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Abstract: Post weld heat treatment, or PWHT, is often used to improve the mechanical properties
of materials that have been welded. Several publications have investigated the effects of the PWHT
process using experimental designs. However, the modeling and optimization using the integration
of machine learning (ML) and metaheuristics have yet to be reported, which are fundamental steps
toward intelligent manufacturing applications. This research proposes a novel approach using ML
techniques and metaheuristics to optimize PWHT process parameters. The goal is to determine
the optimal PWHT parameters for both single and multiple objective perspectives. In this research,
support vector regression (SVR), K-nearest neighbors (KNN), decision tree (DT), and random forest
(RF) were ML techniques employed to obtain a relationship model between PWHT parameters and
mechanical properties: ultimate tensile strength (UTS) and elongation percentage (EL). The results
show that the SVR demonstrated superior performance among ML techniques for both UTS and EL
models. Then, SVR is used with metaheuristics such as differential evolution (DE), particle swarm
optimization (PSO), and genetic algorithms (GA). SVR-PSO shows the fastest convergence among
other combinations. The final solutions of single-objective and Pareto solutions were also suggested
in this research.

Keywords: dissimilar friction stir welding; post weld heat treatment; machine learning; metaheuristics;
process optimization; ultimate tensile strength; elongation percentage

1. Introduction

Friction stir welding (FSW) was invented in 1991 at The Welding Institute (TWI) of
the UK as a solid-state joining process [1]. FSW is extensively applied to high-strength
aluminum alloys, especially the alloyed AA2XXX and AA7XXX series, which are widely
used in important manufacturing industries such as automobiles, aircraft, aerospace, and
military industries due to their high strength, low density, high fracture toughness, good
electrical conductivity, and corrosion resistance [2]. FSW results in intense plastic defor-
mation around the rotating tool and friction between the tool and workpieces. Both of
these factors increase the temperature within and around the stirred zone and generate a
softened region within the weld zone because of the dissolution of strengthening precip-
itates [1,3]. Therefore, as a consequence, precipitation-hardening aluminum alloy joints
generally have a lower weld strength than base metal [4,5]. Many techniques are being
considered to improve the properties of weld joints, such as welding process parameter op-
timization [6–8] and post weld heat treatment (PWHT) [9–15]. Güven et al. [15] compared
the mechanical properties of friction stir welded AA6061 plates before and after applying
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PWHT. The result showed that the joint performance values of PWHT specimens in terms
of proof stress, tensile strength, and elongation were slightly better at 84, 88, and 44 pct,
respectively. Hakan et al. [9] also observed that the PWHT process increased the tensile
strength efficiency and yield strength efficiency of the as-welded joint to 87.4% and 98%,
respectively. Chaitanya et al. [10] examined the influence of PWHT on microstructure and
mechanical properties. PWHT increased the size of aluminum grains in all zones of friction
stir weld joints, and naturally aged joints offered the best mechanical properties. Sivaraj
et al. [11] also reported that after solution treatment and artificial aging, the yield strength
and tensile strength of friction stir-welded AA7075 aluminum alloy joints were increased to
346 MPa and 445 MPa, respectively, increasing joint efficiency by 9% over as-welded joints.
According to the literature review, the PWHT process parameters had a direct impact on
the properties of welded joints, such as tensile strength, hardness, residual stress, and
toughness. For example, Vinay Kumar et al. [14] demonstrated that PWHT significantly im-
proved the ductility and the hardness of the welded joint at 200 ◦C for 10 h compared to the
as-welded joint and the PWHT joint at 190 ◦C for 10 h. In addition, we found that several
researchers [16–19] studied the influence of the PWHT process on the same metal, but they
used different parameters. Hence, many researchers intend to optimize the parameters of
the PWHT process. Chin Chun et al. [20] used the Taguchi experimental design method to
analyze optimal heat treatment parameters for the 7050 aluminum alloy. Mehmet et al. [21]
also investigated the effect of PWHT parameters with the Taguchi method and used the
genetic algorithm for optimization. It clearly shows that the function of PWHT is still
implemented by using traditional methods such as trial-and-error, design of experiments
(DOE), response surface methodology (RSM), or the Taguchi method. In contrast, the other
manufacturing process uses more intelligent approaches such as AI and machine learning
(ML) techniques to obtain the advanced process.

