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Abstract: The synthesis, as well as the mesomorphic and electrochemical properties, of a hetero-
bimetallic coordination complex able to self-assemble into a columnar liquid crystalline phase is
reported herein. The mesomorphic properties were investigated by polarized optical microscopy
(POM), differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD) analysis. Elec-
trochemical properties were explored by cyclic voltammetry (CV), relating the hetero-bimetallic
complex behaviour to previously reported analogous monometallic Zn(II) compounds. The ob-
tained results highlight how the presence of the second metal centre and the supramolecular ar-
rangement in the condensed state pilot the function and properties of the new hetero-bimetallic
Zn/Fe coordination complex.

Keywords: Zn(II)/ferrocene metallomesogen; hetero-bimetallic coordination complex; PXRD studies;
cyclic voltammetry; electrochemistry

1. Introduction

Functional homogeneous materials obtain single properties derived from functional
moieties synthetically inserted into a molecular structure in a unique result that is not only
the sum of these properties; often, new and synergistic properties are obtained, encouraging
further research in this direction. However, the design of functional molecular structures
to obtain performances for a certain application is still serendipitous; hence, fundamental
research linking molecular structure-properties for structural complex molecules is compul-
sory. Metallomesogens (MMs) are functional materials combining the order and anisotropy
properties of liquid crystals with the properties derived from a metal centre [1,2], resulting
in polarized emission [3–8], peculiar magnetic properties [9–15], enhanced thermal and
electrical conductivities [16–19], charge carrier mobilities [7,20–23], etc.

Previously, we showed that Zn(II) metallomesogens are promising candidates in
electrochemical sensing, as they are able to generate hierarchically ordered metal oxide
(MOx) nanoelectrode arrays in situ after electrochemical treatment [24]; moreover, the
investigation of three electrode compositions obtained by varying the ratio between carbon
nanotubes and Zn(II) metallomesogen showed the importance of both the weight ratio and
supramolecular arrangements in the liquid crystalline state [25].

The insertion of a second metal centre into the molecular structure of MMs yields
binuclear homo-metallic or hetero-bimetallic liquid crystals with an increasing structural
and supramolecular complexity and further possible improvements or induction of syner-
gistic properties. Some examples of binuclear metallomesogens found in the literature are
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synthetic challenges with investigation of their supramolecular “soft” assemblies [26–32];
in one case, the magnetic properties were determined [33]. However, due to the high transi-
tion temperatures typical for these hetero-bimetallic metallomesogens, the enthusiasm for
synthesising such systems has diminished. Herein, we wish to recall attention to bimetallic
MMs and to explore their electrochemical properties for sensing applications.

Against this background, a new coordination complex, namely Zn/Fe, the chemical
structure of which is presented in Figure 1, was synthetized and structurally characterized.
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Figure 1. Molecular structure of complex Zn/Fe and the structurally analogous complex of Zn
previously reported to lack ferrocene [3].

The supramolecular architecture of complex Zn/Fe in the mesophase and its elec-
trochemical properties were investigated and is presented in discussion with a previ-
ously reported analogue, complex Zn (Figure 1) [3], in an attempt to relate the presence
of an additional metal center on the molecular structure - supramolecular structure –
electrochemical property relationship. The electrochemical properties were determined
using CNT paste working electrodes modified by a simple film-casting method with
Zn/Fe and Zn coordination complexes (Figure 1) and a ferrocene-containing precursor
(S4—Scheme 1) named Zn/Fe_CNT, Zn_CNT and Fc_CNT paste electrodes. Their elec-
trochemical behaviours were comparatively studied by cyclic voltammetry (CV) in 0.1 M
NaOH supporting electrolyte.
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Scheme 1. Synthesis of complex Zn/Fe: (i) SOCl2, toluene, 70 ◦C, overnight; (ii) ferrocene, AlCl3,
DCM, 0 ◦C, r.t, overnight; (iii) AlCl3, NaBH4, THF, 0 ◦C, r.t, overnight; (iv) K2CO3, DMF, 80 ◦C, 24 h;
(v) KOH, EtOH, ∆T; (vi) NaOH, 30 min, THF, EtOH, then ZnCl2 in EtOH, r.t., 24 h; (vii) tpyNEt2,
CHCl3, MeOH, 24 h.
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2. Results
2.1. Synthesis

