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Abstract: The reaction–diffusion equation approach, which solves differential equations of the de-
velopment of density distributions of mobile and immobile dislocations under mutual interactions,
is a method widely used to model the dislocation structure formation. A challenge in the approach
is the difficulty in the determination of appropriate parameters in the governing equations because
deductive (bottom-up) determination for such a phenomenological model is problematic. To cir-
cumvent this problem, we propose an inductive approach utilizing the machine-learning method
to search a parameter set that produces simulation results consistent with experiments. Using a
thin film model, we performed numerical simulations based on the reaction–diffusion equations for
various sets of input parameters to obtain dislocation patterns. The resulting patterns are represented
by the following two parameters; the number of dislocation walls (p2), and the average width of
the walls (p3). Then, we constructed an artificial neural network (ANN) model to map between
the input parameters and the output dislocation patterns. The constructed ANN model was found
to be able to predict dislocation patterns; i.e., average errors in p2 and p3 for test data having 10%
deviation from the training data were within 7% of the average magnitude of p2 and p3. The proposed
scheme enables us to find appropriate constitutive laws that lead to reasonable simulation results,
once realistic observations of the phenomenon in question are provided. This approach provides a
new scheme to bridge models for different length scales in the hierarchical multiscale simulation
framework.

Keywords: reaction–diffusion model; dislocation structure; fatigue; artificial neural network; multi-
scale simulation; machine learning

1. Introduction

Fatigue is a common fracture mode in metal and accounts for a substantial fraction of
failure cases in real industrial products. It is therefore demanded to fully understand the
mechanism of fatigue fracture. In particular, there is still much room for investigations of the
mechanism of fatigue crack formation under cyclic loading. It is widely understood that the
fatigue crack formation in macroscopic metal materials originates in the persistent slip band
(PSB) formed as a result of self-organization of dislocation structures [1]. Nevertheless,
the PSB formation mechanisms proposed thus far have room for further examination
and assessment, urging investigation by modeling and simulation. Moreover, recent
experimental studies of fatigue in nanometer- or submicron-sized materials by Sumigawa
et al. [2,3] indicate the possibility of unveiled mechanisms of fatigue at the nanometer
and submicron scales, or “nano–micro fatigue”. As fatigue fracture was observed in a
specimen smaller than the dimension of PSB, which suggests that fatigue fracture can occur

Materials 2023, 16, 2108. https://doi.org/10.3390/ma16052108 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16052108
https://doi.org/10.3390/ma16052108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0009-0008-1822-8659
https://orcid.org/0000-0003-4843-4118
https://orcid.org/0000-0001-5676-776X
https://doi.org/10.3390/ma16052108
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16052108?type=check_update&version=1


Materials 2023, 16, 2108 2 of 14

without the presence of PSB, the variation of self-organized dislocation patterns due to size
effect should play a key role in nano–micro fatigue [2,4]. This finding also urges modeling
and simulation to reveal unknown complicated mechanisms lying behind the dislocation
structure formation.

Walgraef and Aifantis proposed a phenomenological model of the dislocation pattern
formation in metal under cyclic loading based on the rate-reaction (reaction–diffusion)
theory [5–14]. The reaction–diffusion equation approach, which solves differential equa-
tions of the development of density distributions of mobile and immobile dislocations
under mutual interactions, has been widely used to simulate the dislocation structure
formation and was found to be useful to discuss its mechanisms. A challenge in such a
phenomenological model is, however, the difficulty in the determination of appropriate
parameters in the governing equations. Parameters are often fitted so that the simulation
results become consistent with experimental observations of the phenomenon in question,
but this can be daunting when the governing equations contain a number of parameters.

An alternative way would be bottom-up (deductive) determination based on a differ-
ent physical model covering a smaller length scale. For example, dislocation mobility used
in the discrete dislocation dynamics can be obtained by a molecular dynamics simulation
of a single dislocation. Although this scheme may look straightforward, consistency with
experimental facts is not guaranteed because the simulation at the lower scale may produce
nontrivial deviation from reality due to technical constraints such as the limitation of spatial
and temporal scales of the simulation setup. Moreover, the deductive approach must rely
on a multi-story hierarchy of multiscale models if the phenomenological model is on the
macroscopic side, which can make the parameter determination substantially prone to
accumulated deviation.

