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Abstract: Hot tensile tests of the GH3625 superalloy were carried out under the temperature range
of 800–1050 ◦C and strain rates of 0.001, 0.01, 0.1, 1, and 10 s−1 on a Gleeble-3500 metallurgical
processes simulator. The effect of temperature and holding time on grain growth was investigated
to determine the proper heating schedule of the GH3625 sheet in hot stamping. The flow behavior
of the GH3625 superalloy sheet was analyzed in detail. The work hardening model (WHM) and
the modified Arrhenius model, considering the deviation degree R (R-MAM), were constructed to
predict the stress of flow curves. The results showed that WHM and R-MAM have good prediction
accuracy by evaluating the correlation coefficient (R) and the average absolute relative error (AARE).
Additionally, the plasticity of the GH3625 sheet at elevated temperature drops with the increasing
temperature and decreasing strain rate. The best deformation condition of the GH3625 sheet in the
hot stamping is in the range of 800~850 ◦C and 0.1~10 s−1. Finally, a hot stamped part of the GH3625
superalloy was produced successfully, which had higher tensile strength and yield strength than the
as-received sheet.

Keywords: GH3625 superalloy; grain growth; work hardening model; modified Arrhenius model;
hot stamping

1. Introduction

Owing to the increasing demand of the thrust-to-weight ratio of aero-engines, the
material of the flame tube was changed from the stainless steel AISI310 to the Ni-based
superalloy with solid solution strengthening or precipitation strengthening [1–4]. The
GH3625 superalloy sheet can be used for manufacturing the flame tube, which has excellent
high-temperature strength and oxidation resistance, outstanding creep and thermal fatigue
strength [5–8]. The GH3625 is a Ni-Cr-Mo-Nb multicomponent alloy, which is a Chinese
brand and similar to Inconel 625. The GH3625 superalloy belongs to wrought superalloys
with solid solution strengthening.

Hot stamping technology can be adopted to form a GH3625 superalloy sheet due to
high strength and microhardness. The characteristics of hot working in superalloys are low
plasticity, high deformation resistance, narrow processing temperature range, no phase
recrystallization and low thermal conductivity [9–13]. The current research on GH3625 or
Inconel 625 mainly focuses on the hot deformation and dynamic recrystallization behavior
of forged or casted bars during hot compression [14,15]. Jia et al. [16] studied the hot
deformation behavior and the microstructural characteristics of Inconel 625, and the opti-
mum condition of the as-cast Inconel 625 alloy was determined at a temperature range of
1100–1200 ◦C and strain rate of 1–10 s−1, where the perfect dynamic recrystallization occurs
and fine grain structure is obtained. Maj et al. [17] investigated and analyzed Portevin
Le-Chatelier effect (PLC effect) of the Inconel 625 superalloy using tensile tests and compres-
sion tests, and the results showed that cross-core diffusion was most probably responsible
for the PLC effect in Inconel 625. Li et al. [18] investigated the microstructure evolution
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and nucleation mechanisms of dynamic recrystallization for hot-deformed Inconel 625
superalloy and found that the dominant nucleation mechanism of dynamic recrystalliza-
tion at 1150 ◦C is the discontinuous dynamic recrystallization. Chen et al. [19] studied hot
deformation behavior and the microstructural evolution of Inconel 625 superalloy plates in
a range of working temperatures (800–1050 ◦C) and strain rates (0.001–1 s−1). Gao et al. [20]
investigated the effect of twin boundaries on the microstructure and mechanical properties
of the Inconel 625 alloy during hot deformation, the result indicated that the twin bound-
aries can improve strength and ductility. Liu et al. [21] studied the temperature effect on the
deformation behavior, microstructural evolution and fracture mechanism of the Inconel 625
sheet from room temperature to 950 ◦C. Badrish et al. [22] studied the anisotropic behavior
and mechanical properties of the Inconel 625 superalloy sheet from room temperature to
600 ◦C. Godasu et al. [23] investigated the effects of strain rate on thermal deformation
behavior and microstructure evolution of Inconel 625 superalloy at 1000 ◦C through plane
strain compression (PSC) tests. However, there is minimal literature about the hot stamping
process and the tensile behavior of the GH3625 or Inconel 625 superalloy sheets at higher
temperatures and stain rates. Therefore, a series of experiments and investigations must be
conducted in order to confirm the forming process and manufacture the GH3625 product.

