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Abstract: An investigation of fluoroindate glass and fiber co-doped with Yb3* /Er®* ions as a potential
temperature sensor was assessed using the fluorescence intensity ratio (FIR) technique. Analysis of
thermally coupled levels (TCLs—?Hj; /, and #S;,,), non-thermally coupled levels (non-TCLs—*F;/,
and “Fy ), and their combination were examined. Additionally, the luminescent stability of the
samples under constant NIR excitation using different density power at three different temperatures
was carried out. The obtained values of absolute sensitivity (0.003 K~!—glass, 0.0019 K~!—glass
fiber 2Hy4 /2 — 4s, /2 transition) and relative sensitivity (2.05% Kfl—glass, 1.64% Kil—glass fiber
4F, /2 — 4F, /2 transition), as well as high repeatability of the signal, indicate that this material could
be used in temperature sensing applications.

Keywords: fluoroindate glass; fluoroindate glass fiber; temperature sensing; InF3 glass; Er’*,
Yb3* ions

1. Introduction

Efficient temperature measurements are critical in the development of many fields
including science, biomedicine, and industry. However, conventional contact thermometry
has a slow response, high electromagnetic interference, low chemical resistance, among
others [1,2]. For that reason, the interest in luminescence thermometry based on the flu-
orescence intensity ratio (FIR) technique has increased. This relies on the intensity ratio
between two emission bands as a function of the temperature, which can be thermally
coupled (200 cm~1 < AE < 2000 Cm_l) or not. Compared to other systems, the FIR tech-
nique allows self-reference and avoids problems associated with measurement conditions
(e.g., excitation intensity fluctuations, spectrum losses, etc.) [3,4], which increases the ac-
curacy and sensitivity of the temperature measurement. This technique is typically used
when trivalent rare earth (RE) ions are used as emission centers. Moreover, it is also pos-
sible to utilize others, for example, Ruby [5-7]. The advantage of RE ions is their unique
optical and physicochemical properties, highlighting their multicolor emission, narrow
emission/absorption bands, long decay times, and superior photostability. However, to
achieve efficient emission intensity, a suitable matrix is essential. Among available matrices,
the fluoride glass matrix, whose thermal stability is up to 583 K, excels for its lower phonon
energy (~500 cm 1), superior mechanical properties, and high rare-earth ions solubility.
Moreover, the low phonon energy of this matrix allows for achieving high emission in-
tensity employing relatively low pumping power (<100 mW) or even using short optical
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fibers (1-10 cm), which could potentiate its use not only as a temperature sensor but also
as a compact broadband source and lasers (here, the main interest is above 3 um) [8-15].
With such properties, the successful drawing of this glass could lead to an efficient and
accurate temperature optical sensor. This is of particular interest because the fiber-optic
sensors have higher sensitivity, superior resolution, flexible structure, compact size, and
the ability to multiplex [16].

This work presents the up-conversion (UC) emission of a fluoroindate glass co-doped
with Yb*'/Er** ions as a function of the temperature using the FIR technique of the
thermally coupled levels (TCLs) and non-TCLs. As well as an initial fiber approach of
this material as a potential element of a fluorescence fiber optic temperature sensor. The
results showed that the *F; /2 45 /2 transition grows with the temperature, indicating
an outstanding sensitivity to temperature changes which has not been observed before.

2. Materials and Methods

The preparation of both samples (glass and glass optical fiber) was performed in
a glove box with a controlled atmosphere (O, HyO < 0.1 ppm). Both were obtained using
the following molar composition 35.8InF3-20ZnF,-20SrF,-16BaF;-4GaF3-2LaF3-0.8YbF3—
1.4ErF; (Yb**: 1.73:10%° ions/cc and Er**: 3.02-10% ions/cc) employing just high purity
reagents (99.99%).

The glass was obtained employing the crucible melt-quenching technique. The mixed
reactants were placed in a covered platinum crucible and fluorinated at 270 °C for 15 min.
Then, the sample was melted at 900 °C for 5 min. After that, the liquid glass was poured
out on a cold stainless steel plate, and the glass was relaxed at 290 °C for 2 h.