The ML technique is the science of teaching machines to learn on their own to solve
real-time problems based on input data. Recently, ML has been applied in many research
fields and has continuously grown with more authors to increase computer systems’ in-
telligence [22]. In manufacturing, the applications of ML refer to pattern recognition in
existing sets of data for forecasting the future behavior of the system [23] and provide
the promising potential to improve quality control optimization in the manufacturing
process [24]. For example, Kaneko and Funatsu [25] made an application of the online
SVR model for soft sensor development. He and Wang [26] developed a statistical pattern
analysis and process monitoring method based on the K-nearest neighbors (KNN) method.
Tauqir et al. [27] studied the applications of ML to FSW process optimization. The results
show that artificial neural networks (ANN) outperformed RSM in terms of robustness and
accuracy. In addition, they found that the DOE provided a lack of a systematic approach to
process parameters. In the phase of cloud manufacturing [28] and smart manufacturing,
known as industry 4.0, currently, ML has the ability to become the main driver in uncover-
ing fine-grained, intricate production patterns in the smart manufacturing paradigm [29].
On the other hand, we found no application of ML models to implement for the PWHT
experiment in the literature review, because the PWHT process is difficult to test on a large
scale, time-consuming, and expensive. These problems are consistent with the contribution
of ML techniques to solving problems and increasing intelligence.

SVR, KNN, decision tree (DT), and random forest (RF) are examples of supervised
machine learning algorithms used in manufacturing [30]. The goal of these techniques is to
produce a predicted model based on the training data. In this study, four ML techniques
are employed to create a model of the PWHT process to determine the relationship between
parameters and two mechanical properties, such as ultimate tensile strength and elongation
percentage. Then, the process parameter optimization is carried out using metaheuristic
algorithms. Differential evolution (DE), particle swarm optimization (PSO), and genetic
algorithms (GA) are population-based metaheuristic approaches that are popularly used in
the field of manufacturing process optimization [21,31–34]. Ezra and Weihang [35] reported
that GA and DE are more common for solving both process and system optimization
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problems among the 116 papers in their survey of the food manufacturing industry. Nizar
et al. [36] demonstrated that PSO, real-coded GA, and DE obtained the same optimum
for friction stir welding parameter optimization, but PSO had a faster convergence than
the other algorithms. Ricardo et al. [37] discovered that PSO provided a better solution
than GAs for a given micro-milling operation. For solving both single- and multi-objective
problems in this research, DE, PSO and GA were executed. The specific contributions of
this research are as follows:

• A novel approach using ML techniques and a metaheuristic algorithm is proposed for
solving single- and multi-objective problems of PWHT process parameter optimization.

• The relationship between parameters and mechanical properties in the PWHT pro-
cess of dissimilar friction stir welded 2024-T3 and 7075-T651 aluminum alloys are
investigated using ML techniques to model single and multi-objective.

• In this study, the use of ML techniques combined with metaheuristics encourages
the intelligent manufacturing process, particularly the PWHT process, to be more
adaptive, real-time, faster, and cost-effective.

2. Materials and Methods
2.1. Workpiece Material

In this study, AA7075-T651 and AA2024-T3 with dimensions 200 mm × 100 mm ×
3 mm were used for the experiment. The chemical compositions of two materials were
measured by the energy-dispersive X-ray fluorescence (EDXRF) method using the JEOL
model JSX3400R, as shown in Table 1.

Table 1. Chemical composition of AA7075-T651 and AA2024-T3 aluminum alloys (% w/w).

Elements Al Zn Mg Cu Mn Cr Si Fe S Other

AA7075-T651 82.50 9.20 3.50 2.23 0.08 0.30 1.39 0.26 0.44 0.10
AA2024-T3 89.16 0.17 2.92 7.00 0.75 - - - - -

2.2. Friction Stir Welding

The FSW was used to fabricate dissimilar aluminum alloy plate joints between AA7075-
T651 and AA2024-T3. The tool was made of high-carbon steel SKD61 and heat-treated
to 55 HRC. The dimensions of the welding tool are in millimeters, as shown in Figure 1.
The welding parameters were set at a rotational speed of 1200 rpm, a welding speed of
100 mm/min [38], and a plunge depth of 0.2 mm. The support system and welding setup
are shown in Figure 2.
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Figure 2. (a) Setup of the experiment; (b) a welded aluminum alloy plate.