In this paper, the grain growth behaviors of the GH3625 sheet during heating were
investigated to determine the proper heating schedule before forming. The tensile test of
the GH3625 sheet at different temperatures and strain rates were conducted on a Gleeble-
3500 metallurgical processes simulator. A constitutive model of different flow curves
of the GH3625 sheet was constructed. The high temperature plasticity of the GH3625
sheet was studied. Finally, a hot stamped part of the GH3625 superalloy was produced
successfully, mechanical properties and the microstructure of the stamped piece were tested
and observed. The paper will be helpful in providing a theoretical basis and engineering
guidance for the hot stamping process of nickel-based superalloy sheets.

2. Experimental Procedures

The GH3625 superalloy sheet used in this study had a nominal thickness of 2 mm. The
chemical composition is listed in Table 1. The microstructure of the as-received GH3625
sheet under the solution-heat-treated condition is shown in Figure 1. Figure 1a shows
the Euler angle diagram, which is composed of equiaxed grains and annealing twins.
The color distribution of each grain is random, which indicates a weak grain orientation.
The average grain size of the alloy is around 36µm. The orientation imaging microscopy
(OIM) map is shown in Figure 1b, in which Σ3, Σ9 and Σ27 boundaries are represented
by red lines, fuchsia lines and green lines, respectively. A misorientation angle greater
than 15◦ is defined as high angle grain boundaries (HAGBs), which is represented by
red lines. The misorientation angles in the range of 2~15◦ are defined as low angel grain
boundaries (LAGBs), which are represented as green lines. The fractions of the Σ3, Σ9 and
Σ27 boundaries are 42%, 1% and 0.4%, respectively. Figure 1c shows the misorientation
angel distribution. It can be seen that a large number of orientation angles are 60◦, with
the rest mainly distributed between 10◦ and 60◦. Figure 1d shows the angle distribution
of orientation difference from point A to B. Six red lines of grain boundaries were present
from point A to B, and the orientation difference angle of each twin was 60◦, indicating that
the twins have a <111>/60◦ orientation difference relationship with the parent grain.

The samples with sizes of 10 mm × 15 mm × 2 mm were obtained by wire electrode
cutting. These specimens were then heat-treated in the temperature range of 950–1250 ◦C
with an interval of 50 ◦C, and then held, respectively, for 5, 15, 30, 45 and 60 min in
the atmosphere box furnace [3]. Subsequently, these specimens were water-quenched to
preserve the high-temperature microstructure. The hot tensile tests were conducted on a
Gleeble-3500 metallurgical processes simulator at temperatures of 800, 850, 900, 950, 1000
and 1050 ◦C and strain rates of 0.001, 0.01, 0.1, 1 and 10 s−1. All tensile specimens were
heated to predetermined temperatures at 10 ◦C/s and held for 3 min before stretching
deformation. The hot tensile specimens which conform to the American standard E21-20
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were machined into a certain shape shown in Figure 2. The microstructures were examined
by Axiovert 200 MAT OM and JSM-7000F SEM. The corrodent, comprising 11 mL ethyl
alcohol + 14 mL hydrochloric acid + 1.4 g copper sulfate, was applied to the metallographic
acquisition, with a corrosion time of 9 min. The samples for an electron back-scattered
diffraction (EBSD) investigation were electropolished with a solution of 10% perchloric
acid in ethanol at 20 V for 30 s below −30 ◦C. EBSD maps were obtained with a step size of
1 µm.
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Table 1. Chemical composition of the GH3625 superalloy (mass%).

Cr Mo Nb Fe C Al Ti Mn S Ni

21.5 9 3.6 2 0.05 0.2 0.2 0.2 0.001 Bal

3. Results and Discussion
3.1. Effect of Temperature and Holding Time on Grain Growth

The heating temperature and holding time are critical parameters for the hot stamping
process of the GH3625 sheet. The microstructural evolution of the GH3625 superalloy at
1050 ◦C for various holding times is shown in Figure 3; it can be seen that grain is fine and
uniform, and grain growth is not obviously connected with holding time. Figure 4 displays
the microstructures of the GH3625 superalloy at 5 min for various temperatures, and it can
be seen that the grain grew rapidly and the mixed grain structure with large size differences
appeared when the temperature reached 1150 ◦C. This is because the secondary phase
particles on grain boundary was dissolved and lost the pinning effect above 1100 ◦C, which
greatly promoted grain growth [3]. Subsequently, the grain size was further coarsened and
became more uniform when the temperature was raised to 1250 ◦C.