The glass fiber was fabricated using a modified crucible method. The melting glass
((t = 10° dPas)), obtained using the protocol described above, was extruded to obtain the
core-rod preform. Then, the preform (u = 10* dPas) was drawn using the crucible nozzle,
obtaining a fiber length of 20 mm.

The temperature-dependent luminescence measurements were performed on an elec-
tric heater at a 300-573 K temperature range. The material under assessment (glass or
fiberglass), was placed over the stainless steel plate of the heater, then heated at X tempera-
ture (X = 300, 333, etc.), and remained there for 5 min to guarantee temperature stability.
After that, the sample was irradiated at 980 nm (Pmax = 375 mW) with a CW fiber laser
(Changchun New Industries Optoelectronics Tech. Co., Ltd., Changchun, China). The
up-conversion measurements were performed using a 980 nm notch filter from Thorlabs
with the number NF980-41 (Thorlabs Inc., Newton, NJ, USA). Their spectra were recorded
employing different spectrometers for glass and fiber. A Zolix spectrometer (Zolix Instru-
ments Co., Ltd., Beijing, China) equipped with an Omni-A3007i (focal length—320 mm)
monochromator and PMTH-S1 detector (185-900 nm) for the glass, and a Broadcom Qmini
spectrometer (Broadcom Inc., San Jose, CA, USA) with a linear detection of the 2500 px
CCD sensor for the fiberglass. JASCO V-670 UV-Vis NIR spectrophotometer was used to
determine the spectrum of the absorption coefficient. The micrographs of the glass fiber
were obtained using a Scanning Electron Microscope Phenom XL SEM with CeB6 source
(ThermoFisher Scientific Inc., Waltham, MA, USA).

3. Results and Discussion
3.1. Fluoroindate Glass

The absorption spectrum of fluoroindate glass matrix co-doped with Yb3* /Er3* ex-
hibits the characteristic absorption bands from Yb3* and Er3* ions (Figure 1). It is evident
that the absorption band centered at 976 nm, associated with %Fs /2(Yb3+) and Iy /Z(Er3+)
transitions, fits well with 980 nm commercial lasers, indicating that the glass co-doped with
Yb3* /Er®* ions can be efficiently pumped with it.
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Figure 1. Absorption spectrum for the fluoroindate glass co-doped with Yb3* /Er®* ions.

To avoid the crystallization of the samples, the thermal studies were performed from
300 to 573 K, using steps of 30 K, since according to previous crystallographic studies,
the crystallization starts above 583 K. Moreover, the glass-transition temperature (Tg) is
580 K [13-15].

The up-conversion luminescence spectra of fluoroindate glass doped with Yb3* and Er®*
ions at different temperatures are presented in Figure 2. These were split for a better resolution
in the 475-505 nm range (Figure 2a). In Figure 2a a scale factor of 200 is used, compared
to Figure 2b. The characteristic emission bands of Er’* located at 492 nm (*F; /2 — 45 /2),
523 nm (2H11/2 — 4115/2), 545 nm (483/2 — 4115/2), and 655 nm (4F9/2 — 4115/2), are ob-
served. However, the first one, typically negligible, was favored with the temperature
indicating a high-temperature dependence.
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Figure 2. Emission spectra of fluoroindate glass co-doped with Yb3* /Er3* under the 980 nm excitation
at the (a) 475-505 nm range (b) 500-700 nm range (inset—Yb3* /Er3* energy scheme).