2.3. Post Weld Heat Treatment (PWHT)

After the welding process, a joined plate was cut into three parts in the same transverse
direction as the welding specimens, and their dimensions were 200 mm × 100 mm × 3 mm.
A full factorial design of 24 with 4 center points and 2 replications, resulting in 36 experi-
ments, was implemented. Each part was tested in different conditions of the PWHT process
parameters, as shown in Table 2. The workpieces were heated to the solid solution tem-
perature and soaked in a hardening furnace (Manufacturer: Nabertherm, Germany) in the
first stage. Model: N41/H). Subsequently, the heated workpieces were transferred within
10 s and quenched in water to obtain a supersaturated solid solution state at different
temperatures. After the cooling operation, the quenched parts were artificially aged to
reach full strength.

Table 2. Parameters of post weld heat treatment process.

Parameter Symbol Unit
Value

−1 0 1

Solid solution time A hr 0.5 2.25 4
Solid solution temperature B ◦C 460 480 500

Aging time C hr 6 15 24
Aging temperature D ◦C 120 150 190

2.4. Tensile Test

The workpieces were machined to the dimensions of a tensile test specimen following
the ASTM B 557 M standard (25 mm gauge length), as shown in Figure 3. The tensile test
was conducted using a universal testing machine from Cometech, model QC-506. The test
rate was 5 mm/min. The ultimate tensile strength (UTS) was evaluated, and the elongation
percentage (%EL) was calculated. Figure 4a,b show photographs of tensile test specimens
before and after the test.
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2.5. Modeling by Machine Learning Techniques

In this section, the Python programming language was executed on Spyder (Anaconda
3) software to subject the supervised machine learning algorithms to testing. For prepro-
cessing, the MinMaxScaler was used to normalize the input features into a range [0, 1].
In this study, 28 out of 36 datasets (approximately 80%) were used as training datasets in
machine learning models. The results suggested the most suitable hyperparameters using
Grid Search Cross Validation (CV = 3). Then, 8 out of 36 datasets (approximately 20% of
the dataset) were used to evaluate the model. Five variations in the random state were
applied for all runs and repeated three times. The model’s prediction performance was
measured by the statistical MSE. The conceptual workflow in Figure 5 shows the steps of
the ML technique and the connection point between ML and metaheuristic algorithms.
First, the database collected from the PWHT experiment was split into training and testing
datasets and normalized. Then, using the ML technique learned from the training dataset,
a model was constructed using grid search CV to tune the hyperparameters. The model
was validated by testing a dataset and saved. In the optimization process, the model from
ML was used as a fitness function. The process started with setting the initial algorithm
parameters to Iter (iteration) = 1 before calculating the fitness value. If Iter < Itermax, the
fitness value was updated and reproduced. If Iter = Itermax, then the next step proceeded.
The final solution of a random state was stored. It was checked whether all random states
were used or not. If not, the first step was returned to, and the process was restarted.
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2.6. Process Parameters Optimization
2.6.1. Single-Objective Optimization

In this research, differential evolution (DE), particle swarm optimization (PSO), and
genetic algorithms (GA) were applied to parameter optimization. The fitness function was
conducted using the ML technique as Equations (1) and (2). For all algorithms, population
and maximum iteration were set to 50 and 300, respectively. Due to four input factors, the
search space was limited to four dimensions. The upper and lower bounds of solid solution
time (A), solid solution temperature (B), aging time (C), and aging temperature (D) are
presented as follows:

Maximize : f1(A, B, C, D) = predictedfunctionofUTSobtainedfrommachinelearningtechnique. (1)

Maximize : f2(A, B, C, D) = predictedfunctionofELobtainedfrommachinelearningtechnique. (2)

Subject to:
A 0.5 h ≤ solid solution time (A) ≤ 4 h;
A 460 ◦C ≤ solid solution temperature (B) ≤ 480 ◦C;
A 6 h ≤ aging time (C) ≤ 24 h;
A 120 ◦C ≤ aging temperature (D) ≤ 190 ◦C.

2.6.2. Multi-Objective Optimization

In several multi-objective optimizations, it is difficult to simultaneously provide a
satisfying solution for different objectives. Therefore, a possible answer for multi-objective
optimization is a set of solutions called Pareto-optimal solutions or non-dominated solu-
tions. Hajela and Lin [39] introduced a popular approach that is based on simple aggrega-
tion. They use the weighted aggregation method for fitness assignments. This approach is
easy to use for solving multi-objective problems. Weight factors were varied to obtain all
solutions of a combination and show the different relations of two objective functions.