The synthesis of complex Zn/Fe is presented in Scheme 1. Compounds S1 and S2 were
synthesised by adapting a literature procedure [34], compound S3 was obtained as a byprod-
uct of the Williamson etherification reaction between ethyl gallate and n-bromododecane
and the ligand 4-(4-N,N-diethylbenzenamine)-2,6-di(pyridine-2-yl)pyridine (S5) was syn-
thesized according to a literature procedure [35].

The synthesis of the final Zn/Fe coordination complex was carried out using a modified
synthetic strategy with respect to that reported for the analogous Zn complex [3], which
required the use of a silver salt of the benzoate precursor ligand (S4) and the formation of a
Zn(II) dichloro derivative of the chelating ligand (S5). However, the presence of silver ions
caused oxidation of the ferrocene units. The new complexation reaction was carried out by
a simplified method adapted from a literature procedure [36]. In particular, the sodium salt
of precursor S4 was formed and then reacted with ZnCl2. The resulting intermediate was
used directly in the next step without purification. After a chelation reaction with ligand
S5, the pure product was obtained by repeated recrystallisation, with improved yields.
While the total yield of the complexation reaction that used the silver salt benzoate was
55% [3], herein, we obtained complex Zn/Fe in 70% yield.

Complex Zn/Fe was structurally characterized by FT-IR and 1H and 13C NMR spec-
troscopy, while its purity was determined by elemental analysis (see Supplementary Materials:
Experimental Section). The IR spectrum contains the vibrational bands related to the two
ligands and the ferrocene unit. In particular, the spectrum of complex Zn/Fe is almost
superimposable on the spectrum of complex Zn, additionally containing the vibrational
bands of a ferrocene unit centred at 1002, 924 and 486 cm−1 (νFc) [37]. The similar spec-
tra and the separation of the stretching vibrations of COO− group (∆) of 259 cm−1 (see
Supplementary Materials: Experimental Section and Figure S1) suggests the same molecular
structure for complex Zn/Fe as that for complex Zn: a neutral species with the metal centre
pentacoordinated by a chelating tridentate terpyridine-based ligand and two monoanionic
benzoate derivatives. Moreover, the coordination environment around the metal centre
and the proposed molecular structure of complex Zn/Fe is supported by similar structures
reported in the literature [38–41].

The structure and purity of the final Zn/Fe complex was confirmed by elemental
analysis, as well as 1H , 13C NMR and AAS (see Supplementary Materials: Experimental
Section and Figure S2). The thermal stability and presence of crystallisation solvent were
determined by thermogravimetric analysis (TGA). A loss of one molecule of water was
observed at around 50 ◦C, while the complex showed good thermal stability [42]; the
weight loss from degradation became significant above ca. 300 ◦C and reached 5% at
T5% = 324 ◦C (see Supplementary Materials Figure S3). The majority of the organic part
decomposed between 300 and 500 ◦C, leaving residual zinc and iron oxides accounting
for 8.17%.

2.2. Mesomorphism

The mesomorphic properties of complex Zn/Fe were determined by polarized optical
microscopy (POM), differential scanning calorimetry (DSC) and powder X-ray diffraction
(PXRD) studies.

