully understand notch root plasticity and its progress during asymmetric loading cycles.
To measure progressive plastic deformation at the notch root and at various distances
from the notch root, the use of strain gauges along longitudinal and lateral directions are
inevitable. The author’s further plan is to control the local ratcheting progress through
technical/mechanical processes, including cold-pressing the notch root and localized heat-
treatment processes. While such processes are expected to improve mechanical properties
at the notch edges, they will also noticeably lessen the ratcheting magnitude and rate. The
coupled hardening model, along with the Neuber and Glinka rules, will be employed
to assess the ratcheting of cold-worked notches. Analytical and numerical approaches
will be used to evaluate the choice of hardening rules and to encounter more variables
such as time dependency, stress rate, testing frequency, and temperature in the ratcheting
assessment program.

6. Conclusions

Local ratcheting was evaluated at the notch root of 1045 steel specimens by means of
the A-V hardening rule coupled with the Neuber, Glinka, and H-S models. The evolution
of backstress was governed by the coupled hardening framework. The local ratcheting rate
and magnitude and stress relaxation at the notch root of steel specimens was assessed at
different stress levels and notch sizes through various coupled models and FE analysis. The
hardening rule algorithm was developed to assess local ratcheting coupled with different
model choices to assess local strain and stress at the notch root. Predicted ratcheting
curves through the coupled hardening framework with the Glinka model shifted above the
measured ratcheting data, and those evaluated by means of H-S fell below experimental
data. The Neuber model, however, closely agreed with the experimental ratcheting data
at different stress levels and specimen notch sizes. Local ratcheting simulated through
FE analysis fell below the experimental data and predicted curves. The choice of Neuber,
Glinka, and H-S models in assessing local strain components and their terms/constants
was found to affect the rate and magnitude of predicted ratcheting and stress relaxation by
means of the coupled hardening framework.
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Nomenclature

dε Total strain increment tensor
dεe Elastic strain increment tensor
dεp Plastic strain increment tensor
E Modulus of elasticity
Hp Plastic modulus
α Backstress tensor
σ Stress tensor
I Unit tensor
ϑ Poisson’s ratio
G Shear modulus
s Deviatoric stress tensor
σy Yield strength
D Circular notch diameter
γ1, γ2, C, δ Coefficients of the A-V model
C1−3,γ′1−3 Chaboche materials coefficients
Kt Stress concentration factor
b Internal variable of the A-V model tensor
n′, K′ Ramberg-Osgood coefficients
S,e Nominal stress and strain
R Stress ratio
Kσ,Kε Stress and strain concentration factors
σ, ε Uniaxial local stress and strain at the notch root
Wσ Strain energy per unit volume at the notch root
WS, Elastic strain energy per unit volume due to the nominal remote stress S
σeq Theoretical elastic equivalent stress at notch root
εq Equivalent strain at notch root
σq Equivalent stress at notch root
Kp Limit load factor
ae, be Stress ratios within the elastic domain
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