1. Weighted aggregation method

The most common method to convert a multi-objective problem into a single objective
is using weight factors. Based on this research, the two objective functions were summed
up with varying weights, giving Equation (3).

maximize : F(X) = w1 f1(X) + w2 f2(X) (3)

where
f1 and f2 represent two objective functions;
X is the decision variables;
w1 and w2 are the weight factors.
Define w1 = k/N. The combined objective function in Equation (3) can be rewritten as

F(X) =
k
N

f1(X) +
N − k

N
f2(X) (4)

subject to
w1 + w2 = 1, w1 ≥ 0, and w2 ≥ 0
where N is the population size, and k starts from 1 to N (use N = 20).
The framework of the weight sum method is described as Algorithms 1 follows.

2. Hypervolume indicator

The hypervolume indicator [40] is a measure of the quality of a set p = {p(1), p(2), . . . ,
p(n)} of n nondominated objective vectors produced by the multi-objective optimizer. This
indicator consists of the measure of the region dominated by P and bounded above by
a reference point r ∈ Rd, such that r ≥

(
maxp p1, . . . , maxp pd

)
, where p = (p1, . . . , pd) ∈

P ⊂ Rd, and the relation ≥ applies component wise [41], as shown in Figure 6. In this
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work, the performance of each metaheuristic algorithm was measured by computing the
hypervolume metric and comparing it with the region’s size.

Algorithms 1: Weighted Aggregation Method.

1. initialize population size N and other parameters
2. set k = 1
3. Loop

While k < N
(1) Set w = k/N
(2) Execute a single objective optimization algorithm to find the final value using Equation (4)

w f1(X) + (1− X) f2(X)
(3) Store the information on the solution
(4) k = k + 1

End
4. Plot the Pareto front
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3. Results and Discussion

As mentioned, the full factorial design (24 with four center points and two replications)
was used in the experiment. The two responses, UTS and EL, are reported in Table 3.

The analysis of variance (ANOVA) technique used statistical data analysis to provide
a significant process parameter for the experimental results of the ultimate tensile strength
(UTS) and elongation percentage (EL). In this study, an ANOVA was executed on Minitab
18 with a significant level of 5%, i.e., a confidence level of 95%. When the p-value is less
than 0.05, the significance of the process parameters to the response value is acceptable. The
ANOVA result of UTS in Table 4 shows that three parameters, solid solution temperature
(B), aging time (C), and aging temperature (D), had significant effects, but solid solution
time (A) was insignificant due to a p-value of >0.05 [42]. The two-way, three-way, and
four-way interactions are also demonstrated to be substantial. As shown in Figure 7, the
main effect plot reveals that higher UTS can be obtained with high solution temperatures.
Increasing the solution time, aging time, and temperature reduces UTS, as observed by
Polmear and Couper [43].
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Table 3. Design matrix and experimental results of PWHT process.

StdOrder RunOrder CenterPt Blocks
Factor Response

A (hr) B (◦C) C (hr) D (◦C) UTS (MPa) EL (%)

26 1 1 1 4 500 24 120 310.00 6.20
20 2 1 1 4 460 6 120 245.23 6.02
17 3 0 1 2.25 480 15 155 258.96 5.52
29 4 1 1 0.5 500 6 190 327.91 7.16
11 5 1 1 0.5 500 6 190 302.04 7.40
32 6 1 1 4 460 24 190 229.92 5.23
25 7 1 1 0.5 500 24 120 233.72 4.65
2 8 1 1 4 460 6 120 261.00 6.19

22 9 1 1 4 500 6 120 306.10 6.10
12 10 1 1 4 500 6 190 248.63 4.60
4 11 1 1 4 500 6 120 314.75 6.12

21 12 1 1 0.5 500 6 120 310.25 5.81
7 13 1 1 0.5 500 24 120 239.85 4.99

34 14 1 1 4 500 24 190 240.36 4.78
14 15 1 1 4 460 24 190 248.17 5.42
18 16 0 1 2.25 480 15 155 283.33 5.39
35 17 0 1 2.25 480 15 155 265.48 5.28
33 18 1 1 0.5 500 24 190 285.17 5.91
23 19 1 1 0.5 460 24 120 289.33 6.90
31 20 1 1 0.5 460 24 190 241.26 5.09
13 21 1 1 0.5 460 24 190 215.07 5.03
6 22 1 1 4 460 24 120 277.50 5.92
5 23 1 1 0.5 460 24 120 281.33 6.50