2.2.1. POM and DSC Studies

During the first heating of the pristine complex, a first broad endothermic event
spreading over several tens of degrees Celsius with a large enthalpy was detected by DSC
(Figure 2b), while the complex transited into a birefringent fluid phase. Upon further
heating, the birefringence persisted until the sample fully cleared at around 150 ◦C. Upon
cooling, the complex arranged into a hexagonal columnar mesophase as can be derived
from the mix mosaic texture (Figure 2a) and the presence of homeotropic zones. Upon
further cooling, no sign of crystallisation could be detected either by POM or by DSC, while
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upon further heating and cooling, only one transition was observed by DSC (Figure 2b).
The optical texture of the mesophase was preserved upon cooling, indicating the formation
of anisotropic liquid crystalline glasses. The complexes have a high thermal stability, as
demonstrated by repeated heating–cooling cycles.
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Figure 2. (a) POM texture of Zn/Fe upon first cooling at 50 ◦C (magnification 20×); (b) DSC traces of
complex Zn/Fe.

2.2.2. PXRD Studies

The mesophase of complex Zn/Fe was investigated through PXRD analysis. The
diffraction pattern of the Zn(II) complex, recorded at 85 ◦C upon cooling from the isotropic
liquid (Figure 3a), presents an intense reflection at 2θ = 3.3◦ (d = 26.8 Å, Table 1) and other
less intense reflections in the small–middle-angle region. This pattern can be indexed
on the basis of a hexagonal columnar system (Colhex), with the first reflection assigned
to the (10) interplanar distance. In addition, the semibroad diffraction peak (h0) in the
wide-angle range precisely at 2θ = 26.2◦ (d = 3.4 Å) can be assigned to intracolumnar π-π
stacking. It is reasonable to assume that, analogously to the recently reported parent Zn
complex [3], the columnar self-assembly of molecules is driven by the instauration of π-π
stacking between the terpyridine (tpy) cores. Moreover, the tpy groups must be rotated
120◦ ca. relative to each other in order to uniformly distribute the aliphatic chains around
the aromatic cores [3]. It is worth noting that the parent Zn complex is characterized by a
3D hexagonal mesophase, with a high degree of intracolumnar order, whereas the Zn/Fe
compound generates a less ordered 2D mesophase. This observation can be explained by
the fact that in complex Zn/Fe, the ferrocene moiety, which is incorporated in two alkyl
chains, probably interferes with the periodic segmentation of columns responsible for the
three-dimensional order observed in the mesophase of complex Zn [3].

Finally, once generated upon cooling from the isotropic state, the mesophase of com-
plex Zn/Fe remains frozen at room temperature (Figure 3b), with minimal d and cell
parameter changes (Table 1).



Materials 2023, 16, 1946 5 of 13

Materials 2023, 16, x FOR PEER REVIEW 5 of 14 
 

 

2.2.2. PXRD Studies 

The mesophase of complex Zn/Fe was investigated through PXRD analysis. The dif-

fraction pattern of the Zn(II) complex, recorded at 85 °C upon cooling from the isotropic 

liquid (Figure 3a), presents an intense reflection at 2θ = 3.3° (d = 26.8 Å, Table 1) and other 

less intense reflections in the small–middle-angle region. This pattern can be indexed on 

the basis of a hexagonal columnar system (Colhex), with the first reflection assigned to the 

(10) interplanar distance. In addition, the semibroad diffraction peak (h0) in the wide-an-

gle range precisely at 2θ = 26.2° (d = 3.4 Å) can be assigned to intracolumnar π-π stacking. 

It is reasonable to assume that, analogously to the recently reported parent Zn complex 

[3], the columnar self-assembly of molecules is driven by the instauration of π-π stacking 

between the terpyridine (tpy) cores. Moreover, the tpy groups must be rotated 120° ca. 

relative to each other in order to uniformly distribute the aliphatic chains around the aro-

matic cores [3]. It is worth noting that the parent Zn complex is characterized by a 3D 

hexagonal mesophase, with a high degree of intracolumnar order, whereas the Zn/Fe 

compound generates a less ordered 2D mesophase. This observation can be explained by 

the fact that in complex Zn/Fe, the ferrocene moiety, which is incorporated in two alkyl 

chains, probably interferes with the periodic segmentation of columns responsible for the 

three-dimensional order observed in the mesophase of complex Zn [3].  

Finally, once generated upon cooling from the isotropic state, the mesophase of com-

plex Zn/Fe remains frozen at room temperature (Figure 3b), with minimal d and cell pa-

rameter changes (Table 1). 