In this study, we propose an inductive approach for the parameter determination uti-
lizing machine-learning. Using a thin film model, we performed numerical simulations of
dislocation structure formation based on the Walgraef–Aifantis (WA) model using various
sets of input parameters. The results of dislocation structures (density distributions) were
characterized with devised algorithms. Then, we constructed an artificial neural network
(ANN) model that predicts the output dislocation patterns from the input parameters. The
application of the proposed scheme for finding appropriate constitutive laws consistent
with experiments was discussed. This new scheme paves the way for bridging models for
different length scales in the hierarchical multiscale simulation framework.

2. Methodology
2.1. Reaction-Diffusion Equation by Walgraef-Aifantis

Walgraef and Aifantis proposed a reaction–diffusion model (which we call the WA
model hereafter in this paper) to describe temporal change in dislocation densities, which
has a long history and is widely used for its convenience. In this model, dislocations are
divided into two categories; i.e., the mobile and immobile dislocations. The former is
free to move as a response to stress exerted in the slip plane, while the latter is trapped
or moves slowly. The mobile and immobile dislocation densities in space x and time t
are, respectively, described by ρm(x, t) and ρi(x, t). Temporal evolution of the dislocation
density functions is obtained by solving the following parallel non-linear partial differential
equations [14]:

∂ρi

∂t
= Di

∂2ρi

∂x2 + α(ρ0i − ρi)− βρi + γρmρ2
i (1)

∂ρm

∂t
= Dm

∂2ρm

∂x2 + βρi − γρmρ2
i (2)

The first terms of the right-hand side of the two equations represent diffusion-like
behavior of the mobile and immobile dislocations, with Di and Dm being constants for the
strength of diffusivity. Pinning-up of newly produced dislocations during the formation
of PSBs is expressed by α(ρ0i − ρi), where α represents the annihilation rate and ρ0i is a
constant value describing the source of immobile dislocations, which is assumed to exist
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uniformly in the system. Release of immobile dislocations from the dislocation forest is
described by βρi, where β designates the dislocation release from the forest. Capture of
mobile dislocations by immobile dipoles is represented by the nonlinear term of γρmρ2

i ,
with γ being the capture rate.

While the two parallel equations of the evolution of the dislocation density functions
include five parameters (WA parameters; Di, Dm, α, β, γ), not all of them are independent,
meaning that the five parameters should not be arbitrarily determined. According to
Schiller et al. [15], the following relations hold among the pinning-up rate, the release rate
and the diffusivity strengths:

α =
Di

l2
i

(3)

γ =
v2

m

2ρ2
0iDm

(4)

where li and vm are the mean free path of immobile dislocations, and the effective velocity
of mobile dislocations considering trapping by obstacles, respectively.

In addition, it is known that there are two bifurcations in the dislocation pattern
depending on the value of β. If β equals or exceeds a critical value of βH, the dislocation
pattern oscillates with time, which is called the Hopf bifurcation. The other critical value is
βc (assuming βc < βH), at which the Turing instability occurs; i.e., the dislocation pattern
is formed if β exceeds βc. According to stability analysis, βH and βc are in relation with
some parameters as [14]

βc =

(
√

α +

√
cDi

Dm

)2

(5)

βH = α + c (6)

c = γρ2
0i (7)

The five WA parameters with the consideration of the abovementioned traits were
changed as follows:

Di was set to be 10−4, 10−3.5 or 10−3 µm2/s.
Dm was set such that Di/Dm = 0.2× 10−2, 0.5× 10−2 or 10−2 because Di/Dm should

be at least 10−2 [15].
β was set to be β1, β2 or β3, where β1 = 0.9 βc, β2 = βc +

βH−βc
3 and β3 = β2 +

βH−βc
3

(NB: β1 < βc < β2 < β3 < βH).
α and γ are determined according to Equations (3) and (4), with li = 10−2 µm, vm =

10 µm/s and ρ0i = 0.5 µm−2 [15], which is an average value of the initial distribution of ρi.
Therefore, 27 parameter sets were used in total.
As described above, ρi and ρm are functions of space coordinate x and time t, meaning

that we consider a one-dimensional distribution of dislocations. x is in the range 0 ≤ x ≤ l,
where l indicates the thickness of the space. In our simulation, we set l = 1.0 µm. At the
boundaries of the space, the spatial derivatives of the dislocation densities are assumed to
be zero; i.e., ∂ρi,m

