
Citation: Piotr, L.; Judyta, N.-M.

Numerical and Experimental

Analysis of Lap Joints Made of Grade

2 Titanium and Grade 5 Titanium

Alloy by Resistance Spot Welding.

Materials 2023, 16, 2038. https://

doi.org/10.3390/ma16052038

Academic Editors: Janina Adamus,

Piotr Lacki and Maciej Motyka

Received: 18 January 2023

Revised: 14 February 2023

Accepted: 22 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Numerical and Experimental Analysis of Lap Joints Made of
Grade 2 Titanium and Grade 5 Titanium Alloy by Resistance
Spot Welding
Lacki Piotr * and Niemiro-Maźniak Judyta
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Abstract: The paper presents the evaluation of the load capacity of lap joints and the distribution of
plastic deformations. The influence of the number and arrangement of welds on the load capacity of
the joints and the method of their failure was investigated. The joints were made using resistance
spot welding technology (RSW). Two combinations of joined titanium sheets were analyzed: Grade
2–Grade 5 and Grade 5–Grade 5. Non-destructive and destructive tests were carried out in order to
verify the correctness of the welds within the given parameters. All types of joints were subjected to
a uniaxial tensile test on a tensile testing machine, using digital image correlation and tracking (DIC).
The results of the experimental tests of the lap joints were compared with the results of a numerical
analysis. The numerical analysis was performed using the ADINA System 9.7.2 and was based on
the finite element method (FEM). The conducted tests showed that the initiation of cracks in the lap
joints occurred in the place as the maximum plastic deformations. This was determined numerically
and confirmed experimentally. The number of welds and their arrangement in the joint affected the
load capacity of the joints. Depending on their arrangement, Gr2–Gr5 joints with two welds reached
from approximately 149 to 152% of the load capacity of joints with a single weld. The load capacity
of the Gr5–Gr5 joints with two welds ranged from approximately 176 to 180% of the load capacity of
joints with a single weld. Observations of the microstructure of RSW welds in the joints did not show
any defects or cracks. The microhardness test in the Gr2–Gr5 joint showed that the average hardness
of the weld nugget decreased by approximately 10–23% when compared to a Grade 5 titanium alloy
and increased by approximately 59–92% compared to Grade 2 titanium.

Keywords: RSW; lap joint; Ti grade 2; grade 5 titanium alloy

1. Introduction

Resistance Spot Welding (RSW) is a process used in metal lap joints. These are
joints in which where the elements overlap. They are used in large numbers in aircraft
constructions and the automotive industry. The RSW process is appreciated due to its high
production efficiency, low operating cost and high degree of automation [1]. Resistance
welding consists of joining two or more sheets as a result of heat generated by electrical
resistance [2]. The joined elements are placed between water-cooled electrodes. At a high-
intensity and at the right time of welding, an electric current is then passed through the
joined elements [3]. At the joining place, the elements heat up to the melting point of the
metal, forming a liquid weld nugget. The size of the weld nugget is determined by the
welding time and the welding current intensity. After turning off the welding current, the
molten metal solidifies, and a uniform joint is created. The weld nugget is cooled under
the pressure of the electrodes. An alternative method of joining aluminum sheets is the
refill friction stir spot welding (RFSSW) process [4]. This is a process that uses the frictional
heating of metals in the solid state to join them. It consists of the local friction heating of the
joint by a rotating tool. In the case of RSW, the joining process takes place in the liquid state
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of the metals. During resistance spot welding, significant changes occur in the mechanical
and metallurgical properties of the welded areas and heat-affected zones. The study of
these changes is very important for the strength of welded joints [5].