19 24 1 1 0.5 460 6 120 239.90 6.58
8 25 1 1 4 500 24 120 318.38 6.16

15 26 1 1 0.5 500 24 190 282.13 5.49
16 27 1 1 4 500 24 190 231.02 4.35
28 28 1 1 4 460 6 190 285.21 7.15
30 29 1 1 4 500 6 190 251.00 4.40
9 30 1 1 0.5 460 6 190 269.97 7.20
3 31 1 1 0.5 500 6 120 333.10 6.20

26 1 1 1 4 500 24 120 310.00 6.20
20 2 1 1 4 460 6 120 245.23 6.02
17 3 0 1 2.25 480 15 155 258.96 5.52
29 4 1 1 0.5 500 6 190 327.91 7.16
11 5 1 1 0.5 500 6 190 302.04 7.40

A—solid solution time; B—solid solution temperature; C—aging time; D—aging temperature.

Table 4. ANOVA table for the UTS response.

Source DF Adj SS Adj MS F-Value p-Value

Model 15 31,051.0 2070.07 22.93 0.000
Linear 4 9372.2 2343.05 25.96 0.000

A 1 63.3 63.31 0.70 0.412
B 1 4485.7 4485.70 49.69 0.000
C 1 2874.9 2874.90 31.85 0.000
D 1 1948.3 1948.28 21.58 0.000

2-Way Interactions 6 8416.5 1402.74 15.54 0.000
3-Way Interactions 4 12,114.8 3028.70 33.55 0.000
4-Way Interactions 1 1147.6 1147.56 12.71 0.002

DF = degree of freedom; Adj SS = Adjusted sums of squares; Adj MS = Adjusted mean squares; F-value = mean
sum-of-squares for regression/mean sum-of-squares for residual; p-value = the smallest level of significance at
which the data are significant.
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grain growth and coarsening of the hardening precipitate. Some two-way and three-way 
interactions also demonstrate significance, but none of the four-way interactions. The 
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EL prediction. 

  

Figure 7. Main effect plot for the UTS response. (A) = solution time, (B) = solution temperature,
(C) = aging time, and (D) = aging temperature.

An ANOVA result for the EL response is shown in Table 5. Three parameters, solution
time (A), solution temperature (B), and aging time (C), have significant effects with p-values
smaller than 0.05. According to P. Sivaraj et al. [44], decreasing the aging time reduced the
elongation percentage. The reduction in ductility is attributed to the abnormal grain growth
and coarsening of the hardening precipitate. Some two-way and three-way interactions also
demonstrate significance, but none of the four-way interactions. The main effect plot, as
shown in Figure 8, determines the influence of each parameter on the elongation percentage.
From Tables 4 and 5, the p-values of the UTS and EL models are smaller than 0.05. It means
the parameters are significant to construct models for UTS and EL prediction.

Table 5. ANOVA table for the EL response.

Source DF Adj SS Adj MS F-Value p-Value

Model 15 25.5379 1.70253 16.58 0.000
Linear 4 10.5355 2.63388 25.64 0.000

A 1 1.4285 1.42847 13.91 0.001
B 1 3.1922 3.19223 31.08 0.000
C 1 5.6456 5.64564 54.96 0.000
D 1 0.2692 0.26919 2.62 0.121

2-Way Interactions 6 6.3582 1.05969 10.32 0.000
3-Way Interactions 4 8.6372 2.15929 21.02 0.000
4-Way Interactions 1 0.0071 0.00705 0.07 0.796
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In the model development section, the experimental PWHT process dataset is smaller
than the general problem. Therefore, the consistency of the ML performance in a different
random state and the effect of randomization on the dataset were considered by using five
variations in random states. Grid search cross-validation was applied to tune hyperparam-
eters for the ML technique, and the final values are shown in Tables 6–9. The ML technique
used different hyperparameters in different random states. Since ML strongly depends on
the input dataset, tuning is always applied before prediction. The box plot of the MSE and
MAE for different ML techniques is shown in Figure 9, and the average values are shown
in Table 10. For the UTS model, the average MSE of SVR, DT, KNN, and RF are 0.03748,
0.06455, 0.03, and 0.05591, respectively. For the EL model, the average MSE of SVR, DT,
KNN, and RF are about 0.02072, 0.03971, 0.01659, and 0.04228, respectively. It demonstrates
that SVR and KNN build the UTS model and EL model with the lowest average MSE and
MAE, whereas DT and RF produce more MSE with a larger range of box plots.