∂x = 0 at x = 0, l.
Here, we explain two schemes to construct initial dislocation distributions from which

the parallel reaction–diffusion calculations start. One is a simple way to use random
fractional values of f (0 < f < 1) as the initial dislocation density (Scheme A). The other
is a devised scheme to give more smooth but random distributions (Scheme B). There,
the initial dislocation distributions were generated by superposing sinusoidal waves with
various (given) wavenumbers and random amplitudes, controlled to satisfy the given
boundary condition and minimum/maximum values. The detailed procedure of Scheme B
is explained in Appendix A. From these initial distributions, we solved the parallel partial
differential equations (Equations (1) and (2)) numerically using the Euler method with a
time step of 1.0× 10−6 s.
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2.2. Characterization of Resulting Dislocation Structure

After a sufficient number of iterations of numerical integral (time development) of
Equations (1) and (2), we obtain converged dislocation densities (ρi and ρm). Since the
density distribution of immobile dislocations should represent the dislocation pattern
formed as a result of diffusion and reaction of mobile and immobile dislocations, we
analyze the form of ρi. Figure 1 schematically shows two typical distribution patterns
of immobile dislocations. Figure 1a depicts the case where we find peaks of dislocation
density aligned with low-density areas lying in between, which can be regarded as the
formation of the wall structure. Thus, the peaks in ρi will be called “walls” hereafter in
this paper. In contrast, no characteristic shape is found in some cases such as Figure 1b,
indicating no formation of self-organized dislocation patterns.
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Figure 1. Schematics of typical dislocation density distributions (ρi). (a): Aligned peaks with low-
density areas in between, indicating formation of wall structure. (b): No self-organized dislocation
pattern.

Now, we need an algorithm to extract features of the distribution pattern from the
function ρi(x) (0 ≤ x ≤ l), namely; (a) the presence of a self-organized pattern; (b) the
number of walls; and (c) the average width of walls. Our algorithm works as follows: It
is regarded that a self-organized pattern is formed when more than 50% of ρi(x) exceeds
the threshold ρth := ρmin + 0.05 (ρmax − ρmin), where ρmax and ρmin are the maximum and
minimum values of ρi(x). By detecting points where the curve y = ρi(x) and y = ρth
intersect each other, the number of walls can be counted. The width of a wall is defined as
the width of a continuous region where ρi(x) ≥ ρth.

2.3. Mapping of WA Parameters and Resulting Dislocation Structure
2.3.1. Structure of Artificial Neural Network model

Our ANN model consists of five layers including the input and output layers. The
number of nodes on each layer is 5 → 6 → 6 → 4 → 3. The input layer has five nodes
corresponding to WA parameters (Di, Dm, α, β and γ), respectively. The output layer
has three nodes, which give quantities (p1, p2 and p3) for characterization of the resulting
dislocation pattern. p1 is a Boolean value representing whether a dislocation wall structure
is formed. p2 and p3 are the number of walls [µm−1] and the average width [nm] of the
formed walls, respectively.

Figure 2 shows a schematic illustration of the ANN architecture. The present ANN
model is based on a typical feed-forward network, consisting of five layers; one input layer
(hereafter, referred to as Layer 0), three internal layers (Layers 1, 2, and 3), and one output
layer (Layer 4). Each layer consists of nodes. The numbers of nodes in Layer n, Nn, are
set to 5, 6, 6, 4, and 3 for Layers 0, 1, 2, 3, and 4, respectively. The nodes in Layer 0 (input)
and Layer 4 (output) are corresponding to the WA parameters (Di, Dm, α, β, γ) and the
characterization parameters (p1, p2, p3), respectively. The state of each node is given by a
real number, and hereafter we refer to the state of the q-th node in the n-th layer as xn

q . The
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states of nodes in the input layer (n = 0), x0
q(q = 1, 2, 3, 4, 5), are given by the common

logarithms of the WA parameters:

x0
1 = log10Di,

x0
2 = log10Dm,
x0

3 = log10α,
x0

4 = log10β,
x0

5 = log10γ.

(8)
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and triangle for the input layer, internal layers, output layer, and bias, respectively. Not all connections
between adjacent layers are drawn.