In order to further uncover the influence of temperature and holding time on average
grain size, Figure 5 shows the variation diagram of grain size with holding time under
different temperatures. In Figure 5a, the grain size increased rapidly in the first five minutes,
and then grain growth became sluggish with holding time, which is due to the fact that
grain growth is characterized by grain boundary migration, which is a time-consuming
process. There were large number of fine grains at the beginning of holding time, which
provide a strong driving force for the grain growth. However, the further migration of grain
boundaries becomes difficult because of the reduction of the grain boundaries energy [24].
In addition, Figure 5b shows that the color map changes suddenly from blue to red when the
temperature exceeds 1100 ◦C. However, the color map changes gently with the extension
of holding time. Therefore, heating temperature plays a more dominant role in influencing
grain size than holding time.
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(d) 45 min; (e) 60 min.
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Figure 4. OM of the GH3625 superalloy at different temperatures for 5 min: (a) 950 ◦C; (b) 1000 ◦C;
(c) 1050 ◦C; (d) 1100 ◦C; (e) 1150 ◦C; (f) 1200 ◦C; (g) 1250 ◦C.
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Figure 5. Variation diagram of grain size for the GH3625 at different heating temperatures and
holding times: (a) 2D curves, (b) 3D color map.

The grain growth rate and grain expansion rate were defined in order to quantitatively
describe the effects of heating time and heating temperature on grain size. Grain growth
rate was defined as the change of average grain size per unit time under a certain heating
temperature, and its unit is µm/s. The grain expansion rate was defined as the average
grain size change caused by the change of unit temperature under a certain holding time,
and its unit is 1/◦C. Figure 6a shows the curve of grain size growth rate at different
temperatures, the grain growth rate reaches the maximum value (0.75 µm/s) at the range
of 0~300 s and then decreases sharply. As shown in Figure 6b, the grain expansion rate is
suddenly increased in the range of 1150~1200 ◦C. In conclusion, the heating temperature of
the GH3625 sheet should not be higher than 1100 ◦C in order to avoid mixed structure and
coarse grains in hot stamping. The heating temperature and holding time of the GH3625
sheet can be set at a range of 950–1100 ◦C and 5 min, respectively, in order to obtain fine
grain size and high production efficiency.
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Figure 6. The grain growth rate (a) and the grain expansion coefficient (b) of the GH3625 sheet.

3.2. Grain Growth Model of GH3625 during Heating

The classical Arrhenius model can be used to describe the grain growth behavior when
the heating temperature is 1100~1250 ◦C and the holding time is 5~45 min. The expression
of the classical Arrhenius model is as follows [3]:

d− d0 = Btmexp[−Qd/RT] (1)

where d is the grain size (µm), d0 is initial grain size (36µm), t is holding time (s), T heating
temperature (K) and R is the gas constant (8.314 J/(mol·K)). Qd is the activation energy of
grain growth (J/mol), m is time exponent and B is the material constant. It can be obtained
by taking the natural logarithm of Equation (1):

ln(d− d0) = ln B + m ln t−Qd/(RT) (2)

For a constant temperature T in Equation (2), the partial derivative of grain size with
respect to time can be obtained:

m = ∂ ln(d− d0)/∂ ln t (3)

For a constant holding time t in Equation (2), the partial derivative of grain size with
respect to temperature can be obtained:

Qd = −R∂ ln(d− d0)/∂ ln(1/T) (4)

According to the calculation results of Equations (2)–(4), Figure 7 shows the linear
fitting relationship between different parameter combinations, the values of m, B and Qd
are obtained. At last, the grain growth model of the GH3625 alloy is as follows:

d = d0 + 9.86× 1010t0.09exp[−259272/RT] (5)

In order to evaluate the prediction accuracy of Equation (5), Figure 8 shows the compar-
ison of prediction results of grain size with experimental results. The average absolute rela-
tive error (AARE) is 5.8174%, which indicates that the model has good prediction precision.