The main purpose of resistance spot welding is to achieve a strong joining. An
important element of the process is the selection and optimization of the appropriate
welding parameters. An analysis of existing work [6–9] shows that the proper selection
of parameters increases the strength of the analyzed joints. In [7], experimental studies
showed that increasing the electrode pressure, welding current and welding time increased
the tensile strength of the welded samples. A similar conclusion regarding the effect of the
current intensity on the strength of the weld was obtained in [6]. It has been found that
the tensile shear load capacity of welded materials increases with an increase in the heat
and the input associated with the welding current. This is due to the increase in the size
in the weld nugget. Research [9] also showed that the size of the weld increases with an
increasing current. This results in an increase in the tensile shear load capacity. However,
further increasing the current after achieving optimal parameters had an adverse effect
on the joints. In [8], studies were also carried out on the effect of the current intensity
during resistance welding on the quality and load capacity of the RSW weld. A numerical
analysis of joints with different weld diameters was also carried out. It was found that
with the increase in the weld diameter, the load capacity of the joint increased and the
plastic deformation decreased. However, applying too much current can cause molten
metal spatter and reduce the joint strength.

The resistance welding process is used to join steel [9–12], aluminum alloys [13,14], magne-
sium alloys, copper alloys and to join materials with different mechanical properties [15] and
titanium.

Titanium and its alloys are the materials of the future, thanks to their very good
properties: a low density, ranging from 4.43 to 4.85 g/cm3 [16], and a high mechanical
strength, ranging from Rm ≈ 240 MPa for CP1 to about 1750 MPa for the heat-treated
β titanium alloys [17]. They are used in various industries. In addition, titanium is
characterized by a high resistance to corrosion and good biocompatibility. It is used in
aviation, automotive, construction, and medical engineering, e.g., for forming parts of
surgical instruments [18]. Titanium is also used in drawpieces [16].

The wide application of titanium and its alloys in industry creates the need to develop
research on joining methods. The analysis of current work shows that titanium and its
alloys are also joined by means of electron beam welding (EBW) [19–21], laser beam welding
(LBW) [22], gas tungsten arc welding (GTAW) [23] and friction stir welding (FSW). In recent
years, an increasing amount of research is available on the resistance welding of lap joints
of titanium sheets. Table 1 presents a list of works on resistance spot welding of titanium
and titanium alloys.

Table 1. List of works on resistance spot welding of titanium and titanium alloys.

Paper Titanium Material
Grades

Thickness of
Joined Sheets

[mm]

Welding Current
(kA)

Welding Time
(Cycle)

Electrode Force
(kN)

[7] Grade2–Grade2 1.5–1.5 3–7 10–20 3–6
[24] Grade 5–Grade 5 1.0–1.0 7–11 4–20 2–5
[25] Grade 3–Grade 4 0.4–0.4 3 4 4
[26] Grade 5–Grade 5 0.8–0.8 4 5 4
[27] Grade 2–Grade 5 0.8–0.8 3.35–4.34 9.5 6.2
[27] Grade 2–Grade 5 0.8–0.8 3.19–3.91 9.5 6.2

In this paper, the own research, conducted in [27], was repeated and extended. The
article [27] was presented to evaluate the bending load capacity of a composite beam made
of titanium Grade 2 and titanium alloy Grade 5 using RSW technology. RSW welding
parameters were selected on the basis of joint strength tests and a microstructure analysis.
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For a joint with a single weld, a preliminary numerical analysis was carried out using the
ADINA system. In this work, the experimental tests were repeated, and then the influence
of the arrangement and number of welds in the joint on its load capacity was verified
using the numerical method. For this purpose, a thorough numerical analysis was carried
in the ADINA program, which was based on the finite element method (FEM), for all
joints made. Numerical models differing in the configuration and number of welds were
made. Conditions were also used in the numerical analysis that accurately represented
the behavior of the joint in the in the tensile shear test. In order to assess the impact of the
RSW process on the analyzed joints and changes in the material properties, microhardness
measurements and a detailed structural analysis were additionally performed.