Table 6. The final hyperparameter set of KNN for EL and UTS models.

Random
State

Weights n Neighbors Leaf Size p

UTS
Model EL Model UTS

Model EL Model UTS
Model EL Model UTS

Model EL Model

1 distance distance 4 2 3 5 3 1
3 uniform distance 1 2 1 3 1 2
5 uniform distance 1 4 9 5 2 3
7 distance distance 2 2 10 9 1 1
9 distance uniform 3 1 2 1 2 3

Table 7. The final hyperparameter set of SVR for EL and UTS models.

Random
State

C Epsilon Kernel

UTS
Model EL Model UTS

Model EL Model UTS
Model EL Model

1 82 1 0.01 0.01 rbf rbf
3 2 155 0.07 0.06 rbf rbf
5 178 122 0.01 0.08 rbf rbf
7 103 139 0.05 0.09 rbf rbf
9 2 129 0.02 0.06 rbf rbf

Table 8. The final hyperparameter set of DT for EL and UTS models.

Random
State

Max Depth Min Samples Split Min Samples Leaf

UTS
Model EL Model UTS

Model EL Model UTS
Model EL Model

1 6 5 0.1 0.1 1 1
3 7 50 0.8 0.6 1 3
5 4 2 0.8 0.8 1 3
7 8 5 0.2 0.2 1 1
9 10 1 0.1 0.4 1 1

Table 9. The final hyperparameter set of RF for EL and UTS models.

Random
State

n Estimators Max Depth Min Samples Split

UTS
Model EL Model UTS

Model EL Model UTS
Model EL Model

1 46 5 4 9 0.1 0.1
3 1 3 6 6 0.4 0.1
5 3 8 8 5 0.1 0.1
7 13 6 9 3 0.1 0.1
9 2 3 8 4 0.4 0.6
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Table 10. Average MSE and MAE for different ML techniques.

Model
Average MSE Average MAE

SVR DT KNN RF SVR DT KNN RF

UTS 0.03748 0.06455 0.03000 0.05591 0.15961 0.21877 0.1347 0.19255
EL 0.02072 0.03971 0.01659 0.04228 0.10422 0.14911 0.09563 0.16347

In this study, UTS and EL models were used as objective functions, with solid solution
time (A), solid solution temperature (B), aging time (C), and aging temperature (D) as
decision variables. The ML-based model is experimentally combined with a metaheuristic
algorithm to optimize the parameters of the PWHT process and propose the appropriate
combination. After a combination is run with various random states, the value of the final
solution and responses are shown in a type of box plot. For the UTS model, it is observed
that SVR is outstanding in giving a robust model due to providing the smallest range of
box plots, as shown in Figure 10. Similar to the EL model, SVR also offers a model that
does not become stuck in the local optimum during optimization [45,46] while changing
the training dataset (random state) and usually gives almost the same final solution when
optimization is complete, as shown in Figure 11. It also found in Figure 12a,b, SVR provide
the smallest range of box plots of the final value. In contrast, DT, KNN, and RF produce
an extensive range of solutions, especially DT-PSO and RF-PSO. Thus, SVR is the most
suitable model based on the given data in this research, and similar results were observed
by Wuest et al. [47].

Table 11 shows the value of the final solution (decision variables) and objective func-
tions obtained by combinations of SVR and metaheuristics. When SVR works with DE and
PSO algorithms, the final solutions of both UTS and EL models are the same. Additionally,
GA is slightly different. The UTS can be maximized by solid solution annealing at 500 de-
grees Celsius for 30 min and artificial aging at 133.87 degrees Celsius for 6 h. Moreover,
solid solution time, solid solution temperature, aging time, and aging temperature are
suggested to be set at 30 min, 476.44 ◦C, 6 h, and 190 ◦C, respectively, for maximizing EL.
To consider the convergent performance of the model, Figure 13a–f shows a graphical plot
between the best fitness values and iterations. According to Figure 13b,e, PSO converges
faster than other algorithms following DE and GA, respectively.
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Table 11. The optimum PWHT condition results from a single objective (random state = 5).