The up-conversion mechanism in the Yb** /Er3* system is based on an energy transfer
process (inset in Figure 2b). Under the excitation of 980 nm, the sensitizer (Yb>") absorbs
the energy and the photons at the ?F; /2 (Yb3*) level are excited to °Fs /2 (Yb3*), then the
energy is transferred to the activator (Er**). Energy transfer (ETI) results in population of
the 4111/2 (Er3+) level (2F5/2(Yb3+) + 4115/2(Er3+) — 2F7/2(Yb3+) + 4111/2(Er3+)). After that,
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the Er®* ions at the *F; /, level can be populated through two mechanisms. In the first one,
Er®* ions absorb energy by energy transfer (ETIII) from the 44 /2 (Er**) and 2Fs /2 (Yb3*)
levels (°F5 5 (Yb?*) + *111 /5 (Er**) — 2F; /5 (Yb®*) + 4F; /5 (Er®*)). The second mechanism is
based on the interaction between two Er®* ions, in which the populated 144 /2 level of an
Er®* ion is excited to the “F; /, level by the energy transfer from the adjacent excited Er** ion
(111 /2(Er®*) + 411 2(Er®*) — 4F; o (Er®*) + 4111 /2(ErY)). As well as in *F;,, the population
of the “Fy  level can be achieved through two mechanisms. The first one is based on the
CR from 2Hy; /2 and 4s, /2. The second is energy transfer (ETII) from the levels 5 /2 (Er**)
and ?F5/5 (Yb**) (BFs,; (YD) + 41135 (Er’*) — 2F7/5 (Yb**) + 4Fg 5 (Er*")) [11,17-20].

This process is highly dependent on the photons’ behavior since an efficient upcon-
verted emission mechanism relies on the ability to absorb and transfer them. However, this
typical mechanism is influenced by the local temperature since a change in it could cause:
(i) an increase in the non-radiative transitions or (ii) a population of higher energy levels
through thermal excitation [21,22]. For that reason, the analysis of emission intensity as
a function of the temperature has attracted growing interest. Among the techniques able
to quantify such changes, the fluorescence intensity ratio (FIR) is maybe one of the most
attractive since it relates the behavior of two emissions as a function of the temperature.
This considers two energy levels that can be thermally coupled (TCLs) or not (non-TCLs).
The energy levels are considered TCLs when the energy gap (AE) is between 200 and
2000 cm ™!, which allows the population of the next higher energy level according to the
Boltzmann distribution (Equation (1)) [23].

_lu _AE
FIR = L Bexp( kT) 1)

where I;; and I, refers to the integrated emission intensities of the energy transitions
assessed (upper and lower), AE is the gap energy between them, k is the Boltzmann constant,
T is the temperature, and B is an experimental constant. However, the AE restriction of
the TCLs limits the sensitivity of the FIR technique. To overcome such limitation and
considering that not only the emission intensity of the TCLs varies, Lu et al. proposed the
assessment of other energetic levels known as non-TCLs which should be fitted following a
polynomial equation (Equation (2)) [19]. In both cases, the absolute (S,) and relative (S;)
sensitivity can be calculated using Equations (3) and (4). However, it is necessary to note
that the main relaxation mechanism of non-TCLs is the multi-phonon relaxation and its
analysis is complicated especially for the UC process [24].

FIRy = a+bT + cT? 2)
dFIR AE
1 dFIR .~ AE
S =R ap 100% = W-loo o (4)

Figure 3a presents the FIR between the TCLs (*Hyp; /2 and 45, /2), which fits well
with linear regression; enabling to obtain the AE = 779.3 cm~! through a simple linear
regression, which slightly differs from the value obtained from the absorption spectra
(AE =744 cm~1), such a difference could be associated with the matrix employed or the
accuracy of the measurements. While the FIR assessment between 4, /2 =45 /2 transition
(non-TCL), typically negligible, and (i) "Fy /2 (non-TCL), (ii) ’Hy; s2 (TCL), and (iii) 4g, /2
(TCL) are presented in Figure 3b—d, respectively. These show that the FIR increases with
the temperature and fits well with the polynomial regression. The curve of S; and S, of
each case is presented on the insets of Figure 3. All Sa increase with the temperature and
reach their maximum at 573 K (Table 1). The highest one was 0.003 K—!, which corresponds
to 2Hy; /2_483 /2 transitions. While the S, achieves 1.04 K1 at 300 K (*F;, /2_2H11 /2)-
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Figure 3. The FIR of (a) TCLs (*Hy1/5_*S3/2); (b) non-TCLs (*F;,,_"Fg»); () non-TCL—TCL
(*F; /2_2H11 /2); (d) non-TCL—TCL (*F, /2_483 /2); Insets show the absolute and relative sensitivity.