The choice of Grade 2 titanium and a Grade 5 titanium alloy was dictated by their
wide application in aircraft structures. The wide application possibilities of these materials
generated the need to expand the research. Testing the load capacity of titanium joints, and
especially the influence of the number and arrangement of welds in the joint, are therefore
very important issues in the context of the work and strength of the whole structure.

2. Materials and Methods

In this paper, two combinations of joined sheets were investigated: Grade 2–Grade
5 (Gr2–Gr5) and Grade 5–Grade 5 (Gr5–Gr5). The designations of the analyzed materials
according to various standards are presented in Table 2, and their chemical compositions
are presented in Table 3.

Table 2. Titanium designations according to various standards.

ASTM [28]: Titanium Grade 2 Titanium Grade 5

UNS: R50400 R56400

Chemical designations Ti Ti-6Al-4V

WNR: 3.7035 3.7165

Table 3. Chemical composition of technically pure titanium (Grade 2) and Ti6Al4V titanium alloy
(wt %).

Material Component Al V Fe C N H O inne Ti

Grade 2 wt % [29] - - 0.3 0.10 0.03 0.015 0.25 ≤0.1 rest

Grade 5 wt % [30] 4.5–5.5 3.5–4.5 ≤0.3 ≤0.1 ≤0.05 ≤0.015 ≤0.2 ≤0.1 rest

Samples with a width of 25 mm and a length of 100 mm were cut from Grade 2 and
Grade 5 titanium sheets with a thickness of 0.8 mm. Using the RSW technique, the samples
were then joined with a Soudronic resistance welder. Three variants of joints were made,
differing in the number and arrangement of welds: joints with a single weld (Figure 1a),
joints with two welds arranged parallel to the direction of the tensile shear (Figure 1b) and
joints with two welds arranged perpendicularly to the direction of tensile shear (Figure 1c).
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Figure 1. Geometry of the analyzed joints, mm: (a) joints with a single weld; (b) joints with two
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Five samples for each type of joint were made. Their names were established according
to the following scheme: Gr2–Gr5.1-5 and Gr5–Gr5.1-5. Joints Gr2–Gr5.1-3 and Gr5–
Gr5.1-3 were subjected to strength analysis, while joints Gr2–Gr5.4-5 and Gr5–Gr5.4-5
were subjected to a metallographic analysis and a microhardness measurement. Welding
parameters for all sample combinations and configurations are shown in Table 4.

Table 4. Welding parameters Gr2–Gr5 and Gr5–Gr5 joints.

Sample
Number

Joint Type
Welding Parameters

Weld Current
(kA)

Welding Time
(Cycle)

Electrode Force
(kN)

Gr2–Gr5-1.1-5
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was performed on the Emco Test Durascan 70 G5 apparatus (EMCO-TEST Prüfmaschinen
GmbH, Kuchl, Austria), using the Vickers method with a 0.05 kgf test load. The dwell time
was 12 s.

The uniaxial tension test of all types of joints were performed on the Zwick Z050 testing
machine (ZwickRoell GmbH & Co. KG, Ulm, Germany). The test speed was 2 mm/min.
The course of the test was recorded using the digital image correlation (DIC) system, which
is an optical 3D deformation measurement system. It allows for a non-contact, material-
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independent analysis of statically and dynamically loaded structures. It consists of two
cameras, which record the change in the position of measurement points (created on the
basis of a stochastic pattern applied to the surface of the samples), lamps that illuminate the
examined area and a computer that stores and processes the recorded data.

The results of experimental studies of the lap joints were compared with the results of
the numerical analysis performed in the ADINA System 9.7.2, program based on the finite
element method. The material constants and the true stress—true strain curve introduced
in the ADINA program were obtained in a static tensile test. The static tensile test was
carried out for the sheets with a thickness of 0.8 mm, which were composed of technically
pure Grade 2 titanium and a Grade 5 titanium alloy. For each of the materials, samples
were cut at three angles to the rolling direction of the sheet: 0◦, 45◦ and 90◦, according to
the diagram in Figure 2 and according to the standard [31].
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In the numerical analysis, boundary conditions and the type and value of the load
were assumed in accordance with the results of the experimental research.