 

Figure 3. PXRD patterns of the mesophase of complex Zn/Fe registered upon cooling (second cycle) 

at 85 °C (a) and at 25 °C (b). 

Table 1. Indexation of the PXRD spectra of the mesophase upon cooling at 85 °C and at 25 °C. 

T = 85 °C (upon cooling) T = 25 °C (upon cooling) 

dobs (Å) hk dcalcd (Å) * Cell Parameter dobs (Å) hk dcalcd (Å)* Cell Parameter 

26.8 10 26.8 **  26.3 10 26.3**  

15.7 11 15.5  15.4 11 15.2  

13.7 20 13.4 a = 30.95 Å  13.5 20 13.2 a = 30.37 Å  

9.2 30 8.9  9.9 21 9.9  

7.6 22 7.7  9.2 30 8.9  

3.4    6.9 40 6.6  

    3.4    
* Calculated data were obtained using LCDixRay [43]; ** data chosen for calculation. 

Figure 3. PXRD patterns of the mesophase of complex Zn/Fe registered upon cooling (second cycle)
at 85 ◦C (a) and at 25 ◦C (b).

Table 1. Indexation of the PXRD spectra of the mesophase upon cooling at 85 ◦C and at 25 ◦C.

T = 85 ◦C (Upon Cooling) T = 25 ◦C (Upon Cooling)

dobs (Å) hk dcalcd (Å) * Cell Parameter dobs (Å) hk dcalcd (Å) * Cell Parameter

26.8 10 26.8 ** 26.3 10 26.3 **
15.7 11 15.5 15.4 11 15.2
13.7 20 13.4 a = 30.95 Å 13.5 20 13.2 a = 30.37 Å
9.2 30 8.9 9.9 21 9.9
7.6 22 7.7 9.2 30 8.9
3.4 6.9 40 6.6

3.4

* Calculated data were obtained using LCDixRay [43]; ** data chosen for calculation.

It is worth recalling that the analogues structural Zn(II) coordination complex based on
a non-substituted terpyridine (lacking the apical N,N-diethylbenzenamine group) reduces
the symmetry of the complex, and despite the pentacoordination around the metal centre
and the bulky, voluminous structure, the resulting complex arranges into smectic-type
liquid crystalline phases [24].

2.3. Electrochemistry

A CNT paste working electrode was modified by a simple film-casting method with
Zn/Fe metallomesogen to obtain the Zn/Fe_CNT paste electrode, which was characterized
in comparison with the paste electrodes based on the Zn coordination complex and the
ferrocene-containing precursor (S4) (Zn_CNT and Fc_CNT, respectively) obtained under
similar conditions.

The electrochemical behaviour of Zn/Fe_CNT was studied by cyclic voltammetry
(CV) within the potential range of −1.5 V/SCE to +1 V/SCE considering the manifestation
of both ferrocene and ferrocenium redox systems [44–46]. The comparative voltammo-
grams recorded in 0.1 M NaOH supporting the electrolyte on Zn/Fe_CNT in comparison
with Zn_CNT are shown in Figure 4a, while a comparison with the ferrocene precursor
(Fc_CNT) is presented in Figure 4b. The voltammetric behaviour of the liquid crystalline
zinc coordination complex organised in a smectic mesophase previously reported by our
group in reference [24] was also considered to evaluate an eventual influence of the type
and symmetry of the mesophase on the electrochemical response of the paste electrode.
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Figure 4. (a) CVs recorded in 0.1 M NaOH supporting the electrolyte within the potential range of
−1.5 V/SCE to +1.0 V/SCE onto the Zn/Fe_CNT paste electrode (black line) and Zn_CNT paste
electrode (red line); scan rate of 0.05 V·s−1; inset: detail of CVs. (b) CVs recorded in 0.1 M NaOH
supporting the electrolyte within the potential range of −1.5 V/SCE to +0.75 V/SCE onto Fc_CNT
(black line) and Zn/Fe_CNT (red line) electrodes; scan rate of 0.05 V·s−1.