Note that we adopted a logarithm of the parameters instead of the parameters them-
selves because the parameters are expected to vary in a wide range (by several digits). The
states of the internal and output layers are determined by the previous layer as [16]

xn
q = fn

(
wn

q0 +
Nn−1

∑
r=1

wn
qrxn−1

r

)
, (9)

where wn
qr denotes the weight parameter, and wn

qr is the bias parameter (n = 1–4; q =
1, . . . , Nn; r = 1, . . . , Nn−1), which are the internal parameters to be optimized by machine
learning. Therefore, the total number of the parameters is 121. The function fn(x) represents
the activation functions defined as [16]

fn(x) =
{ 1

1+e−x (n = 1, 2, 3)
x (n = 4)

. (10)

The node states of the output layer are interpreted as the predicted characterization
parameters, i.e., pq = x4

q(q = 1, 2, 3). Note that the Boolean parameter p1 deals with a
real number in the ANN model for simplicity (If a wall structure is formed, then p1 = 1;
otherwise p1 = 0). In this description, the value of p1 can be interpreted as the probability
of formation of a wall structure.

The numbers of intermediate layers and nodes on the layer are arbitrarily chosen, but
should affect the performance of the ANN model. This will be discussed later in this paper.

2.3.2. Training of ANN

The reaction–diffusion equations were solved for the parameter sets and the initial
structures described in Section 2.1 (i.e., 27× 10 = 270 cases for each scheme). Among these
cases, we found that the final ρm had negative values for the cases with Di/Dm = 0.2× 10−2

and Di = 10−3 µm2/s. This was presumably because Dm was relatively large, resulting
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in numerical errors in solving the partial differential equations with the Euler method.
Excluding these parameter sets, we used 240 (=24 × 10 ) cases as training data of the
ANN model for each scheme. Then, the ANN model was trained to map the input WA
parameters to the resulting dislocation structure ( p1, p2and p3).

The loss function, L, which represents deviation of the ANN prediction from actual
results, is set to be

L =
n

∑
k=1

3

∑
i=1

(
pi,k − p0

i,k

)2
(11)

where pi,k indicates pi of the case k out of the combinations of parameter sets and initial
distributions by either Scheme A or B. n = 240 (24 parameter sets and 10 initial distributions)
is the total number of the cases. The WA model parameters were optimized to reduce the
loss function with the steepest descent method.

2.3.3. Test of ANN

To examine the predictability of the trained ANN, i.e., the reliability of the prediction
when a parameter set deviates from training datasets, we prepared test datasets (denoted
with ˆ) using a predetermined value indicating the amount of deviation, ∆i,m, as follows:
First, D̂i and D̂m were determined as

D̂i,m = Di,m + Ri,m∆i,m (12)

with Ri and Rm randomly taking integer values −1, 0 or 1. Here, all combinations of Ri
and Rm excluding Ri = Rm = 0 (i.e., eight cases) were produced with the same probability.
Next, using the determined D̂i and D̂m we obtained α̂ and γ̂ as follows:

α̂ =
D̂i

l2
i

. (13)

γ̂ =
v2

m

2ρ2
0iD̂m

(14)

where the values of li, vm and ρ0i are the same values shown in Section 2.1. Finally, β̂ was
determined in the following way so that the magnitude correlation among β, βc and βH
was kept: After calculating β̂c and β̂H based on D̂i and D̂m, β̂ was obtained as{

β̂ = 0.9β̂c + R′∆ : β < βc

β̂ = β̂c +
β−βc

βH−βc
(β̂H − β̂c) + R′∆ : βc < β < βH

(15)

where R′ randomly takes integer values −1, 0 or 1 and ∆ represents the amount of devia-
tion.

To examine the predictability of the ANN model according to the deviation magnitude
of test datasets from the training datasets, we set ∆i,m and ∆ to be 0.1, 1 or 10 % of the
corresponding parameter values.

3. Results and Discussion
3.1. Training of ANN

Figure 3 shows changes in the loss function during the steepest descent iterations. In
both the cases with initial structures by Scheme A and Scheme B, the loss function was
successfully reduced. This means that the training of the ANN model on the prepared
datasets was achieved.
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Figure 4 compares dislocation structures (p1, p2 and p3) predicted by the trained ANN
and the actual WA results. Note that the predicted p1 can take fractional (non-integer)
values, which makes the deviation of the predicted values from the actual p1 a little
conspicuous (up to 0.28 and 0.29 for Schemes A and B, respectively). It is however only a
few points that show a relatively large deviation. It is noticed therefore that the predicted
and actual values are overall in good agreement.