For all joints with a single weld and for two welds arranged parallel and perpen-
dicular to the direction of tensile shear, the numerical models were made of 27-node, 3D
solid elements.

The total number of finite elements and the nodes of the models are presented in
Table 5. The size, number of elements and the number of nodes in a weld are presented in
Figure 3. The models had one 27-node element through the thickness.

Table 5. The total number of finite elements and nodes of the models.

Joints with Single Weld
Joints with Two

Welds—Parallel to the
Direction of Tensile Shear

Joints with Two
Welds—Perpendicular to the

Direction of Tensile Shear

Number of finite elements 5024 5296 4756

Number of nodes 61,468 64,432 57,928

Boundary conditions and displacement were applied to the surfaces shown in Figure 3.
In order to obtain more similar results to the experimental tests, boundary conditions were
also assumed on volumes that represented parts of the samples located in the jaws of the
testing machine. The sheet elements were connected at the place of the welds at the nodes.
Numerical models are shown in Figure 3.

On the basis of numerical analysis, maps of the plastic deformations of the tested
joints were obtained. They were compared with maps of plastic deformations obtained in
experimental tests during their registration with the DIC system.
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3. Results

On the basis of experimental tests and for all configurations of the titanium joints,
a force-displacement diagram from the tensile shear test, the method of sample failure
and the distribution of plastic strains on the joint surfaces were obtained. Tension curves
and strengthening curves for the tested materials were also obtained. Microstructures of
welds and microhardness distributions are presented. On the basis of numerical analysis,
distributions of plastic deformations on the surfaces of the analyzed joint models were
obtained.

3.1. Results from the Tensile Shear Test of Titanium Joints

The results of strength tests for Gr2–Gr5 titanium joints are shown in Figure 4, and
the results for the Gr5–Gr5 joints are shown in Figure 5. The force-displacement diagram
shows the repeatability of results in the series for all types of titanium joints.
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The results of the tensile shear test of the Gr2–Gr5 titanium joints were presented in
Table 6.

Joints with a single weld Gr2–Gr5-1 obtained the lowest load capacity, demonstrating
an average value of 5.68 kN. The highest load capacity was achieved by joints with two
welds arranged parallel to the direction of tensile shear Gr2–Gr5-2, which had an average
value of 8.65 kN.

The mechanism of failure of titanium joints Gr2–Gr5 with a single weld is shown in
Figure 6a. In each sample, during the tensile shear test, welds were separated from one
of the joined sheets. The welds did not fail. In the case of joints with two welds arranged
parallel and perpendicular to the direction of tensile shear, the parent material, Grade 2,
cracked outside the area of the welds (Figure 6b,c). An exception was the Gr2–Gr5-3.2 joint,
which had welds separate from one of the joined sheets.
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Table 6. Results from the tensile shear test of Gr2–Gr5 joints.

Sample
Number

Thickness
[mm] Joints Type Force Max

[kN]
Average Force

[kN]
Displacement
at Fmax [mm]

Average
Displacement

[mm]

Gr2–Gr5-1.1 0.8–0.8
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Figure 6. The method of failure of titanium samples in a tensile shear test: (a) with a single weld—
Gr2–Gr5.1; (b) with two welds arranged parallel to the direction of tensile shear—Gr2–Gr5.2 and
(c) with two welds arranged perpendicular to the direction of tensile shear—Gr2–Gr5.3.

A summary of the results from the tensile shear test of the Gr5–Gr5 titanium joints is
presented in Table 7.