To study the comparative electrochemical behaviours, each material was used as a
modifier for the CNT paste electrode by film-casting method. The significant differences
between the current values are due to the varying degree of the CNT paste electrode surface
coverage (Γ) (Table 2), as determined for each material based on the relation between peak
current (CV curves) and the scan rate [47] using equation (1):

Ip = n2 × F2 × v× A× Γ/4R× T (1)

where n is the number of exchanged electrons, F is the Faraday, A is the area of the electrode
surface and Γ is the surface coverage.

Table 2. CNT paste electrode surface coverage layers of Zn/Fe and Zn metallomesogens and ferrocene
precursor (S4).

Modified Electrode
Γ/mol·cm−2

Zn(II) Centres Ferrocene Centres

Zn_CNT 2.20·10−4 -

Fc_CNT - 1.80·10−3

Zn/Fc_CNT 6.66·10−4 2.20·10−4

The different degrees of the CNT paste electrode surface coverages achieved by film-
casting method with Zn/Fe, Zn coordination complexes or the S4 precursor are due to the
different material consistencies and sorption affinities for CNT.

The shape of CVs recorded for the Zn_CNT paste electrode was very similar that
recorded for the liquid crystalline Zn(II) coordination complex organised in the previously
reported smectic mesophase [24], except the potential of the cathodic peak characteristic of
metallic zinc and zinc oxide formation, which is less negative for the Zn_CNT paste elec-
trode. This may be related to the different supramolecular arrangement in the mesophase
(column vs. layers).

The anodic branch of the CV shape recorded on the Fc_CNT electrode is in accordance
with the reported literature regarding ferrocene/ferrocenium redox couples based on
reaction (2) [48]:

Cp2Fe↔ Cp2Fe+ + e− (2)



Materials 2023, 16, 1946 7 of 13

within the cathodic branch, one oxidation peak occurred at about −0.66 V vs. SCE and
the corresponding reduction peak at about −1.00 V vs. SCE, which corresponds to the
Fe/Fe(II) redox couple [49–52]. This couple is not evidenced for Zn/Fe_CNT because it is
probably overlayed with zinc reduction and stripping couples.

All anodic peaks corresponding to zinc stripping and zinc oxide dissolution and all
cathodic peaks corresponding to zinc reduction and zinc oxide formation under oxygen
reduction reaction conditions are manifested for Zn/Fe_CNT and Zn_CNT paste electrodes,
which assure the presence of zinc redox systems. However, a higher magnitude of current
is manifested in the former due to the overlay of both zinc and ferrocene redox systems.
The ferrocene/ferrocenium redox couple is manifested in the Zn/Fe_CNT paste electrode,
with the reductive back peak less defined than the oxidative forward peak. This may
be due to the incorporation of ferrocenium within the Zn(II) coordination complex struc-
ture, which stabilises it sufficiently such that its reduction becomes thermodynamically
unfavourable [48].

To accurately study the effect of ferrocene grafted into the molecular structure of
Zn(II) metallomesogen and the contribution of the different supramolecular arrangements
(a 2D columnar hexagonal phase in Zn/Fe and a 3D columnar hexagonal phase in Zn
metallomesogens) to the electrochemical features, the scan rate effect on the shapes of
CVs recorded on each of the Zn/Fe_ CNT, Zn_CNT and Fe_CNT paste electrodes was
investigated. The series of CVs recorded at scan rates ranging from 0.01 V·s−1 to 0.20 V·s−1

on all electrodes is presented in Figure 5a–c.
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Figure 5. CVs recorded within potential window from −1.5 V to +1.0 V vs. SCE in 0.1 M NaOH sup-
porting an electrolyte at various scan rates (0.01, 0.02, 0.03, 0.05, 0.1 and 0.2 V·s−1 (curves 1–7)) on the
electrodes: (a) Zn_CNT paste electrode; (b) Fc_CNT paste electrode; (c) Zn/Fe_CNT paste electrode.
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For each modified electrode, the anodic and cathodic peaks are marked and presented
in Table 3 for comparison. All anodic and cathodic peak currents increased linearly with
the square root of the scan rate (Figure S4a–c) because all anodic and cathodic processes
described in Table 3 are diffusion-controlled.