3.2. Evaluation of ANN with Test Datasets

Figure 5 compares predicted dislocation structures (p1, p2 and p3) with the ANN and
actual WA solutions for the deviated parameter sets. To quantitatively assess the validity
of the ANN, errors in the ANN prediction of p2 and p3 from the actual WA solutions were
calculated and compared with the magnitude of p2 and p3, respectively. The average errors
for the parameter sets with 10% deviation (test data) were found to be within 7% of the
average magnitude of p2 and p3. The comparison overall demonstrates a good performance
of the ANN model giving predictions in a good agreement with the actual WA results,
with exceptions at relatively large average wall widths (p3). These deviations are, however,
reasonable because the points showing the large deviation are from the cases that were
excluded from the training of the ANN (i.e., Di/Dm = 0.2× 10−2 and Di = 10−3 µm2/s).
These cases have the largest value of Dm = 0.5 µm2/s among the test datasets, which was
presumably a reason behind the large deviation because machine learning is basically not
suitable for extrapolation.

Although the trained ANN does not seem to work well for extrapolation as shown
above, its predictability for 10% deviation from the training datasets demonstrates the good
performance of the constructed ANN. It is presumably possible to make the ANN model
more robust and reliable to cover a wider area in the parameter space by providing more
training datasets. It is however not the objective of this study to construct such a robust
ANN model to bypass the WA diffusion–reaction equation calculation. We rather aim to
suggest the possibility of mapping between the input parameters of a simulation model
and its results using machine learning.



Materials 2023, 16, 2108 8 of 14

Materials 2023, 16, x FOR PEER REVIEW 8 of 15 
 

 

  

(a-i) p1 (b-i) p1 

  

(a-ii) p2 (b-ii) p2 

  

(a-iii) p3 (b-iii) p3 
(a) Scheme A (b) Scheme B 

Figure 4. Comparison of predicted dislocation structures with the ANN and WA solutions for the 
training parameter sets of (a) Scheme A and (b) Scheme B. (i), (ii) and (iii) show Boolean values 
representing whether a dislocation wall structure is formed, p1, the number of walls, p2, and the 
average width of the formed walls, p3, respectively. In (ii) and (iii), the red and faded red plots show 
the results after and before averaging with the same initial structure, respectively. 

Figure 4. Comparison of predicted dislocation structures with the ANN and WA solutions for the
training parameter sets of (a) Scheme A and (b) Scheme B. (i), (ii) and (iii) show Boolean values
representing whether a dislocation wall structure is formed, p1, the number of walls, p2, and the
average width of the formed walls, p3, respectively. In (ii) and (iii), the red and faded red plots show
the results after and before averaging with the same initial structure, respectively.
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Figure 5. Comparison of predicted dislocation structures with the ANN and WA solutions for the
deviated parameter sets of (a) Scheme A and (b) Scheme B. (i), (ii) and (iii) show Boolean values
representing whether a dislocation wall structure is formed, p1, the number of walls, p2, and the
average width of the formed walls, p3, respectively. The square, diamond and triangle plots show the
amount of deviation ∆ = 0.1, 1, and 10%, respectively.

3.3. Possibility of Inductive Construction of a Simulation Model

The successful demonstration of the input–output mapping paves the way for the
inductive determination of input parameters of a phenomenological simulation model.
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Once the mapping that links between the input parameters and the results is achieved, it
is possible to select a parameter set that produces a desired simulation result. Now, if we
have experimental results of a specific phenomenon and a reliable simulation model (e.g.,
governing equations to model the phenomenon), we can conjecture what the simulation
result should look like. Then, we can pick a parameter set that gives a simulation result
consistent with the experimental observation. In other words, this way is to find parameters
in the simulation model as a reverse problem. This inductive scheme, which can be regarded
as a top-down determination of parameters, provides an alternative measure to determine
constitutive equation parameters, which is often challenging to carry out in a bottom-up
(deductive) manner.

The proposed scheme of inductive determination of simulation models can be regarded
as one example of a physics-informed neural network (PINN) [17–21]. Raissi et al. proposed
the following three types of PINN:

(A) Finding solution of partial differential equations The function forms and parameters
of partial differential equations (PDEs) are known. Initial and boundary conditions
are given at discrete sampling points. A neural network mimicking the solution of the
PDEs is to be found.

(B) Finding parameter of partial differential equations The function forms of PDEs are
known while their parameters are unknown. The solution of the PDEs is given at
discrete sampling points. A neural network as the solution of the PDEs is to be found,
resulting in the determination of the PDE parameters.