The highest tensile shear load capacity was achieved by joints with two welds arranged
parallel to the direction of tension shear Gr5–Gr5-2, i.e., an average force value of 13.75 kN.
Joints with a single weld achieved the lowest load capacity, i.e., an average value of 7.63 kN.
Differences in the values of the maximum forces transferred by all types of joints in the
series did not exceed 4% in relation to the values of the average forces. Titanium joints
Gr5–Gr5-1.1-3, with a single weld, were destroyed by tearing the weld from two joined
sheets. In the all tested joints, the joining was not discontinued, as is shown in Figure 7a.
The predominance of tensile stresses and bending stresses, causing the bending of the
sheets, was observed here. In the case of the Gr5–Gr5-2.1-3 titanium joints, which had two
welds arranged parallel to the tensile shear direction, a sheet crack occurred at the edge
of one of the welds in each sample (Figure 7b). The welds did not fail. A similar fracture
mechanism was observed at joints with two welds arranged perpendicular to the direction
of the tension shear.

In each joint, there were cracks at the edges of both welds. In the Gr5–Gr5-3.2 sample,
the joint was completely broken (Figure 7c). None of the welds failed.
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Table 7. Results from the tensile shear test of Gr5–Gr5 joints.

Sample
Number

Thickness
[mm] Joints Type Force Max

[kN]
Average Force

[kN]
Displacement
at Fmax [mm]

Average
Displacement

[mm]

Gr5–Gr5-1.1 0.8–0.8
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Figure 7. The method of failure of titanium samples in a tensile shear test: (a) with a single weld—
Gr5–Gr5.1; (b) with two welds arranged parallel to the direction of tensile shear—Gr5–Gr5.2 and
(c) with two welds arranged perpendicular to the direction of tensile shear—Gr5–Gr5.3.

3.2. Static Tensile Test Results

The tensile curves of pure titanium Grade 2 and titanium alloy Grade 5, depending on
the sampling angle, are shown in Figure 8. Pure titanium Gr2 is characterized by a lower
tensile strength and a higher plasticity than the Gr5 titanium alloy.
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The hardening curves for the selected titanium samples are presented in Figure 9.
The Gr5 titanium alloy obtained higher yield stress values than the technically pure Gr2
titanium. The hardening curves were approximated by the power function, using the
equations presented in the diagram. Obtained curves were introduced to the Adina
program and used in numerical calculations.
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3.3. Microstructure of RSW Welds

The microstructures of welds in the titanium joints Gr2–Gr5 and Gr2–Gr5 are shown in
Figures 10 and 11. The RSW joint consists of three main zones: the weld nugget, HAZ (heat-
affected zone) and the base material. On the prepared microstructures, a clear demarcation
between the zones was visible due to the different features of the microstructure. The
microstructure of the welds is differs significantly from the parent material. The grain of
the weld nugget structure was coarse compared to the base material; this was due to the
large amount of heat introduced and the slower cooling time of the weld. In the zone of the
weld nugget, a coarse-grain acicular martensite phase was visible. In the Gr2–Gr5 joint, the
transition zone was more pronounced in the Grade 2 material than in the Grade 5 material.
In the shear tension test, in the case of joints with a single weld, the weld was isolated from
the Grade 2 material. No cracks around the weld nugget were observed in either analyzed
microstructure. Defects or pores in the weld were also not noticed.
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Figure 11. Microstructure of weld in the Gr5–Gr5 joint: (a) panorama of the weld; (b,c) transition
zone between the weld nugget, HAZ and parent material; (d) weld nugget center and (e) weld
nugget zone.

3.4. Microhardness

Figure 12 shows the weld microhardness distributions for the Gr2–Gr5 joint. Measure-
ments were made in two directions: horizontal and vertical. Two measurement lines were
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introduced for the horizontal direction. The first line (1) passed through the Grade 5 parent
material, HAZ and weld nugget. The second line (2) passed through the Grade 2 parent
material, HAZ and weld nugget. The third line (3) was perpendicular to the line 1 and 2
and passed through the Grade 5 and Grade 2 parent materials, HAZ and weld nugget. The
positioning accuracy of the indenter was ±0.0035.
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In addition, on the basis of the measurement points indicated in Figure 13, a micro-
hardness contour map was made for the Gr2–Gr5 joint (Figure 14).
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Figures 12 and 14 confirm that the hardness of the Gr5 base material is higher than that
of the Gr2 material. From approximately 300 to 350 HV0.05 were obtained. The average
hardness of the weld nugget in relation to the parent material Gr5 was lower and averaged
270 HV0.05. The hardness of the Gr2 parent material was lower than the hardness of the
weld nugget and ranged from approximately 140 to 170 HV0.05.