3.3. Hot Tensile Deformation Behavior

The true stress–strain curves of the GH3625 superalloy at different strain rates are
shown in Figure 9. It is a universal phenomenon that true stress decreases with increasing
temperature and decreasing strain rate. As shown in Figure 9, all of these flow curves can
be classified into four types: work hardening (WH), transitional dynamic recovery (TDRV),
dynamic recovery (DRV) and dynamic recrystallization (DRX). The flow stress continues to
rise with the increasing strain until the fracture occurs rapidly, which is termed as WH. The
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flow stress tends to be basically stable at a peak strain when a balance between dynamic
softening and work hardening is reached, which is known as DRV. The flow stress drops
rapidly after peak strain and then remains unchanged, which is known as DRX. TDRV is
defined as the instable transitional status from WH to DRV or DRX.
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Figure 9. The true stress strain curves of the GH3625 superalloy at different strain rates.

Every flow curve in Figure 9 is indicated by arrows as the corresponding type of
curve (WH, TDRV, DRV and DRX). Serration flow during the hot tensile deformation of the
GH3625 was observed at all flow curves except DRX curves, signifying the occurrence of
dynamic strain ageing (DSA). DSA is caused by the interaction between solute atoms and
mobile dislocations during straining [25]. The amplitude of variations for serration types A
and B is around 10 MPa and 20 MPa, respectively. Moreover, a sharp drop in flow stress
is also observed (indicated by circles 1~5), the decrease range is 18 MPa, 27 MPa, 11 MPa,
40 MPa and 100 MPa from circle 1 to circle 5, respectively. It is noteworthy that TDRV
curves were characterized in the form of type A or type B or by a sharp drop in flow stress.

It is obvious that WH occurs at 800~1000 ◦C and 1~10 s−1 or 800~900 ◦C and 0.1~1 s−1.
The hardening flow stress of WH has a linear relationship with strain. The strain hardening
exponent remains basically constant with temperature and is a functional relationship with
strain rate. Additionally, the yield strength remains basically stable in conjunction with the
strain rate for WH curves, and the flow behavior is independent of strain rate at 800~950 ◦C
and 1~10 s−1. Therefore, the hardening curves of the WH model (WHM) can be expressed
as follows:

σ = nε + b0 (6)

n = fn
( .
ε
)
, b0 = f0(T) (7)
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where σ is the flow stress (Mpa),
.
ε is the strain rate (s−1), n is the hardening exponent (Mpa),

ε is strain, b0 is the intercept of hardening curves with removing elastic strain (Mpa) and
T is the temperature (◦C). fn

( .
ε
)

is a function of strain rate and hardening exponent, and
f0(T) is a function of the temperature and the intercept of hardening curves.

The fitted curves of n and b0 are shown in Figure 10, and the coefficients of the
third order polynomial functions are also listed in Figure 10. The adjusted coefficients of
determination between the fitted results and n and b0 are 0.9616 and 0.9635, respectively,
which revealed the excellent degree of fitting. Thus, the flow stress of the WH type can be
calculated. Figure 11 shows the prediction results of the hardening curves of WH types. In
Figure 11, the curves of different colors is experimental results at different temperatures,
the hollow, square points of different colors are the predicted results of the corresponding
color curve. The correlation coefficient (R) and AARE were used to evaluate the model of
WH. Figure 12 shows the comparison between predicted data and experimental data. The
R-values and AARE values of the WH model are 0.9904 and 2.5041%, respectively, which
indicates that WHM has good prediction precision.
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The other flow curves, which include TDRV, DRV and DRX, can be described using
the Arrhenius model, and its relevant mathematical expressions are as follows:

.
ε = A[sinh(ασ)]n exp[−Q/(RT)] (8)

Z =
.
ε exp[−Q/(RT)] = A[sinh(ασ)]n (9)

σ =
1
α

ln{( Z
A
)

1
n + [(

Z
A
)

2
n + 1]

1
2 } (10)

where T is the temperature (K), Q is the deformation activation energy (KJ/mol), R is gas
constant (8.314 J·mol−1·K−1), Z is strain rate factor of temperature compensation, and
the remaining values (α, A, n, Q) are material constants, which are related to the strain.
Equation (10) is the deformation expression of Equation (8), which can directly calculate
the flow stress.