Table 3. Comparison of anodic and cathodic peaks and processes.

Electrode Type
Anodic Cathodic

Process/Peak E/V vs. SCE Process/Peak E/V vs. SCE

Zn/Fe_CNT

ZnO dissolution /AI +0.290 Ferrocenium reduction/CI +0.240

Ferrocene oxidation/AII +0.600 Oxygen reduction/CII −0.124

Zinc reduction/CIII −1.300

Zn_CNT

Zinc stripping/AI’ −0.310 Outer oxygen reduction reaction/CI’ +0.135

ZnO dissolution /AII’ +0.450 Reduction of inner O2 /CII’ −0.560

Zn reduction/CIII’ −0.900

Fc_CNT

Fe oxidation /AI” −0.680 Ferrocenium reduction/CI” +0.220

Ferrocene oxidation/AII” +0.260 Fe(II) reduction /CII” −1.000

Ferrocenium oxidation/AIII” +0.550

It can be noticed that the Zn/Fe_CNT paste electrode based on the 2D columnar
hexagonal metallomesogen exhibited electrochemical behaviour based on the combination
of the Zn_ CNT paste electrode (3D columnar hexagonal metallomesogen based on a
similar molecular structure Zn(II) coordination complex lacking ferrocene units) and the
Fc_CNT paste electrode (precursor containing ferrocene units). In the cathodic branch, the
electrochemical behaviour of the Zn complex is predominant (no Fe/Fe(II) redox couple is
manifested), while in the anodic branch, the ferrocene/ferrocenium redox couple is better
manifested. An anodic peak is evidenced at a potential value of about +0.290 V vs. SCE (AI)
before a ferrocene oxidation peak (AII) recorded at about +0.600, which can be attributed to
zinc oxide dissolution with the formation of zincate. This peak is clearer at the higher scan
rate, evidencing fast kinetics of the zinc oxidation dissolution process.

Considering the integration of ferrocene units into the molecular structure of the Zn(II)
coordination complex, the redox couple of ferrocene/ferrocenium was comparatively
analysed in the Zn/Fe_CNT paste electrode and the Fc_ CNT paste electrode. The details of
various current and potential parameters determined based on Figure 5b,c are presented in
Table 4 for the Fc_CNT paste electrode and in Table 5 for the Zn/Fe_CNT paste electrode.

Table 4. Electrochemical data obtained for the Fc/Fc+ redox couple from CVs of the Fc_CNT paste
electrode at different scan rates.

V1/2 IpAII” IpCI” IpAII”/IpCI” EpAII” EpCI” ∆Ep

0.100 26.46 −14.86 1.78 0.240 0.220 0.020

0.141 71.46 −48.78 1.47 0.250 0.210 0.040

0.173 117.73 −87.49 1.35 0.260 0.200 0.060

0.200 162.74 −129.88 1.25 0.270 0.190 0.080

0.224 209.26 −170.98 1.22 0.280 0.180 0.100

0.316 405.98 −345.14 1.18 0.310 0.160 0.150

0.447 742.23 −635.41 1.17 0.360 0.120 0.240
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Table 5. Electrochemical data obtained for the Fc/Fc+ redox couple from cyclic voltammograms of
the Zn/Fe_CNT paste electrode at different scan rates.