The obtained results indicate that the accurate selectivity of the matrix besides the
ideal co-dopant concentration enables observing the high-temperature dependence of some
negligible energy transitions, which can be considered in optical temperature sensing
applications due to their outstanding sensitivity [19]. Compared to other promising results,
the temperature dependence of 4F, /2 —45 /2 has not been reported before, even on the
ZBLAN matrix under 377 nm excitation. These indicate that fluorinated glass is an ideal
matrix for evaluating the temperature dependence of lanthanides, as its low phonon energy
prevents non-radiative transitions and benefits typically insignificant transitions, making it
an excellent candidate for temperature detection.

Table 1. Optical thermometric parameters of fluoroindate glass and other glasses.

Glass Aexc [Nm] AE [em—1] Transition S.[10-3 K-1] S, [%K—1] Ref.

InF; 980 780 2Hyy /0S50 3.00@573 K 1.24@300 K This work

InF3 980 - 4,0 "Fg n 0.18@573 K 1.44@325 K This work

InF3 980 — 4F;/_2Hyy o 0.12@573 K 1.04@300 K This work

InF3 980 — 4F; 0 4S39 0.18@573 K 1.81@372 K This work
TeO,-Al,03-NaF-CaF, 980 767 2Hy1 /5 *S3/2 7.45@548 K 1.25@298 K [25]
Silicate glass 980 719 Hii/%S3/0 2.70@513 K 1.17@298 K [26]
TeO,-BaF,-GdF; 980 771 2Hy1 /5 *S3/0 6.84@548 K 1.25@298 K [11]
TeO,-ZnO-ZnF,-La O3 980 745 2Hy1 /5 4S3/2 5.97@547 K 1.21@298 K [27]
Fluoride glass 1480 769 2Hy1 /5 %S3.0 4.00@548 K 1.25@298 K [28]
Chalcogenide glass 1060 645 2Hy1 /0 %S30 5.20@493 K 1.05@298 K [29]
ZBLAN 337 732 2Hy1 5 4S3/2 4.60@527 K 1.19@298 K [30]
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As repeatability is critical for sensing applications changes in the UC emission of 4S5,
— 415/, transition under constant NIR irradiation (980 nm), different pumping powers
(200-375 mW), and different temperatures were investigated (Figure 4). The highest UC
luminescence quenching degree (ARt—Equation (5)) was 4% after constant irradiation
for 300 s, with pumping power of 200 mW, and a temperature of 423 K. Moreover, the
reversible luminescent switching capability of the sample under the same excitation but
with a pumping power of 300 and 375 mW is illustrated in the inset on the right of Figure 4.
Such results suggest that the material tested is attractive for sensor application.

Ro = R¢
AR; = (1 — 20 ) 100% (5)
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Figure 4. Normalized emission intensity at 545 nm versus irradiation time at (a) 300 K; (b) 423 K;
(c) 573 K. The insets on the left show UC emission at 545 nm versus pumping power at 20 s irradiation
time. The insets on the right show luminescent switching contrast of 980 nm excitation at 300 mW
(black) and 375 mW (red).
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3.2. Fluoroindate Optical Fiber

As the performance of fluoroindate glass co-doped with Yb3* and Er®* exhibited
exceptional temperature sensing properties, an optical fiber was made with it. Then,
its temperature-sensing properties were evaluated using the FIR technique employing
the same transitions. Note that the surface area analyzed in each case is different since,
according to scanning electron microscopy (SEM), the fiber has a diameter of ~100 pm
(Figure 5c). Therefore, it is not surprising that, in general, the emission intensity of the fiber
is lower (Figure 5). However, the temperature-emission dependence between 4F, /2 —45 /2
and 4F /2 =45 /2 changes. In the first one, the influence of the temperature is not evident
until the temperature exceeds 400K (Figure 5b), while in the second is not possible to
observe a consistent temperature dependence since the intensity is down-up—-down.