The nine flow curves at temperatures of 950 ◦C,1000 ◦C and 1050 ◦C and strain rates
of 0.001, 0.01 and 0.1 s−1 were chosen as the experimental data for the establishment of
the Arrhenius model. The constants (α, lnA, n and Q) can be obtained by calculating the
average slopes of fitted lines and the expression Q = 1000Rnk [26,27]. The four material
constants at a strain ranging from 0.015–0.20 with an interval of 0.05 were calculated and
then fitted by a 8th order polynomial. Figure 13 shows the fitted curves of the four material
constants and the coefficients of the eighth order polynomial functions. The adjusted
coefficients of determination (Adj-R2) between fitted curves and α, n, lnA, Q are 0.9967,
0.9984, 0.9793 and 0.9791, respectively, which revealed a good fitting degree of fitted curves.
So far, the flow stress of all TDRV, DRV and DRX curves under a given strain, temperature
and strain rate can be predicted.

According to the calculation results of Arrhenius model, there are deviations in varying
degree between the experimental results and the prediction results. Figure 14 only shows
the deviations at

.
ε = 0.001 and

.
ε = 0.01. In Figure 14, the deviations in the y direction are

large and decrease with the increasing temperature, but the variation trend of the prediction
points is consistent with the experiment curves. The deviation in the y direction can be
defined by the following equation:

R = σe/σp (11)

where R is the deviation degree, σe is the maximum value of experiment curve and σp is the
maximum value of prediction point. It is obvious that the smaller the R value, the greater
the degree of deviation and vice versa.
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The R-values of all TDRV, DRV and DRX curves are shown in Table 2. The R-value rises
with increasing temperatures and decreasing strain rate. Moreover, the R-value basically
remained unchanged along with the strain rate at a strain rate of 0.001–0.1 s−1, which
implies that the R-value is only dependent on the temperature in this range. However, the
R-value displayed great changes at a strain rate range of 1–10 s−1, which demonstrates that
the R-value is dependent on both the temperature and temperature in the range.

Consequently, a modified Arrhenius model, which takes into account the deviation
degree R (which is termed as R-MAM), can be denoted as follows:

σ = R
1
α

ln{( Z
A
)

1
n + [(

Z
A
)

2
n + 1]

1
2 } (12)

R = R1R2 = f1(T) f2
( .
ε
)
, R1 = f1(T), R2 = f2

( .
ε
)

(13)
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In which R1 and R2 are the deviation degree with respect to temperature and strain
rate, respectively. The fitted curves and polynomial coefficients of R1 and R2 are shown
in Figure 15. The Adj-R2 between fitted curves and R1 and R2 are 0.9947 and 0.9999,
respectively. Figure 16 shows the prediction results of the TDRV, DRV and DRX curves
calculated by R-MAM, and the comparison between predicted data and experimental data
is shown in Figure 17. The values of R and AARE are 0.9695 and 5.530%, respectively.
This also indicates that R-MAM has the better prediction precision for DRX than for DRV
or TDRV.

Table 2. The R-value at different temperatures and strain rates.

0.001 s−1 0.01 s−1 0.1 s−1 1 s−1 10 s−1

1073 K 0.56 – – – –
1123 K 0.69 0.66 – – –
1173 K 0.71 0.71 – – –
1223 K 0.83 0.71 0.71 – –
1273 K 0.84 0.76 0.75 – 0.49
1323 K 0.90 0.81 0.81 0.75 0.59
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3.4. Plasticity at High Temperatures

The elongations at break for all samples and fractured tensile samples are presented
in Figure 18. It can be seen that the elongation at break varies from 49% to 56% and the
GH3625 sheet has good formability when the deformation conditions are in the range of
800~850 ◦C and 0.1~10 s−1. Moreover, the plasticity drops with the increasing temperature
and decreasing strain rate, which is the opposite to what occurs when using general metal
materials. Kong et al. [28] also obtained similar results. As shown in Figure 19, the decrease
in the ductility is mainly attributed to the increased precipitation of second-phase particles
at higher temperatures and lower strain rates. These second-phase particles at the grain
boundaries originated from the supersaturated solid–solution substrate, which reduced
plasticity and increased strength.
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Figure 19. The precipitation of second-phase particles at different temperatures: (a) as-received status;
(b) 800 ◦C; (c) 900 ◦C; (d) 1000 ◦C.