V1/2 IpAII IpCI IpAII/IpCI EpAII EpCI ∆Ep

0.100 6.83 −10.03 0.680 0.610 0.300 0.310

0.141 10.06 −19.17 0.520 0.640 0.300 0.340

0.173 12.05 −27.64 0.440 0.650 0.300 0.350

0.200 13.74 −36.12 0.380 0.660 0.300 0.360

0.224 15.89 −44.60 0.360 0.670 0.300 0.370

0.316 26.82 −72.74 0.370 0.680 0.280 0.400

0.447 46.97 −99.08 0.470 0.680 0.230 0.450

As the scan rate was increased, the potential value of the anodic peak shifted to more
positive values, while the cathodic peak values became more negative. Smaller differences
between the anodic and cathodic potential values (∆Ep) were obtained at a low scan rate
than at a fast scan rate (Tables 4 and 5) for both electrodes. A larger difference was obtained
for the Zn/Fe_CNT paste electrode (0.310 V) than the Fc_CNT paste electrode (0.020 V) at
a scan rate of v = 0.01 V·s−1. When the scan rate was increased by 20 times, an almost
1.45-fold increase in ∆Ep was observed for the Zn/Fe_CNT paste electrode in comparison
with a 10-fold increase for the Fc_CNT paste electrode. The high ∆Ep value indicates a
quasireversible charge–transfer process. When the scan rates increased, the changes in
the ∆Ep values provided information about the partial control of the charge–transfer step
relative to the diffusion step. Theoretically, there no change occurred in ∆Ep with the scan
rates when the charge–transfer was fast and completely reversible [44]. Additionally, the
ratio between the anodic and cathodic peak currents should be close to the theoretical
value of 1 for all the scan rates used for a reversible system. Taking these factors into
considerations our findings were corroborated; the Fc/Fc+ couple was closer to the ideal
reversible system in the Fc_CNT paste electrode considering the ∆Ep values and the ratio
between the anodic and cathodic peak currents. However, smaller changes of the ∆Ep
values with scan rates were observed for the Zn/Fe_CNT paste electrode, indicating a faster
charge–transfer rate. The occurrence of electron transfer to and from the redox centres of
the ferrocene is also indicated by the linearity of the anodic peak current vs. the square root
of the scan rate for both electrodes (Figure S4b,c).

3. Materials and Methods
3.1. Synthesis

All commercially available starting materials and solvents were used as received with-
out further purification. Ferrocene, anhydrous AlCl3, NaBH4, anhydrous dichloromethane
and tetrahydrofuran were purchased from Sigma Aldrich, while hexane and ethyl acetate
were purchased from Carlo Erba; HPLC-grade dichloromethane was purchased from Hon-
eywell. A Bruker Avance III HD—500 MHz spectrometer was used to record 1H and 13C
NMR experiments in CDCl3 or CD2Cl2. A Flash 2000 microanalyser from Thermo Fisher
Scientific was used to perform elemental analyses (CHN), while the percentage of Zn(II)
was determined using a SensAA flame atomic absorption spectrometer (GBC Scientific
Equipment, Braeside, Australia). The instrument was equipped with a zinc hollow cath-
ode lamp (detection limit: 0.4–1.5 mg/L, integration time 3 s). The flame used was an
air–acetylene mixture. Two determinations were made, and the average absorbance value
was used.

3.2. Optical and Thermal Studies

An Olympus BX53M polarizing microscope (POM) equipped with a Linkam hot
stage and an Olympus UC90 camera was used to observe the optical mesophase tex-
tures of complex Zn/Fe. Thermal decomposition was carried out using a TGA/SDTA
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851-LF 1100 Mettler Toledo thermogravimetric analyser, with the experiments conducted
in a nitrogen atmosphere in the temperature range of 25–800 ◦C with a heating rate of
10 ◦C min−1. Enthalpies and transition temperatures were recorded using a Q1000 appara-
tus from TA Instruments. The apparatus was calibrated with indium; three heating/cooling
cycles were performed for each sample, with a heating and cooling rate of 10 ◦C/min.

3.3. Powder X-ray Diffraction (PXRD) Analysis

A Bruker D2-Phaser equipped with Cu Kα radiation (λ = 1.5418 Å) and a Lynxeye
detector at 30 kV and 10 mA with a step size of 0.01◦ (2θ) were used to record the PXRD
patterns of the Zn/Fe mesophase. The sample was heated and cooled at a rate of 5 ◦C min−1

using a Sil’tronix zero-diffraction plate placed on a CaLCTec (Calabria Liquid Crystal
Technology, Arcavacata di Rende, Italy) heating stage.