Figure 15 shows the horizontal and vertical weld microhardness distribution for the
Gr5–Gr5 joint. The first line (1) passed through the Grade 5 parent material, HAZ and weld
nugget. The second line (2) was perpendicular to the line 1 and also passed through the
Grade 5 parent material, HAZ and weld nugget.
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3.5. Numerical Analysis Results

The results of the numerical analysis of the plastic deformations for titanium joints
Gr2–Gr5 for each weld arrangement configuration are shown in Figures 16–18. The results
have been scaled in order to more clearly illustrate the deformation of the joint during the
tensile shear test. The analyzed joints had different distributions of plastic deformations on
the obverse and reverse sides. Larger deformations were observed on the surfaces of the
Gr2 sheets. The concentration of plastic strain was visible around the RSW weld or welds
and in the parent material within the welds in all joints. Their maxima occurred on the
inner surfaces of the sheets.
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The results of the numerical analysis for the Gr5–Gr5 titanium joints are shown in
Figures 19–21. The distribution of plastic deformations was the same on both sides: obverse
and reverse in all Gr5–Gr5 samples. The concentration of the plastic deformation was
observed at the weld edge for single weld joints and for joints with two welds arranged
parallel to the direction of the tensile shear. In the case of joints with two welds arranged
perpendicularly to the direction of tensile shear, the largest deformation values were visible
at the edges of both welds and in the parent material adjacent to the welds.
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4. Discussion

Taking into account the direction of sampling from the sheet (0◦, 45◦ and 90◦ to the
direction of rolling), the results of the average tensile strength of the analyzed materials
are shown in Figure 22a. Some variation in the tensile strength values was observed for
samples of the same material that were taken from the sheet at different angles to the
direction of rolling. This indicates the occurrence of anisotropy of the plastic properties of
the sheets as a result of their cold rolling. The results of the average tensile shear strength
for the analyzed titanium joints from Tables 6 and 7. are summarized in Figure 22b.
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analyzed RSW joints.

Joints Gr2–Gr5-1 with a single weld reached about 75% of the average load capacity of
the same joints for Gr5–Gr5-1. Joints with two welds arranged parallel and perpendicular
to the direction of tensile shear for the individual materials obtained a similar tensile
shear load capacity. The highest average load capacity among joints with two welds
(regardless of the arrangement) was achieved by joints Gr5–Gr5. The Gr2–Gr5 joint with
two welds in both configurations of the weld arrangement obtained approximately 63% of
the load capacity of the same Gr5–Gr5 joints. The higher load capacity of all the Gr5–Gr5
joints than the Gr2–Gr5 joints (Figure 22b) was due to the higher tensile strength of the
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Grade 5 titanium alloy compared Grade 2 titanium, which is visible in Figure 22a. For
the same reason, different methods of failure of the samples during the tensile shear test
were observed. The welds in the Gr2–Gr5 joint during the tensile shear tests separated
completely from one of the joined sheets—the Grade 2 sheet. In the case of the Gr5–Gr5
joints, the weld was torn off from both joined sheets but the joints were not broken. In the
case of Gr2–Gr5 joints with two welds, the weaker Grade 2 material cracked outside of the
area of the welds. In the Gr5–Gr5 joints with two welds, a crack occurred at the edge of one
or both welds, depending on their arrangement.