(C) Finding latent physical quantities in observations The function forms and parameters
of PDEs are known. A physical quantity in the considered system is given by obser-
vation. A neural network giving the observed physical quantity and other (latent)
physical quantities appearing in the PDEs is to be found so that the prediction of the
quantities is consistent with the observation and the PDEs.

Among these PINN types, our approach may fall in (B) where parameters in PDEs are
found by means of a neural network model.

It should be noted here, however, that what was represented by the ANN in our
approach is not the mapping between the parameters and the PDE solution, but that
between the parameters and the values quantifying the PDE solution. In other words, we
presented an original scheme to quantify the dislocation density distribution as the WA
solution while we adopted a simple ANN model that maps between the input and output
sets of scalar values.

3.4. Integration of Deduction and Induction Approaches in Multiscale Modeling

The scheme of inductive determination of simulation parameters should not be limited
to the WA model as demonstrated in this study, but can be applied to any other simulation
models in general. A simulation model usually consists of governing equations that have
some parameters, and its solution can be obtained once the parameters and the initial
conditions are given. Thus, it is possible to apply the proposed scheme to any simulation
model and obtain mapping between the parameters and the solution, making the inductive
determination of the parameters possible once the desired (i.e., consistent with observed
facts) simulation results are known.

This approach may be extended to realize a reasonable link between simulation models
covering adjoining length scales as schematically shown in Figure 6. Let us take a situation,
for example, where we deal with a material behavior that requires two scale models,
the lower of which can be treated with the atomistic model (e.g., molecular dynamics)
and the larger is described by a phenomenological model (e.g., phase field). Molecular
dynamics can simulate material behaviors using interatomic potentials non-empirically
constructed with first-principles calculations to obtain characteristic material properties
such as diffusion coefficients, dislocation mobility, critical stress for crystal slips, etc., which
is a so-called a bottom-up (deductive) evaluation of material properties.
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This deductive/bottom-up scheme is often applied for scale-bridging in hierarchical
multiscale simulation models [22]. For example, material properties at the nanometer scale
obtained with atomistic model calculations can be put into an upper-scale (mesoscopic)
model such as dislocation dynamics to conduct a larger scale (but coarser resolution) simula-
tion. Similarly, the mesoscopic model can evaluate material properties at the corresponding
scale, which may be fed to a macroscopic model. This way one can build a hierarchical
multiscale model where different length scales are interconnected by the bottom-up fashion.
The problem is, however, that the evaluation in the material properties may contain some
errors, and the errors can accumulate if the bottom-up scale-bridging is repeated, leading
to substantial deviation from reality at the macroscopic scale.

Accepting that the properties evaluated by a simulation model inevitably contain
some amount of errors, we may adjust the obtained properties so that the models on the
different stories of the multiscale hierarchy are mutually interconnected and consistent
with experimental observations, which are usually given at the largest end of the hierarchy.
The inductive determination of model parameters can be utilized for such objectives. The
inductive scheme makes it possible to find possible parameter sets that produce results
consistent with the experiment, i.e., the top-down determination of reliable parameters.
When this is combined with the bottom-up evaluation of material properties, one can find
constitutive laws of the material that are consistent with the experiment and also based
on physics. The deduction–induction integration may be a promising new concept for
the hierarchical multiscale simulation because it can eliminate common problems in the
top-down (i.e., constitutive laws are not physics-based) and bottom-up (i.e., results can be
deviated substantially from experiment) scale-bridging.

4. Conclusions

An inductive approach for the determination of appropriate parameters in simulation
models by means of machine learning is presented and demonstrated for a rate-reaction
model of dislocation structure formation. Using the reaction–diffusion equations of mobile
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and immobile dislocation density distributions proposed by Walgraef and Aifantis, we cal-
culated dislocation wall formation in a one-dimensional model with various predetermined
parameter sets.