3.4. Electrochemical Studies

Electrochemical measurements were performed at ambient room temperature (∼20 ◦C)
using GPES 4.9 software controlled by an Autolab PGSTAT 302potentiostat/galvanostat
(EcoChemie, Utrecht, the Netherlands). A carbon nanotube (CNT) paste electrode with
a disk diameter of 3.0 mm and a platinum plate characterized by a geometrical surface
area of 1.0 cm2 were used as a working and counter electrode, respectively. A saturated
calomel electrode (SCE) was used for a reference electrode. The saturated calomel reference
electrode (SCE) was used to record the electrode potentials. The CNT paste working
electrode was modified by simple film-casting method with Zn/Fe, Zn and ferrocene-
containing precursor (S4) and named Zn/Fe_CNT paste, Zn_CNT paste and Fc_CNT paste
electrodes, respectively. Their electrochemical behaviours were comparatively studied by
cyclic voltammetry (CV) in 0.1 M NaOH supporting electrolyte. After immersion in the
material, the electrode surface was dried at room temperature. For each sample, at least
five scans of CV were recorded at a scan rate of 0.05 V·s−1 to achieve the steady state of the
modified electrode.

4. Conclusions

A new bimetallic coordination complex containing a pentacoordinated Zn(II) metal
centre by a tridentate chelating terpyridine-based ligand and two monoanionic gallate
ligands containing ferrocene units was synthesised and structurally characterized. The
complex, like its previously reported structurally analogous parent complex (Zn) [3] lacking
ferrocene units, exhibited liquid crystalline properties. While complex Zn arranged into
a 3D columnar hexagonal mesophase, complex Zn/Fe organised into a regular 2D colum-
nar hexagonal phase due to the presence of ferrocene units in the alkyl chain segments,
preventing the segmentation of stacked molecules into groups.

Aiming to investigate the molecular relationship between structure and supramolecu-
lar properties and the relationship between structure and electrochemical properties, the
electrochemical behaviour of complex Zn/Fe was characterized in comparison with the anal-
ogous Zn complex lacking ferrocene units and a ferrocene-containing organic derivative
(precursor S4) by modification of a CNT paste electrode using a simple film-casting method.
Different degrees of CNT paste electrode surface coverage were achieved depending on
the modifier consistency and its affinity to CNT in the following order: S4 > Zn/Fe > Zn.

The electrochemical features of Zn/Fe_CNT paste electrode consisted of a combina-
tion of Zn_CNT and Fc_CNT paste electrodes characterized by a good activity of the
ferrocene/ferrocenium redox couple in the anodic branch. However, a quasireversible
Fc/Fc+ couple in the Zn/Fe_CNT paste electrode vs. ideal reversible behaviour indicated
a possible cooperative effect of the ferrocene within the zinc metallomesogen structure,
assuring electron transfer to and from the redox centres of the ferrocene.

Comparison of the CVs of Zn_CNT paste electrode based on the 3D columnar hexago-
nal Zn(II) metallomesogen with the structural analogue organised in a smectic phase [24]
revealed a possible contribution depending on the potential value of the cathodic peak
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characteristic of metallic zinc and zinc oxide formation. However, comparison of the elec-
trochemical fingerprint of the liquid crystalline Zn(II) coordination complex organised in a
columnar mesophase in the cathodic branch with that of the Fc/Fc+ in the anodic branch
indicates the versatility of Zn/Fe metallomesogen for many electrochemical applications,
e.g., sensing, catalysis, batteries, etc.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma16051946/s1, Experimental section: synthesis; Figure S1: FT-IR spectra of Zn/Fe and Zn
metallomesogens; Figure S2: 1H NMR spectra of complex Zn/Fe; Figure S3: TGA and DTG traces of
complex Zn/Fe; Figure S4: Electrochemical studies.
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