Magnified (100x) 5 4
3/2 15/2
573K
4Fm - 4I15/2

El El

5, 5, 300K
> >

8 2 EHn/z—’q'ma

g 2
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,/
i T T T T T T v — 7T T T T - T T T T T T T
475 480 490 495 500 505 500 525 550 575 600 625 650 675 700
Wavelength [nm] Wavelength [nm]

(a) (b)

30 pm

(©)

Figure 5. Up-conversion emission spectra of fluoroindate glass fiber co-doped with 0.8YbF3 and
1.4ErF3 under 980 nm excitation at the (a) 475-505 nm range (enlarge 100 times) (b) 500-700 nm range
(inset—fiber under excitation) (c) SEM image of fiber cross-section.

The FIR between 2Hj; /2 and 45, /2 at room temperature is ~0.15 in both samples
(Figure 6a). However, the ratio between the glass and fiberglass changes with the temper-
ature. On the fiber, the FIR at 573 K is ~26.2% lower than on the glass for 2Hy, /2—453 /2
4F, /2—7F9 /2, and 4F, /2—2H11 /2. The energy value between TCLs (*Hyp; s2 and 45, /2) is
620.2 cm ™! (Figure 6a).
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The highest Sa of the TCLs (inset at Figure 6) was obtained at 428 K (0.0019 K1),
and the rest of the combination has a Sa around 0.00010 K~!. The maximum Sr of TCLs
was achieved at 300 K (0.98% K1) and, in the case of *F;,,—*Fg 5, *F7/o—?Hi; /2, and
4, /2—483 /2, the Sris 2.0, 0.8, and 2.0, respectively.
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Figure 6. The glass fiber FIR of (a) TCLs (*Hj1/o—*S3,2); (b) non-TCLs (*F;,,—"Fg»); (c) non-
TCL—TCL (*F; /2_2H11 /2); (d) non-TCL—TCL (*F; /2—453 /2). Insets show the absolute and relative
sensitivity.

To assess the reliability of fiberglass, it was evaluated if FIR changes when the fiber is
exposed to constant irradiation (Figure 7). Obtaining a maximum deviation of 8.3% when
the sample was irradiated for 60 s with a pumping power of 300 mW at a temperature of
300 K. The reversible luminescent switching of the glass fiber confirms the viability of the
material for temperature-sensing applications.

According to the sensitivity and consistency of the measurement of the glass and
fiberglass, and taking into consideration the chemical stability of the matrix employed, it
could be possible to use this material to fabricate an effective temperature sensor for use in
immune locations and harsh environments [1,2,31].
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Figure 7. Normalized up-conversion FIR of glass fiber (TCL-TCL) versus irradiation time at (a) 300 K;
(b) 423 K; (c) 573 K. The insets on the left show normalized UC FIR (TCL-TCL) versus pumping
power at 20 s irradiation time. The insets on the right show luminescent switching contrast of 980 nm
excitation at 300 mW (black) and 375 mW (red).

4. Conclusions

Fluoroindate glass (wafer and fiber)co-doped with YbF; and ErF; has an outstanding
temperature—emission dependence. According to the FIR technique, based on TCLs and
non-TCLs, these materials have a high temperature—emission reliance, which was confirmed
by their excellent sensitivity. The higher absolute sensitivity was 0.003 K~! and 0.0019 K~!
for glass and glass fiber, obtained from the TCLs (*Hy; /2—>4S3 s2)- While the superior
relative sensitivity was obtained among 4F, /2—4F9 /2 transitions (2.05% K1 and 1.64% K~!
for glass and glass fiber). Taking into consideration the thermometric parameters and
repeatability, this material could be used in designing a temperature sensor.
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