After obtaining resulting dislocation wall structures with extensive different parameter
sets, an ANN model was constructed to reproduce the characterization of the dislocation
wall structures as a function of the parameter set. The constructed ANN presented a
good predictability with test datasets; i.e., average errors for the parameter sets with 10%
deviation from training data were found to be within 7% of the average magnitude of the
target data, although non-negligible deviation was found for extrapolation. The presented
scheme of inductive determination of simulation model parameters can be regarded as a
top-down approach to find an appropriate constitutive laws of materials. This approach
provides a new scheme to bridge models for different length scales in the hierarchical
multiscale simulation framework.
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Nomenclature

c Auxiliary parameter for Equations (5)–(7)
Di Diffusion coefficient of immobile dislocation
Dm Diffusion coefficient of mobile dislocation
f Uniform random number
fn(x) Activation function
L Loss function
l Simulation cell size for WA equation
li Mean free path of immobile dislocation
N Number of test data
p1,2,3 ANN output
pi,k Training data
p0

i,k Reference data
R′, Ri, Rm Uniform random number
t Time
vm Effective velocity of mobile dislocation
wn

q0 Bias parameter
wn

qr Weight parameter
x Position
xn

q State of ANN nodes
α Walgraef–Aifantis parameter
β Walgraef–Aifantis parameter
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β1,2,3 β sampled for machine learning
βc Critical value of β at Turing instability
βH Critical value of β at Hopf bifurcation
γ Walgraef–Aifantis parameter
∆, ∆i,m Deviation for test dataset
ρi Density of immobile dislocation
ρm Density of mobile dislocation
ρmax Maximum dislocation density
ρmin Minimum dislocation density
ρth Threshold dislocation density
ρ0i Walgraef–Aifantis parameter

Appendix A

Random initial distributions of dislocation density, ρi(x) and ρm(x), in the two ways,
i.e., Schemes A and B in Section 2.1, were created. In this section, the procedure in Scheme
B (smooth random distribution) is explained in detail. Since both immobile and mobile
dislocation densities, ρi(x) and ρm(x), are dealt with in the same way, we refer to them
together as ρi,m(x) hereafter. The basic process is based on the three steps as follows: (1)
A basic density distribution profile is created by superposing sinusoidal functions with
different wavenumbers; (2) the distribution profile is modulated in the spatial direction
(x) to introduce high frequency contributions; and (3) the distribution is rescaled to set the
minimal and maximal values of density distribution to predetermined values.

(1) Basic function profile ρi,m(x) is given by the following equation:

ρi,m(x) =
Oi,m

∑
n=1

Ai,m
n cos

(
nπ

x
L

)
,

where Oi,m is the number of sinusoidal waves to be superposed (predetermined), and the
coefficient Ai,m

n is a random number (uniform distribution in −1 ≤ Ai,m
n < 1). Note that

ρi,m(x) satisfies dρi,m/dx | x=0 = dρi,m/dx | x=L = 0 (i.e., Neumann boundary condition)
for arbitrary Oi,m and Ai,m

n .
(2) Spatial modulation is applied with the following function ξi,m(x):

x 7→ ξi,m(x) = x + Ci,m
w

sin
(

2Ni,m
w π x

L

)
2Ni,m

w π/L
,

where Ci,m
w is a real number (−1 < Ci,m

w < 1), and Nw is a positive integer (both Ci,m
w and

Ni,m
w are predetermined). The modulated density distribution is given as ρi,m(ξi,m(x)

)
.

Note the following features in the ξi,m function, which are useful for properly generating
many random distributions: (i) ξi,m(x) is a bijective (one-to-one) function; (ii) ξi,m(0) = 0
and ξi,m(L) = L; (iii) dξi,m/dx > 0, and (iv) ξi,m(x) does not affect the minimum and
maximum values of ρi,m.

(3) The modulated density distribution ρi,m(ξi,m(x)
)

is rescaled by the linear transfor-
mation to adjust the maximal and minimal values:

ρi,m(x) 7→ ρi,m(x) = Si,m
[
−ρi,m

min + ρi,m(x)
]
+ ρi,m

min,

Si,m := ρi,m
max−ρi,m

min
max(ρi,m)−min(ρi,m)

,

where ρi,m
max and ρi,m

min are the predetermined maximum and minimum values of the dislo-
cation density. The resultant function ρi,m(x) is adopted as the initial dislocation density
distribution.

In summary, a random smooth distribution can be obtained by giving the ten param-
eters Oi,m, Ci,m

w , Ni,m
w , ρi,m

max, and ρi,m
min. In this study, we prepared ten initial distributions
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by this method, with a single parameter set (listed in Table A1) with ten different random
seeds.

Table A1. Controlling parameter sets.

Immobile Dislocation Mobile Dislocation

O 17 23
Cw 0.5 0.5
Nw 6 6
ρmax 1.0 1.0
ρmin 0.2 0.2
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