3.5. Production Verification

The whole hot stamping process of the GH3625 sheet was divided into three main pro-
cess, namely the blank transfer stage, the forming stage and air cooling [29–31]. The dimen-
sions of the rectangular billet with a central hole ofϕ80 mm was 500 mm × 330 mm × 2 mm,
and the billet was heated to 1000 ◦C and quickly transferred to the mold. Finally, a hot
stamped part of the GH3625 superalloy was successfully produced by adopting the hot
stamping process parameters listed in Table 3. Figure 20 shows the mechanical properties
and microstructure of the GH3625 stamping part. In Figure 20a, a miniature dog bone
specimens were machined due to the geometrical constraints. The miniature dog bone
specimen matched the response of ASTM specimens at both low and high strain rates [32],
and the 2D graph of dog bone specimen is shown in Figure 20c. In Figure 20b, the stress–
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strain curves of samples 1# and 2# are similar. The average yield strength, tensile strength
and elongation at break of the two samples are 544 MPa, 1556 MPa and 60%, respectively.
In comparison with the as-received sheet, the yield strength and tensile strength of the
stamped parts are increased by 65% and 17%, respectively, and the elongation at break is
decreased by 6%. This is mainly due to the precipitation of second phase particles in the
workpiece during the hot stamping process, as shown in Figure 20d. In addition, Figure 20e
shows that the microstructure of the stamped part is uniform and fine-grained, and the
average grain size is about 45µm.

Table 3. Hot stamping process parameters of the GH3625 sheet.

Parameter Value Parameter Value

Transfer time of blank/s 8 Heating temperature of blank/◦C 1000

Press stoke/mm 350 Blank-holder force/KN 120

Forming speed/mm·s−1 100 Tool temperature/◦C 300

Cushion stroke/mm 100 Friction coefficient 0.45

Waiting time before ram motion/s 3 Dwell time/s 120
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Figure 20. Mechanical properties and microstructure of the GH3625 stamping part: (a) stamped
part and sampling locations; (b) true stress–strain curves; (c) 2D graph of tensile specimen; (d) SEM;
(e) OM.

4. Conclusions

The hot tensile tests of the GH3625 superalloy under the temperature range of
800–1050 ◦C with an interval of 50 ◦C and strain rates of 0.001, 0.01, 0.1, 1 and 10 s−1

were conducted on a Gleeble-3500 metallurgical processes simulator and the true stress–
strain curves were obtained. The effect of holding time and temperature on grain growth
was investigated, and the model of grain growth was constructed. The constitutive model
of different flow curves for the GH3625 sheet was developed. A hot stamped part of the
GH3625 superalloy was produced successfully. The following main conclusions can be
drawn from this work:

1. The grain size of the GH3625 superalloy increased rapidly, and a mixed structure
appeared when the temperature reached 1150 ◦C. The heating temperature played a
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greater influence on grain growth than the holding time. During the hot stamping
process, the heating temperature and holding time of the GH3625 sheet can be set to
the range of 950–1100 ◦C and 5 min, respectively.

2. The work hardening model (WHM) was developed to predict WH curves. A modified
Arrhenius model, taking the deviation degree R (R-MAM) into account, were devel-
oped in order to predict the DRX, DRV or TDRV curves. The results demonstrated
that both models have good prediction accuracy for separate flow curves.

3. The GH3625 sheet has good formability when the deformation conditions are in
the range of 800~850 ◦C and 0.1~10 s−1. Moreover, the plasticity of the GH3625
sheet drops with the increasing temperature and decreasing strain rate, which is
mainly attributed to the increased precipitation of second-phase particles at higher
temperatures and lower strain rates. In comparison with the as-received sheet, the
yield strength and tensile strength of the stamping parts increased by 65% and 17%,
respectively, and the elongation at break was decreased by 6%.
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