Studies on the influence of the weld number and their arrangement in the joint showed
that:

- Gr2–Gr5.2 joints with two welds arranged parallel to the direction of tensile shear
achieved approximately 152% of the average load capacity of Gr2–Gr5.1 joints with a
single weld, whereas Gr2–Gr5.3 joints with two welds perpendicular to the direction
of tensile shear achieved 149% of the average load capacity of these joints;

- Gr5–Gr5.2 joints with two welds arranged parallel to the direction of tensile shear
achieved approximately 180% of the average load capacity of Gr5–Gr5.1 joints with a
single weld, whereas Gr2–Gr5.3 joints with two welds perpendicular to the direction
of tensile shear achieved 176% of the average load capacity of these joints.

The microhardness distributions for the Gr2–Gr5 joint (Figure 10) and the microhard-
ness contour map (Figure 14) showed that the average hardness of the weld nugget ranged
from approximately 77 to 90% of the hardness of the Grade 5 titanium alloy and from
approximately 159 to 192% of the hardness of the Grade 2 titanium. The hardness of
the Grade 5 titanium alloy was more than twice as high as the hardness of the Grade 2
titanium; therefore, an increase in the hardness of the weld nugget was observed in relation
to the Grade 2 parent material and a decrease in hardness was observed in relation to the
Grade 5 parent material.

Figures 23–26 present the results of experimental studies achieved using the DIC
system and the results of numerical analyses performed in the Adina program for all
configurations of the Gr2–Gr5 and Gr5–Gr5 joints.
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In all the Gr2–Gr5 and Gr5–Gr5 joints analyzed, similar distributions of plastic defor-
mations were obtained using both test methods. The value of deformation obtained from
the experimental tests corresponded to the values obtained in the numerical analysis.
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The maxima of plastic deformation in all cases were visible at the edges of the welds
and in the parent material by the welds located on the side of the fixed end of the sheet.
In all cases, the minima were located at the free ends of the sheets. In the case of Gr5–Gr5
joints, an identical distribution of plastic deformations was observed on the obverse and
reverse sides. There was a noticeable slight asymmetry in the experimental studies. This
resulted from the initial imperfections from the process of making the RSW joints (the joints
were made by hand). In places of maximum plastic deformation, cracks were initiated in
analyzed lap joints.

5. Conclusions

Based on the experimental research and numerical analysis, the following conclusions
were drawn:

- Among the analyzed joints, which were made of 0.8 mm thick sheets, Grade5–Grade5
joints achieved a higher tensile shear strength than the Grade5–Grade2 joints. This
was due to the higher tensile strength of the Grade 5 titanium alloy than Grade 2
titanium;

- Tests of joints made using RSW (resistance spot welding) showed that the load capacity
of the joints was affected by the number of welds and their arrangement in the
joint. Gr2–Gr5 joints with two welds, depending on their arrangement, achieved
approximately 149 to 152% of the load capacity of joints with a single weld. The load
capacity of Gr5–Gr5 joints with two welds ranged from approximately 176 to 180% of
the load capacity of joints with a single weld;

- Crack initiation in lap joints occurred in the place of occurrence of maximum plastic
deformations. This was determined numerically and confirmed experimentally;

- Observations of the microstructure of RSW joints made of the analyzed materials
showed no defects and cracks;

- The microhardness test of the Gr2–Gr5 joint showed that the average hardness of the
weld nugget decreased by approximately 10–23% compared to the Grade 5 titanium
alloy base material and increased by approximately 59–92% compared to the Grade
2 titanium base material. The observed decrease and increase in the hardness of the
weld nugget in relation to its parent materials was caused by the difference in the
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hardness between the Grade 2 titanium and Grade 5 titanium alloy. The Grade 5
titanium alloy had more than twice the hardness of Grade 2 titanium.
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8. Niemiro-Maźniak, J. The effect of the resistance spot welding current on weld quality and joint strength. Zesz. Nauk. Politech.
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