Objective Algorithm
Optimal Parameter Predicted

ValueA (hr) B (◦C) C (hr) D (◦C)

UTS (MPa)
SVR-DE 0.50 500.00 6.00 133.87 325.16

SVR-PSO 0.50 500.00 6.00 133.87 325.16
SVR-GA 0.50 499.91 6.02 133.78 325.10

EL (%)
SVR-DE 0.50 476.44 6.00 190.00 7.30

SVR-PSO 0.50 476.43 6.00 190.00 7.30
SVR-GA 0.51 475.85 6.00 189.81 7.30
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SVR was chosen for multi-objective analysis combined with metaheuristic algorithms
based on its best performance on given PWHT process data in this study. Two objective
functions obtained from SVR were converted into a single one by using weighted aggre-
gation. However, the important issue in the method is the weight assignment because
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the solution strongly depends on the chosen weighting coefficients. Therefore, the Pareto
solution was proposed to fix the problem. The result of a multi-objective optimization
yields sets of trade-off solutions between UTS and EL. As shown in Figure 14, the Pareto
front shows that the elongation percentage decreases with the increase in the ultimate
tensile strength, as reported by [48]. Furthermore, the main advantage of the proposed
multi-objective is that it provides sets of solutions with a variety of weighting coefficients
from which to select the appropriate one to apply to the specific user-defined process as
alternative solutions.
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(c) SVR-GA.

In order to measure the distinction between the Pareto solutions, the hypervolume
indicator was applied to quantify the quality of a solution set [49] using a single reference
point r = (330,7.5). This measure aims to minimize the volume between solution sets and the
reference point. It is observed from Figure 14 that the regions of hypervolume are concave
due to optimizing the hypervolume in maximization problems [40,50]. The hypervolumes
of SVR-DE, SVR-PSO, and SVR-GA are 12.004, 12.043, and 12.607, respectively. Table 12
shows that the SVR-DE has the smallest volume when compared to the others. It means
the solution sets of SVR-DE can better reach the maximum value of two objective functions.
However, the SVR-PSO also has a small volume, almost the same as the SVR-DE, whereas
the SVR-PSO converges to the final solutions faster.

Table 12. Hypervolume measure of all combinations.

Combination Hypervolume

SVR-DE 12.004
SVR-PSO 12.043
SVR-GA 12.607

4. Conclusions

The PWHT process was conducted for dissimilarly FSWed 2024-T3 and 7075-T651
aluminum alloys. According to the experimental results and analysis carried out, it was
concluded that the parameters in the experimental design significantly affected mechanical
properties such as UTS and EL. The following conclusions can be drawn based on the
results and discussion:

The SVR model demonstrated superior performance among ML techniques for both
UTS and EL models based on the given data in this study.

SVR-DE and SVR-PSO reached the same final solution for the UTS and EL models,
but SVR-PSO shows the fastest convergence among other combinations.
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The final solutions showed that the UTS could be increased by treating the solid
solution at 500 ◦C for 30 min and aging it artificially at 133.87 ◦C for 6 h. For maximized EL,
solid solution time, solid solution temperature, aging time, and aging temperature were set
at 30 min, 476.44 ◦C, 6 h, and 190 ◦C, respectively.

The Pareto front was proposed as an alternative solution with a variety of weighting
coefficients.

SVR-DE gave the smallest volume of 12.004, followed by SVR-PSO and SVR-GA with
12.043 and 12.607, respectively. It was concluded that the solution sets from SVR-DE can
reach the maximum value of two objective functions more than SVR-PSO and SVR-GA.

In conclusion, this research presented contributions to developing the PWHT process
in terms of model prediction and parameter optimization by using the ML technique,
which is one of the main characteristics of smart manufacturing design and is expected to
progress quality control. In machine learning techniques, the data used for training are not
limited to the designed level like in experimental techniques. This makes the process of
collecting data more flexible. When compared to the traditional design of an experiment,
this would be the primary advantage. In addition, the metaheuristic approach in this study
provides trade-off solutions for multi-objective problems with a variety of suitable options
for different decision-makers. Further work can be applied with the finite element method
(FEM) to study real-time material properties and add the significant factors of the PWHT
process to obtain the results with a high-dimensional and more intelligent program.
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